Hankel Transform of (q,r)-Dowling Numbers
DOI:
https://doi.org/10.29020/nybg.ejpam.v12i2.3406Keywords:
{$r$-Whitney numbers, $r$-Dowling numbers, generating function, $q$-analogue, $q$-exponential function, $A$-tableau, convolution formula, Hankel transform, Hankel matrix, $k$-binomial transform.Abstract
In this paper, we establish certain combinatorial interpretation for $q$-analogue of $r$-Whitney numbers of the second kind defined by Corcino and Ca\~{n}ete in the context of $A$-tableaux. We derive convolution-type identities by making use of the combinatorics of $A$-tableaux. Finally, we define a $q$-analogue of $r$-Dowling numbers and obtain some necessary properties including its Hankel transform.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.