
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 2, 2019, 553-570
ISSN 1307-5543 – www.ejpam.com
Published by New York Business Global
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Abstract. Fuzzy sets, formalized by Zadeh in 1965, generalizes the classical idea of sets. The idea
itself was generalized in 1975 when Zadeh introduced the interval-valued fuzzy sets. In this paper,
we generalize further the above concepts by introducing interval-valued fuzzy on ideal sets, where
an ideal is a nonempty collection of sets with a property describing the notion of smallness. We
develop its basic concepts and properties and consider how one can create mappings of interval-
valued fuzzy on ideal sets from mappings of ordinary sets. We then consider topology and continuity
with respect to these sets.
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1. Introduction

In classical set theory, an element either belongs or does not belong to a given set.
That is, the membership of elements to a given set is assessed in binary terms. Thus, one
may associate a set A on a universal set U to the characteristic function of A with values
0 or 1. However, there are informations that cannot be precisely assessed as belonging to
or not to a given set, like the set of young people in a group. To address this problem,
in 1965, Zadeh [9] and Klaua [4] introduced fuzzy sets, where elements have degrees of
membership, not just 0 or 1. Formally defined, a fuzzy set is a mapping from U into the
unit interval [0, 1]. In our example, for a not so young member of the group, a degree of
membership equal to 0.2 can be assigned.

In 1978, Zadeh used his theory of fuzzy sets and fuzzy logic to introduce possibility
theory [11]. The theory uses a possibility distribution which should not be confused with
a probability distribution. Both are fuzzy sets but the sum of the values of a possibility
distribution need not be 1 while it should be 1 in a probability distribution. For instance,
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we may assign a value of 0.4 for the possibility that tomorrow there will be rain and a value
of 0.7 for the possibility that tomorrow will be sunny. The sum of these two possibilities
is already greater than 1, but our assignment may represent best the information that we
know about what will be the weather for tomorrow. Informations like these, with a lot of
uncertainties, are not suited to be expressed using a probability distribution.

Now, consider the possibility that tomorrow there will be rain and at the same time
it will be sunny. This case is not impossible as it happens rarely in the Philippines. But
its possibility should be far less than any of the two separate possibilities. We could not
just give it a value equal to the minimum of the two separate possibilities. Expressing
information like this motivated the introduction of fuzzy on ideal sets in [6] by Mernilo
and Caga-anan. An ideal here is a nonempty collection of subsets of a set X, denoted by
I(X), that satisfies:

i. A ∈ I(X) and B ⊆ A implies B ∈ I(X); and

ii. A ∈ I(X) and B ∈ I(X) implies A ∪B ∈ I(X).

The first property is the reason why an ideal is said to be a collection of sets that are
considered small. Ideal spaces were first studied by Kuratowski [5] and Vaidyanathaswamy
[8].

Formally, given a nonempty set X and an ideal I(X) on X, a fuzzy on ideal set is a
mapping µ : I(X)→ [0, 1] such that:

i. µ(∅) = 0; and

ii. for nonempty sets A,B ∈ I(X), with A ⊆ B, we have µ(B) ≤ µ(A).

The set of all such µ is denoted by II(X). Observe that the reverse inequality µ(B) ≤ µ(A)
encapsulates the preceding idea that the possibility that tomorrow there will be rain and
at the same time it will be sunny should not just be equal to the minimum of the separate
possibilies as it could be far less. It is also important to note that the preceding definition
does not define a measure. For A ⊆ B, a measure m should have m(A) ≤ m(B), not
the reverse inequality, as in our definition. Moreover, any fuzzy set α defined on a set X
can be embedded as an element of IP(X) by associating it with the fuzzy on ideal set µα
defined by

µα(A) =

{
α(x), if A = {x}, x ∈ X
0, otherwise,

where P(X) is the powerset of X−the largest ideal of X. Thus, fuzzy on ideal sets
generalize fuzzy sets.

With regard to uncertainty, there are cases that even the assigning of degrees of mem-
bership on a fuzzy set or fuzzy on ideal set has its own uncertainties. In these cases, it is
better to give the degree of membership as an interval rather than as a single number. For
instance, when one is estimating the age of a person, one has a better chance of capturing
the real age by giving a possible range of the age rather than estimating it with a single
number. This way, one captures the imprecision better. This lead to the introduction of
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interval-valued fuzzy sets in 1975 by Zadeh [10]. In that same year, it was also considered
by Grattan-Guiness [2], Jahn [3] and Sambuc [7].

In this study, we introduce and develop the interval-valued fuzzy on ideal sets. This
concept generalizes the above discussed fuzzy sets, fuzzy on ideal sets, and interval-valued
fuzzy sets. We formally define it in the next section.

2. Basic concepts and properties

Let us first introduce some useful notations. We denote by I the set of all closed
subintervals of [0,1]. For α ∈ I , let α− be the left endpoint of α and α+ be the right
endpoint of α, so that α = [α−, α+]. Let α1 = [α−1 , α

+
1 ] and α2 = [α−2 , α

+
2 ] be closed

subintervals of I . We use the inequality notation “≤I”, say α1 ≤I α2, to mean α−1 ≤ α
−
2

and α+
1 ≤ α

+
2 . Let A be an index set and αi ∈ I , for each i ∈ A. We define the supremum

of αi by sup
i∈A

αi = [sup
i∈A

α−i , sup
i∈A

α+
i ] and the infimum of αi by inf

i∈A
αi = [inf

i∈A
α−i , inf

i∈A
α+
i ]. We

define formally an interval-valued fuzzy on ideal set as follows.

Definition 1. Let X be a nonempty set and I(X) be an ideal on X. An interval-valued
fuzzy on ideal set (briefly an IVFI set) is a mapping ι̂ : I(X) → I that satisfies the
following:

i. ι̂(∅) = [0, 0]; and

ii. for nonempty sets A,B ∈ I(X) with A ⊆ B,

ι̂(B) ≤I ι̂(A).

We denote the set of all such ι̂ by I I(X).

Remark 1. In a similar way that fuzzy on ideal sets generalize fuzzy sets, as discussed
above, IVFI sets generalize interval-valued fuzzy sets.

Example 1. Let X be a nonempty set and π : X → I be an interval-valued fuzzy set.
We can define an IVFI set π̂ : P(X)→ I by

π̂(A) =

{
[0, 0], if A = ∅;

infx∈A π(x), if A 6= ∅, A ∈ P(X).

This is similar to the guaranteed possibility given in [1].

We call an IVFI set ι̂ : I(X) → I with the property that for all nonempty set
A ∈ I(X), ι̂(A) = inf

x∈A
ι̂({x}), a guaranteed possibility IVFI set.

Remark 2. Let X be a nonempty set and I(X) be an ideal on X. We denote by 0̃I(X)

the IVFI set 0̃I(X) : I(X)→ {[0, 0]} and by 1̃I(X) the IVFI set

1̃I(X)(A) =

{
[0, 0], if A = ∅;

[1, 1], if A 6= ∅, A ∈ I(X).
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Next, we define some relational operators between IVFI sets.

Definition 2. Let X be a nonempty set and I(X) be an ideal on X. Let ι̂, τ̂ ∈ I I(X).
We say

(i) ι̂ is a subset of τ̂ , denoted by ι̂ 6 τ̂ , if ι̂(A) ≤I τ̂(A), for all A ∈ I(X); and

(ii) ι̂ is equal to τ̂ , denoted by ι̂ = τ̂ , if ι̂(A) = τ̂(A), for all A ∈ I(X).

Remark 3. To avoid confusion, we summarize first our “inequality” notations.

i. The symbol “≤” for the usual inequality with the real numbers.

ii. The symbol “≤I” for the inequality with intervals.

iii. The symbol “6” to denote the subset relation with IVFI sets.

Next, we define complement, union, and intersection of IVFI sets. We then prove that
the resulting mappings are also IVFI sets, showing that our definitions are well-defined.

Definition 3. Let X be a nonempty set and I(X) be an ideal on X. Let ι̂ ∈ I I(X). The
complement of ι̂, denoted by ι̂c, is defined by, ι̂c(∅) = [0, 0] and for every nonempty set
A ∈ I(X),

ι̂c(A) =

[
inf
x∈A

{
1− [̂ι({x})]+

}
, inf
x∈A

{
1− [̂ι({x})]−

}]
.

Proposition 1. Let X be a nonempty set and I(X) be an ideal on X. If ι̂ ∈ I I(X), then
the complement of ι̂ is an IVFI set.

Proof. Let ι̂ ∈ I I(X). Let A ∈ I(X), x ∈ A and ι̂({x}) = [[̃ι({x})]−, [̂ι({x})]+]. Since
[̂ι({x})]− ≤ [̂ι({x})]+, we have 1− [̂ι({x})]+ ≤ 1− [̂ι({x})]−. Hence,

inf
x∈A

{
1− [̂ι({x})]+

}
≤ inf

x∈A

{
1− [̂ι({x})]−

}
,

and indeed we have a closed interval. We need to show that the reverse inequality of an
IVFI set holds. Let ∅ 6= A,B ∈ I(X) such that A ⊆ B. Then, {1− [̂ι({x})]− : x ∈ A} ⊆
{1− [̂ι({x})]− : x ∈ B} and {1− [̂ι({x})]+ : x ∈ A} ⊆ {1− [̂ι({x})]+ : x ∈ B}. Hence,

ι̂c(B) =

[
inf
x∈B

{
1− [̂ι({x})]+

}
, inf
x∈B

{
1− [̂ι({x})]−

}]
≤I
[

inf
x∈A

{
1− [̂ι({x})]+

}
, inf
x∈A

{
1− [̂ι({x})]−

}]
= ι̂c(A).

Therefore, ι̂c is an IVFI set.

Remark 4. For a singleton set A = {x} ∈ I(X), the preceding definition coincides with
the definition of the complement of an interval-valued fuzzy set.
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Definition 4. Let X be a nonempty set and I(X) be an ideal on X. Let ι̂, τ̂ ∈ I I(X).
The union and intersection of ι̂ and τ̂ , denoted by ι̂∨ τ̂ and ι̂∧ τ̂ , respectively, are given
by

(ι̂ ∨ τ̂)(A) = [max{[̂ι(A)]−, [τ̂(A)]−},max{[̂ι(A)]+, [τ̂(A)]+}]

and
(ι̂ ∧ τ̂)(A) = [min{[̂ι(A)]−, [τ̂(A)]−},min{[̂ι(A)]+, [τ̂(A)]+}],

for all A ∈ I(X), respectively.

In general, the union and intersection of a collection of IVFI sets {ι̂j : j ∈ J}, denoted
by
∨
j∈J ι̂j and

∧
j∈J ι̂j , are given by∨
j∈J

ι̂j

 (A) = [sup{[̂ιj(A)]− : j ∈ J}, sup{[̂ιj(A)]+ : j ∈ J}]

and ∧
j∈J

ι̂j

 (A) = [inf{[̂ιj(A)]− : j ∈ J}, inf{[̂ιj(A)]+ : j ∈ J}],

for all A ∈ I(X), respectively.
One can easily check that the arbitrary union or intersection of IVFI sets is an IVFI

set.
The following are some properties of the operations on IVFI sets.

Theorem 1. Let X be a nonempty set and I(X) be an ideal on X. Let ι̂, τ̂ , η̂ ∈ I I(X).
Then,

i. (Commutativity): ι̂ ∨ τ̂ = τ̂ ∨ ι̂ and ι̂ ∧ τ̂ = τ̂ ∧ ι̂.

ii. (Associativity): (ι̂ ∨ τ̂) ∨ η̂ = ι̂ ∨ (τ̂ ∨ η̂) and (ι̂ ∧ τ̂) ∧ η̂ = ι̂ ∧ (τ̂ ∧ η̂).

iii. (Transitivity): If ι̂ 6 τ̂ and τ̂ 6 η̂, then ι̂ 6 η̂.

iv. (Distributivity): ι̂ ∨ (τ̂ ∧ η̂) = (ι̂ ∨ τ̂) ∧ (ι̂ ∨ η̂) and ι̂ ∧ (τ̂ ∨ η̂) = (ι̂ ∧ τ̂) ∨ (ι̂ ∧ η̂)

v. (De Morgan’s Law): (ι̂ ∨ τ̂)c = ι̂c ∧ τ̂ c and (ι̂ ∧ τ̂)c = ι̂c ∨ τ̂ c

Proof. Let ι̂, τ̂ , η̂ ∈ I I(X). Properties (i) and (ii) follows from the commutativity and
associativity of the maximum and minimum operations. Suppose that ι̂ 6 τ̂ and τ̂ 6 η̂.
Then for all A ∈ I(X), ι̂(A) ≤I τ̂(A) and τ̂(A) ≤I η̂(A), which implies that ι̂(A) ≤I η̂(A),
for all A ∈ I(X). That is, ι̂ 6 η̂, easily proving (iii). To prove (iv), let A ∈ I(X) and
consider that

(ι̂ ∨ (τ̂ ∧ η̂))(A) = [max{[̂ι(A)]−, [(τ̂ ∧ η̂)(A)]−},max{[̂ι(A)]+, [(τ̂ ∧ η̂)(A)]+}]

= [max{[̂ι(A)]−,min{[τ̂(A)]−, [η̂(A)]−}},max{[̂ι(A)]+,min{[τ̂(A)]+, [η̂(A)]+}}].
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We consider two cases. First, if τ̂(A) ≤I η̂(A), then

(ι̂ ∨ (τ̂ ∧ η̂))(A) = [max{[̂ι(A)]−, [τ̂(A)]−},max{[̂ι(A)]+, [τ̂(A)]+}].

Second, if η̂(A) ≤I τ̂(A), then

(ι̂ ∨ (τ̂ ∧ η̂))(A) = [max{[̂ι(A)]−, [η̂(A)]−},max{[̂ι(A)]+, [η̂(A)]+}].

Summarizing the two cases, we have

(ι̂ ∨ (τ̂ ∧ η̂))(A) = [min{max{[̂ι(A)]−, [τ̂(A)]−},max{[̂ι(A)]−, [η̂(A)]−}},
min{max{[̂ι(A)]+, [τ̂(A)]+},max{[̂ι(A)]+, [η̂(A)]+}}]

= ((ι̂ ∨ τ̂) ∧ (ι̂ ∨ η̂))(A).

Thus, ι̂∨ (τ̂ ∧ η̂) = (ι̂∨ τ̂)∧ (ι̂∨ η̂). Similarly, we can show that ι̂∧ (τ̂ ∨ η̂) = (ι̂∧ τ̂)∨ (ι̂∧ η̂).
To prove (v), let ∅ 6= A ∈ I(X) and note that

(ι̂ ∨ τ̂)c(A) =
[

inf
x∈A

{
1− [(ι̂ ∨ τ̂)({x})]+

}
, inf
x∈A

{
1− [(ι̂ ∨ τ̂)({x})]−

}]
=
[

inf
x∈A

{
1−max{[̂ι({x})]+, [τ̂({x})]+}

}
, inf
x∈A

{
1−max{[̂ι({x})]−, [τ̂({x})]−}

}]
.

We also consider two cases. First, if τ̂({x}) ≤I ι̂({x}), then

(ι̂ ∨ τ̂)c(A) =

[
inf
x∈A

{
1− [̂ι({x})]+

}
, inf
x∈A

{
1− [̂ι({x})]−

}]
.

Second, if ι̂({x}) ≤I τ̂({x}), then

(ι̂ ∨ τ̂)c(A) =

[
inf
x∈A

{
1− [τ̂({x})]+

}
, inf
x∈A

{
1− [τ̂({x})]−

}]
.

Combining the two cases, we have

(ι̂ ∨ τ̂)c(A) =
[

min
{

inf
x∈A

{
1− [̂ι({x})]+

}
, inf
x∈A

{
1− [τ̂({x})]+

}}
,

min
{

inf
x∈A

{
1− [̂ι({x})]−

}
, inf
x∈A

{
1− [τ̂({x})]−

}}]
= (ι̂c ∧ τ̂ c)(A).

Hence, (ι̂∨ τ̂)c = ι̂c∧ τ̂ c. Using the same argument, we can also show that (ι̂∧ τ̂)c = ι̂c∨ τ̂ c,
and our proof is complete.

The next theorem states some interesting properties of the complement of IVFI sets.

Theorem 2. Let X be a nonempty set and I(X) be an ideal on X. Let ι̂, τ̂ ∈ I I(X).
Then,

i. ι̂ 6 (ι̂c)c;
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ii. ι̂ = (ι̂c)c if and only if ι̂ is a guaranteed possibility IVFI set; and

iii. if ι̂ 6 τ̂ , then τ̂ c 6 ι̂c.

Proof. Let ι̂ ∈ I I(X) and ∅ 6= A ∈ I(X). Note first that for singleton sets {x} ∈ I(X),
we have ι̂c({x}) = [1− [̂ι({x})]+, 1− [̂ι({x})]−]. Then, consider that

(ι̂c)c(A) =
[

inf
x∈A

{
1− [̂ιc({x})]+

}
, inf
x∈A

{
1− [̂ιc({x})]−

}]
=
[

inf
x∈A

{
1− (1− [̂ι({x})]−)

}
, inf
x∈A

{
1− (1− ι̂[({x})]+)

}]
=
[

inf
x∈A

[̂ι({x})]−, inf
x∈A

[̂ι({x})]+
]
. (1)

Since ι̂ is an IVFI set, the reverse inequality property implies that

ι̂(A) = [[̂ι(A)]−, [̂ι(A)]+] ≤I
[

inf
x∈A

[̂ι({x})]−, inf
x∈A

[̂ι({x})]+
]
.

Thus, ι̂ 6 (ι̂c)c, proving (i). To prove (ii), recall first the definition of a guaranteed
possibility IVFI set after Example 1. Now, suppose that ι̂ = (ι̂c)c. Then, ι̂(A) = (ι̂c)c(A),
for all A ∈ I(X). Note from (1) that for ∅ 6= A ∈ I(X),

(ι̂c)c(A) =
[

inf
x∈A

[̂ι({x})]−, inf
x∈A

[̂ι({x})]+
]
.

Thus, ι̂(A) =
[

infx∈A [̂ι({x})]−, infx∈A [̂ι({x})]+
]

= infx∈A ι̂({x}). That is, ι̂ is a guaran-

teed possibility IVFI set. Conversely, suppose that ι̂(A) =
[

inf
x∈A

ι̂({x})−, inf
x∈A

ι̂({x})+
]
, for

∅ 6= A ∈ I(X). Then by (1), ι̂(A) = (ι̂c)c(A). Thus, ι̂ = (ι̂c)c. To prove (iii), suppose
that ι̂ 6 τ̂ . Let ∅ 6= A ∈ I(X). Then, ι̂({x}) ≤I τ̂({x}), for all x ∈ A. Thus, for every
x ∈ A, [

1− [τ̂({x})]+, 1− [τ̂({x})]−
]
≤I
[
1− [̂ι({x})]+, 1− [̂ι({x})]−

]
.

Hence,[
inf
x∈A

{
1−[τ̂({x})]+

}
, inf
x∈A

{
1−[τ̂({x})]−

}]
≤I
[

inf
x∈A

{
1− [̂ι({x})]+

}
, inf
x∈A

{
1− [̂ι({x})]−

}]
.

Thus, τ̂ c(A) ≤I ι̂c(A), for all A ∈ I(X). Therefore, τ̂ c 6 ι̂c.

3. Mappings

Let X and Y be nonempty sets and f : X → Y be a mapping. Moreover, let I(X)
and I(Y ) be ideals on X and Y , respectively. We define the image and pre-image of the
ideals under f by f(I(X)) = {f(A) : A ∈ I(X)} and f−1(I(Y )) = {A : A ⊆ f−1(B), B ∈
I(Y )}, where f(A) and f−1(B) is the usual image and preimage of A ⊆ X and B ⊆ Y ,
respectively. The next theorem is important because it shows that these image and pre-
image of ideals are also ideals. The proof can be found in [6].
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Theorem 3 ([6]). Let X and Y be nonempty sets and let f : X → Y be a mapping. If
I(X) and I(Y ) are ideals on X and Y , respectively, then f(I(X)) and f−1(I(Y )) are
ideals on Y and X, respectively.

Given a mapping of two ordinary sets, we define the image and pre-image of IVFI sets.
We then prove that these image and pre-image are also IVFI sets, showing that they are
well-defined.

Definition 5. Let X and Y be nonempty sets and f : X → Y be a mapping. Moreover,
let I(X) and I(Y ) be ideals on X and Y , respectively.

i. If ι̂ ∈ I I(X), then the image of ι̂ under f , denoted by f [̂ι], is the mapping f [̂ι] :
f(I(X))→ I given by

(f [̂ι])(B) =

[
sup
A∈S

[̂ι(A)]−, sup
A∈S

[̂ι(A)]+
]
,

where S = {A ∈ I(X) : f(A) = B}.

ii. If τ̂ ∈ I I(Y ), then the pre-image of τ̂ under f , denoted by f−1[τ̂ ], is the mapping
f−1[τ̂ ] : f−1(I(Y ))→ I given by

(f−1[τ̂ ])(A) = (τ̂ ◦ f)(A),

where (τ̂ ◦ f)(A) is the composition τ̂(f(A)).

Let B ∈ f(I(X)) and S = {A ∈ I(X) : f(A) = B}. If B = ∅, then S = {∅}, and so
sup
A∈S

ι̂(A) = [0, 0]. Also, if ∅ = A ∈ f−1(I(Y )), then f(A) = ∅ and so τ̂(f(A)) = [0, 0].

Hence, we have the following remark.

Remark 5. Let X and Y be nonempty sets and f : X → Y be a mapping. Let ι̂ and
τ̂ be IVFI sets in I I(X) and I I(Y ), respectively. Then, we have f [̂ι](∅) = [0, 0] and
f−1[τ̂ ](∅) = [0, 0].

Theorem 4. Let X and Y be nonempty sets and f : X → Y be a mapping. Let ι̂ and τ̂
be IVFI sets defined on the ideals I(X) and I(Y ), respectively. Then, f [̂ι] and f−1[τ̂ ] are
IVFI sets defined on the ideals f(I(X)) and f−1(I(Y )), respectively.

Proof. We first show that f [̂ι] is an IVFI set defined on the ideal f(I(X)). Let
∅ 6= B1, B2 ∈ f(I(X)) such that B1 ⊆ B2. Let S1 = {A ∈ I(X) : f(A) = B1} and
S2 = {A ∈ I(X) : f(A) = B2}. Since I(X) is an ideal, for every A ∈ I(X) such that
f(A) = B2, there exists A1 ∈ I(X) such that A1 ⊆ A and f(A1) = B1. Since ι̂ is an
IVFI set and A1 ⊆ A, we have ι̂(A) ≤I ι̂(A1). Hence, supA∈S2

ι̂(A) ≤I supA1∈S1
ι̂(A1).

Thus, f [̂ι](B2) ≤I f [̂ι](B1). Therefore, with Remark 5 and Theorem 3, f [̂ι] is an IVFI
set defined on the ideal f(I(X)). Next, to show that f−1[τ̂ ] is an IVFI set defined on
the ideal f−1(I(Y )), let A,A1 ∈ f−1(I(Y )) such that A1 ⊆ A. Then, f(A1) ⊆ f(A)
and f(A1), f(A) ∈ I(Y ). Since τ̂ is an IVFI set on I(Y ), τ̂(f(A)) ≤I τ̂(f(A1)). Thus,
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f−1[τ̂ ](A) ≤I f−1[τ̂ ](A1). Therefore, with Remark 5 and Theorem 3, f−1[τ̂ ] is an IVFI
set defined on the ideal f−1(I(Y )).

We can extend our result to composition of mappings. The following corollaries are
immediate consequences of Theorem 3 and Theorem 5.

Corollary 1. Let X, Y , and Z be nonempty sets and f : X → Y and g : Y → Z be
mappings. Let g◦f : X → Z be a composition map. If I(X) and I(Z) are ideals on X and
Z, respectively, then, (g ◦ f)(I(X)) = g(f(I(X))) and (g ◦ f)−1(I(Z)) = f−1(g−1(I(Z)))
are ideals on Z and X, respectively.

Corollary 2. Let X, Y , and Z be nonempty sets and f : X → Y and g : Y → Z be
mappings. Let g ◦ f : X → Z be a composition map and, I(X) and I(Z) are ideals on X
and Z, respectively. If ι̂ ∈ I I(X) and η̂ ∈ I I(Z), then (g ◦ f)[̂ι] and (g ◦ f)−1(η̂) are IVFI
sets defined on (g ◦ f)(I(X)) and (g ◦ f)−1(I(Z)), respectively.

The next theorem state some properties of the defined mappings of IVFI sets. We
start with the following needed proposition.

Proposition 2. Let X and Y be nonempty sets and, I(X) and I(Y ) be ideals in X and
Y , respectively. Let f : X → Y be a mapping. Then,

i. f(f−1(I(Y ))) = I(Y ), if f is onto; and

ii. f−1(f(I(X))) = I(X), if f is one-to-one.

Proof. Suppose that f is onto. Let B ∈ f(f−1(I(Y ))). Then there exists A ∈
f−1(I(Y )) such that f(A) = B. Since A ∈ f−1(I(Y )), A ⊆ f−1(B1) for some B1 ∈ I(Y ).
Note that f(A) ⊆ f(f−1(B1)) = B1, since f is onto. Thus, B ⊆ B1. By the definition
of an ideal, B ∈ I(Y ). Hence, f(f−1(I(Y ))) ⊆ I(Y ). Conversely, let B ∈ I(Y ) and
C = f−1(B). Then C ∈ f−1(I(Y )). We thus have f(C) ∈ f(f−1(I(Y ))). Since f is
onto, B = f(f−1(B)) = f(C) ∈ f(f−1(I(Y ))). Thus, I(Y ) ⊆ f(f−1(I(Y ))). Therefore,
f(f−1(I(Y ))) = I(Y ).

Suppose that f is one-to-one. Let A ∈ f−1(f(I(X))). Then there exists B ∈ f(I(X))
such that f−1(B) = A. Since B ∈ f(I(X)), B = f(A1) for some A1 ∈ I(X). Since
f is one-to-one, we have A = f−1(B) = f−1(f(A1)) = A1 . Thus, A ∈ I(X). Hence,
f−1(f(I(X))) ⊆ I(X). Conversely, let A ∈ I(X) and D = f(A). Then, D ∈ f(I(X)).
We thus have f−1(D) ∈ f−1(f(I(X))). Since f is one-to-one, A = f−1(f(A)) = f−1(D) ∈
f−1(f(I(X))). Thus, I(X) ⊆ f−1(f(I(X))). Therefore, f−1(f(I(X))) = I(X).

Theorem 5. Let X and Y be nonempty sets and, I(X) and I(Y ) be ideals in X and Y ,
respectively. Let f : X → Y be a mapping. If ι̂, τ̂ ∈ I I(X) and ω̂, η̂ ∈ I I(Y ), then

i. f−1 [η̂c] = (f−1 [η̂])c;

ii. (f [̂ι])c 6 f [̂ιc];
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iii. if ω̂ 6 η̂, then f−1[ω̂] 6 f−1[η̂];

iv. if ι̂ 6 τ̂ , then f [̂ι] 6 f [τ̂ ];

v. if f is onto, then f [f−1[η̂]] = η̂; and

vi. if f is one-to-one, then ι̂ 6 f−1[f [̂ι]].

Proof.

i. Let ∅ 6= A ∈ f−1(I(Y )). Then

(f−1[η̂])c(A) =
[

inf
x∈A

{
1− [(f−1[η̂])({x})]+

}
, inf
x∈A

{
1− [(f−1[η̂])({x})]−

}]
=
[

inf
x∈A

{
1− [(η̂ ◦ f)({x})]+

}
, inf
x∈A

{
1− [(η̂ ◦ f)({x})]−

}]
=
[

inf
x∈A

{
1− [η̂(f({x}))]+

}
, inf
x∈A

{
1− [η̂(f({x}))]−

}]
=
[

inf
f(x)∈f(A)

{
1− [η̂(f({x}))]+

}
, inf
f(x)∈f(A)

{
1− [η̂(f({x}))]−

}]
= [[η̂c(f(A))]−, [η̂c(f(A))]+]

= [[(η̂c ◦ f)(A)]−, [(η̂c ◦ f)(A)]+]

= [[(f−1[η̂c])(A)]−, [(f−1[η̂c])(A)]+]

= f−1[η̂c](A).

Hence, (f−1[η̂])c = f−1[η̂c].

ii. Let ∅ 6= B ∈ f(I(X)) and S = {A ∈ I(X) : f(A) = B}. Then

(f [̂ι])c(B) =
[

inf
y∈B

{
1− [f [̂ι]({y})]−

}
, inf
y∈B

{
1− [f [̂ι]({y})]+

}]
=
[

inf
y∈B

{
1− sup

A∈S′
[̂ι(A)]−

}
, inf
y∈B

{
1− sup

A∈S′
[̂ι(A)]+

}]
;

where S′ = {A ∈ I(X) : f(A) = {y}}. Since 1− sup
A∈S′

ι̂(A) = inf
A∈S′
{1− ι̂(A)}, we have

(f [̂ι])c(B) =
[

inf
y∈B

{
inf
A∈S′

{
1− [̂ι(A)]−

}}
, inf
y∈B

{
inf
A∈S′

{
1− [̂ι(A)]+

}}]
.

Let S′y = {{x} ∈ I(X) : f({x}) = {y}}. Observe that since ι̂ is an IVFI set, if
{x} ⊆ A, then ι̂(A) ≤I ι̂({x}) and 1− ι̂({x}) ≤I 1− ι̂(A). Noting that S′y ⊆ S′, we
thus have[

inf
A∈S′

{
1− [̂ι(A)]−

}
, inf
A∈S′

{
1− [̂ι(A)]+

}]
=
[

inf
A∈S′y

{
1− [̂ι(A)]−

}
, inf
A∈S′y

{
1− [̂ι(A)]+

}]
.

Hence,

(f [̂ι])c(B) =
[

inf
y∈B

{
inf
{x}∈S′y

{
1− [̂ι({x})]−

}}
, inf
y∈B

{
inf
{x}∈S′y

{
1− [̂ι({x})]+

}}]
.
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Consider that[
inf
y∈B

{
inf
{x}∈S′y

{
1− [̂ι({x})]−

}}
, inf
y∈B

{
inf
{x}∈S′y

{
1− [̂ι({x})]+

}}]
=
[

inf
x∈AB

{
1− [̂ι({x})]−

}
, inf
x∈AB

{
1− [̂ι({x})]+

}]
= [[̂ιc(AB)]−, [̂ιc(AB)]+],

where AB = {x : {x} ∈ S′y , y ∈ B}. Thus,

(f [̂ι])c(B) = [[̂ιc(AB)]−, [̂ιc(AB)]+].

Note that AB ∈ S. Then,

(f [̂ι])c(B) = [[̂ιc(AB)]−, [̂ιc(AB)]+]

≤I
[

sup
A∈S

[̂ιc(A)]−, sup
A∈S

[̂ιc(A)]+
]

= [[f [̂ιc](B)]−, [f [̂ιc](B)]+]

= f [̂ιc](B).

Hence, (f [̂ι])c 6 f [̂ιc].

iii. Let A ∈ f−1(I(Y )). Then, A ⊆ f−1(B), for some B ∈ I(Y ). Note that f(A) ⊆
f(f−1(B)) ⊆ B ∈ I(Y ). Thus, f(A) ∈ I(Y ). If ω̂ 6 η̂, then ω̂(f(A)) ≤I η̂(f(A)).
Consider that

(f−1[ω̂])(A) = (ω̂ ◦ f)(A) = ω̂(f(A)) ≤I η̂(f(A)) = (η̂ ◦ f)(A) = (f−1[η̂])(A).

Therefore, f−1[ω̂] 6 f−1[η̂].

iv. Let B ∈ f(I(X)) and S = {A ∈ I(X) : f(A) = B}. If ι̂ 6 τ̂ , then ι̂(A) ≤I τ̂(A), for
all A ∈ I(X). Hence,

(f [̂ι])(B) =
[

sup
A∈S

[̂ι(A)]−, sup
A∈S

[̂ι(A)]+
]
≤I
[

sup
A∈S

[τ̂(A)]−, sup
A∈S

[τ̂(A)]+
]

= (f [τ̂ ])(B).

Therefore, f [̂ι] 6 f [τ̂ ].

v. Suppose that f is onto. Let B ∈ f(f−1(I(Y ))) = I(Y ) and S = {A ∈ f−1(I(Y )) :
f(A) = B}. Then

f [f−1[η̂]](B) =
[

sup
A∈S

[(f−1[η̂])(A)]−, sup
A∈S

[(f−1[η̂])(A)]+
]

=
[

sup
A∈S

[(η̂ ◦ f)(A)]−, sup
A∈S

[(η̂ ◦ f)(A)]+
]

=
[

sup
A∈S

[η̂(f(A))]−, sup
A∈S

[η̂(f(A))]+
]
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= [[η̂(B)]−, [η̂(B)]+]

= η̂(B).

Thus, f [f−1[η̂]] = η̂.

vi. Suppose that f is one-to-one. Let A ∈ f−1(f(I(X))) = I(X). Then, A ⊆ f−1(B),
for some B ∈ f(I(X)). Hence, f(A) ⊆ B. Since f(I(X)) is an ideal, f(A) ∈
f(I(X)). Then,

f−1[f [̂ι]](A) = (f [̂ι] ◦ f)(A) = f [̂ι](f(A)) =
[

sup
C∈S

[̂ι(C)]−, sup
C∈S

[̂ι(C)]+
]
,

where S = {C ∈ I(X) : f(C) = f(A)}. Since A ∈ S, we have

ι̂(A) ≤I
[

sup
C∈S

[̂ι(C)]−, sup
C∈S

[̂ι(C)]+
]
.

Thus, ι̂ 6 f−1[f [̂ι]].

The pre-image of the arbitrary union and intersection of IVFI sets is just the union
and intersection of the pre-images as proved below.

Theorem 6. Let X and Y be nonempty sets and I(Y ) be an ideal on Y . Moreover, let
f : X → Y be a mapping and {ι̂j : j ∈ J} be a collection of IVFI sets in I I(Y ). Then

i. f−1

∨
j∈J

ι̂j

 =
∨
j∈J

f−1 [̂ιj ]; and

ii. f−1

∧
j∈J

ι̂j

 =
∧
j∈J

f−1 [̂ιj ].

Proof. Let A ∈ f−1(I(Y )). Consider thatf−1
∨
j∈J

ι̂j

 (A) =

∨
j∈J

ι̂j ◦ f

 (A)

=

∨
j∈J

ι̂j

 (f(A))

=

[
sup
j∈J
{[̂ιj(f(A))]−}, sup

j∈J
{[̂ιj(f(A))]+}

]

=

[
sup
j∈J
{[(ι̂j ◦ f)(A)]−}, sup

j∈J
{[(ι̂j ◦ f)(A)]+}

]
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=
∨
j∈J

(ι̂j ◦ f)(A) =

∨
j∈J

f−1 [̂ιj ]

 (A).

Thus, f−1

∨
j∈J

ι̂j

 =
∨
j∈J

f−1 [̂ιj ], proving (i). Result (ii) can be proved similarly.

4. Topology and continuity

With the operations on IVFI sets, we can have an analogue of the classical topology.

Definition 6. Let X be a nonempty set and I(X) be an ideal on X. An IVFI topology
is a family T ′ of IVFI sets such that:

(i) 0̃I(X), 1̃I(X) ∈ T ′;

(ii) if ι̂, τ̂ ∈ T ′, then ι̂ ∧ τ̂ ∈ T ′; and

(iii) if {ι̂j : j ∈ J} ⊆ T ′, then
∨
j∈J

ι̂j ∈ T ′.

We call the ordered pair (I(X),T ′) an IVFI space and an element of T ′ an IVFI open
set. An IVFI set ι̂ will be called IVFI closed if its complement is IVFI open.

It can be easily seen that if {T ′α : α ∈ A } is a family of IVFI topologies on I(X), then⋂
α∈A

T ′α is also an IVFI topology. However,
⋃
α∈A

T ′α need not be.

Let (I(X),T ′) be an IVFI space. We call the subcollection B of T ′ an IVFI base for
T ′ if every member of T ′ can be expressed as a union of members of B. Let [0, 0] 6= α ∈ I
and ∅ 6= B ∈ I(X). We call the IVFI set given by

Pα,B(A) =

{
α , if A ⊆ B,A 6= ∅;

[0, 0] , otherwise.

an IVFI point. One can calculate that the explicit form of the complement of Pα,B is
given by

P cα,B(A) =


[0, 0] , if A = ∅;

[1− α+, 1− α−] , if A ∩B 6= ∅;

[1, 1] , if A 6= ∅ and A ∩B = ∅.

We say that Pα,B is contained in an IVFI set ι̂, denoted by Pα,B ∈ ι̂, if and only if
α ≤I ι̂(B). With this, we can characterize an IVFI base and IVFI open sets.

Remark 6. Every IVFI set ι̂ can be expressed as the union of all IVFI points which is
contained in ι̂. That is, if ι̂(B) is not zero for B ∈ I(X), then

ι̂(B) = sup{α : Pα,B is an IVFI point and [0, 0] <I α ≤I ι̂(B)}.



MJ Togonon, R Caga-anan / Eur. J. Pure Appl. Math, 12 (2) (2019), 553-570 566

Theorem 7. Let (I(X),T ′) be an IVFI space and B ⊆ T ′. Then B is an IVFI base
for (I(X),T ′) if and only if for each ι̂ ∈ T ′ and for each IVFI point Pα,B ∈ ι̂ where
[0, 0] 6= α ∈ I and ∅ 6= B ∈ I(X), there exists ρ̂ ∈ B such that Pα,B ∈ ρ̂ 6 ι̂.

Proof. Suppose that B is an IVFI base for (I(X),T ′). Let ι̂ ∈ T ′ and Pα,B ∈ ι̂,
where [0, 0] 6= α ∈ I and ∅ 6= B ∈ I(X). Then by the definition of an IVFI base, there

exists C ⊆ B such that ι̂ =
∨
ρ̂∈C

ρ̂. Since Pα,B ∈ ι̂, Pα,B ∈ ρ̂ for some ρ̂ ∈ C. Consequently,

Pα,B ∈ ρ̂ 6 ι̂.
Conversely, suppose that for each ι̂ ∈ T ′ and for each IVFI point Pα,B ∈ ι̂ where

[0, 0] 6= α ∈ I and ∅ 6= B ∈ I(X), there exists ρ̂α,B ∈ B such that Pα,B ∈ ρ̂α,B 6 ι̂. Let

ι̂ ∈ T ′ and consider any arbitrary Pα,B ∈ ι̂. By Remark 6, we have ι̂ =
∨

Pα,B∈ι̂
Pα,B. Since

Pα,B ∈ ρ̂α,B, it follows that
∨

Pα,B∈ι̂
Pα,B 6

∨
Pα,B∈ι̂

ρ̂α,B, and so ι̂ 6
∨

Pα,B∈ι̂
ρ̂α,B. But note

that ρ̂α,B 6 ι̂. Thus, we have
∨

Pα,B∈ι̂
ρ̂α,B 6

∨
Pα,B∈ι̂

ι̂ = ι̂. Hence, ι̂ =
∨

Pα,B∈ι̂
ρ̂α,B. Therefore,

B is an IVFI base for T ′.

Corollary 3. Let (I(X),T ′) be an IVFI space and B an IVFI base. Then, ι̂ ∈ T ′ if and
only if for each Pα,B ∈ ι̂ where [0, 0] 6= α ∈ I and ∅ 6= B ∈ I(X), there exists ω̂ ∈ B
such that Pα,B ∈ ω̂ 6 ι̂.

Proof. Let ι̂ ∈ T ′ and Pα,B ∈ ι̂, where [0, 0] 6= α ∈ I and ∅ 6= B ∈ I(X). Then by
Theorem 7, there exists ω̂ ∈ B such that Pα,B ∈ ω̂ 6 ι̂.

Conversely, suppose that for each Pα,B ∈ ι̂ where [0, 0] 6= α ∈ I and ∅ 6= B ∈ I(X),

there exists ω̂α,B ∈ B such that Pα,B ∈ ω̂α,B 6 ι̂. Then by Theorem 7, ι̂ =
∨

Pα,B∈ι̂
ω̂α,B

where ω̂α,B ∈ B. Since B is an IVFI base, we should have ι̂ =
∨

Pα,B∈ι̂
ω̂α,B ∈ T ′.

Let ι̂ be an IVFI set in an IVFI space (I(X),T ′). We define the IVFI interior
of ι̂, denoted by int ι̂, by int ι̂ =

∨
{τ̂ : τ̂ 6 ι̂, τ̂ ∈ T ′}, and the IVFI closure of ι̂,

denoted by cl ι̂, by cl ι̂ =
∧
{ω̂ : ι̂ 6 ω̂, ω̂c ∈ T ′}. One can show, that indeed just like the

usual topology, the IVFI interior is the largest IVFI open set contained in ι̂ and the IVFI
closure is the smallest IVFI closed set containing ι̂. Moreover, ι̂ is IVFI open if and only
if ι̂ = int ι̂ and ι̂ is IVFI closed if and only if ι̂ = cl ι̂.

The importance of the following concept will be seen when dealing with continuity
with respect to IVFI sets.

Definition 7. Let (I(X),T ′) be an IVFI space. An IVFI set η̂ is said to be an IVFI
neighborhood of an IVFI point Pα,B, where [0, 0] 6= α ∈ I and ∅ 6= B ∈ I(X), if there
exists ω̂ ∈ T ′ such that Pα,B ∈ ω̂ 6 η̂. An IVFI neighborhood η̂ of an IVFI point Pα,B is
said to be an IVFI open neighborhood if η̂ ∈ T ′.
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Theorem 8. Let (I(X),T ′) be an IVFI space. Then η̂ ∈ T ′ if and only if for every
IVFI point Pα,B ∈ η̂ where [0, 0] 6= α ∈ I and ∅ 6= B ∈ I(X), η̂ is an IVFI neighborhood
of Pα,B.

Proof. Let η̂ ∈ T ′ and Pα,B ∈ η̂ be an IVFI point where [0, 0] 6= α ∈ I and
∅ 6= B ∈ I(X). Then by Theorem 3, there exists ω̂ ∈ B where B is an IVFI base for T ′

such that Pα,B ∈ ω̂ 6 η̂. But note that every members of B are basic IVFI open sets of
T ′, and so ω̂ ∈ T ′. Thus, there exists ω̂ ∈ T ′ such that Pα,B ∈ ω̂ 6 η̂. Hence, η̂ is an
IVFI neighborhood of Pα,B.

Conversely, suppose that for every IVFI point Pα,B ∈ η̂ where [0, 0] 6= α ∈ I and
∅ 6= B ∈ I(X), η̂ is an IVFI neighborhood of Pα,B. Then there exists ω̂α,B ∈ T ′ such

that Pα,B ∈ ω̂Pα,B 6 η̂. By Theorem 7, η̂ =
∨

Pα,B∈η̂
ω̂α,B. Since each ω̂α,B ∈ T ′, we have∨

Pα,B∈η̂
ω̂Pα,B ∈ T ′. Hence, η̂ ∈ T ′.

Due to Theorem 2, we have the following result which is an instance of the difference
of the IVFI topology from the usual topology.

Theorem 9. Let ι̂ be an IVFI set in an IVFI space (I(X),T ′). Then, int ι̂ 6 (cl ι̂c)c

and cl ι̂ 6 (int ι̂c)c.

Proof. Let ι̂ be an IVFI set in an IVFI space (I(X),T ′). Then

int ι̂ =
∨
{τ̂ : τ̂ 6 ι̂, τ̂ ∈ T ′}

6
∨
{(τ̂ c)c : (τ̂ c)c 6 (ι̂c)c, τ̂ ∈ T ′}

=
(∧
{τ̂ c : ι̂c 6 τ̂ c, τ̂ ∈ T ′}

)c
= (cl ι̂c)c

and

cl ι̂ =
∧
{ω̂ : ι̂ 6 ω̂, ω̂c ∈ T ′}

6
∧
{(ω̂c)c : (ι̂c)c 6 (ω̂c)c, ω̂c ∈ T ′}

=
(∨
{ω̂c : ω̂c 6 ι̂c, ω̂c ∈ T ′}

)c
= (int ι̂c)c.

We next make precise what we mean by continuity with respect to IVFI sets. Let
f : X → Y be a one-to-one map and I(X) be an ideal on X. Then, f(I(X)) is an ideal
on Y , by Theorem 3, and by Proposition 2, f−1(f(I(X))) = I(X).

Definition 8. Let f : X → Y be a one-to-one map and I(X) be an ideal on X. Let T ′1
and T ′2 be IVFI topologies on I(X) and f(I(X)), respectively. The map f is said to be
IVFI continuous if f−1 [̂ι] ∈ T ′1 , for all ι̂ ∈ T ′2 .
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The next theorem characterizes the IVFI continuous maps.

Theorem 10. Let f : X → Y be a one-to-one map and I(X) be an ideal on X. Let
I(Y ) = f(I(X)). Moreover, let (I(X),T ′1 ) and (I(Y ),T ′2 ) be IVFI spaces of I(X) and
I(Y ), respectively. Then the following statements are equivalent:

(i) the function f is IVFI continuous;

(ii) the inverse image of every IVFI closed set is IVFI closed;

(iii) for each IVFI point Pα,B, the inverse of every neighborhood of f [Pα,B] under f is
neighborhood of Pα,B;

(iv) for each IVFI point Pα,B and each neighborhood η̂ of f [Pα,B], there is a neighborhood
η̂′ of Pα,B such that f [η̂′] = η̂ whenever f is onto;

(v) f [cl ι̂] 6 cl f [̂ι] for all ι̂ ∈ I I(X); and

(vi) cl f−1[ω̂] 6 f−1[cl ω̂] for all ω̂ ∈ I I(Y ), whenever f is onto.

Proof. (i) ⇐⇒ (ii)
Suppose that f is IVFI continuous. Let ι̂ be an IVFI closed set in I I(Y ). Then ι̂c ∈ T ′2 .

Since f is IVFI continuous, f−1 [̂ιc] ∈ T ′1 . Note that by Theorem 5 (i), f−1 [̂ιc] = (f−1 [̂ι])c.
Thus, f−1 [̂ι] is an IVFI closed set in I I(X).

Conversely, suppose that the inverse image of every IVFI closed set is IVFI closed.
Let τ̂ ∈ T ′2 . Then τ̂ c is an IVFI closed set in I I(Y ). By assumption, f−1[τ̂ c] is an IVFI
closed set in I I(X). Note that by Theorem 5 (i), (f−1[τ̂ ])c = f−1[τ̂ c]. Thus, f−1[τ̂ ] ∈ T ′1 .
Hence, f is IVFI continuous.

(ii) ⇐⇒ (vi)
Suppose that the inverse image of every IVFI closed set is IVFI closed. Let ω̂ be an

IVFI closed set in I I(Y ). Then by assumption, f−1[ω̂] is an IVFI closed set in I I(X).
Thus, cl f−1[ω̂] = f−1[ω̂]. But ω̂ 6 cl ω̂ for all ω̂ ∈ I I(Y ), and so f−1[ω̂] 6 f−1[cl ω̂].
Hence, cl f−1[ω̂] 6 f−1[cl ω̂] for all ω̂ ∈ I I(Y ).

Conversely, suppose that cl f−1[ω̂] 6 f−1[cl ω̂] for all ω̂ ∈ I I(Y ) whenever f is onto.
Let ω̂ be an IVFI closed set in I I(Y ). Then by assumption, cl f−1[ω̂] 6 f−1[cl ω̂].
Since ω̂ be an IVFI closed set in I I(Y ), cl ω̂ = ω̂, and so f−1[cl ω̂] = f−1[ω̂]. But
f−1[ω̂] 6 cl f−1[ω̂], and so cl f−1[ω̂] 6 f−1[ω̂] 6 cl f−1[ω̂]. Thus, cl f−1[ω̂] = f−1[ω̂].
Hence, f−1[ω̂] is an IVFI closed set in I I(X).

(vi) ⇐⇒ (v)
Suppose that cl f−1[ω̂] 6 f−1[cl ω̂] for all ω̂ ∈ I I(Y ) whenever f is onto. Let ι̂ ∈

I I(X) and put ω̂ = f [̂ι] ∈ I I(Y ). Then by assumption, cl f−1[ω̂] 6 f−1[cl ω̂], that is
cl f−1[f [̂ι]] 6 f−1[cl f [̂ι]]. Note that by Theorem 5 (vi), ι̂ 6 f−1[f [̂ι]], and so cl ι̂ 6
cl f−1[f [̂ι]]. Thus, cl ι̂ 6 f−1[cl f [̂ι]]. Taking the images, we have f [cl ι̂] 6 f [f−1[cl f [̂ι]]].
Since f is onto, by Theorem 5 (v), f [f−1[cl f [̂ι]]] = cl f [̂ι]. Hence, f [cl ι̂] 6 cl f [̂ι].

Conversely, suppose that f [cl ι̂] 6 cl f [̂ι] for all ι̂ ∈ I I(X). Let ι̂ ∈ I I(Y ) and
put ι̂ = f−1[ω̂] ∈ I I(X). Then by assumption, f [cl ι̂] 6 cl f [̂ι], that is f [cl f−1[ω̂]] 6
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cl f [f−1[ω̂]]. Let f be an onto function. Note that by Theorem 5 (v), f [f−1[ω̂]] = ω̂, and
so cl f [f−1[ω̂]] = cl ω̂. Thus, f [cl f−1[ω̂]] 6 cl ω̂. Taking the inverse images, we have
f−1[f [cl f−1[ω̂]]] 6 f−1[cl ω̂]. By Theorem 5 (vi), we have cl f−1[ω̂] 6 f−1[f [cl f−1[ω̂]]].
Thus, cl f−1[ω̂] 6 f−1[cl ω̂].

(iii) ⇐⇒ (iv)
Suppose that for each IVFI point Pα,B, the inverse of every neighborhood of f [Pα,B]

under f is a neighborhood of Pα,B. Let Pα,B be an IVFI point in I I(X) and η̂ be a
neighborhood of f [Pα,B]. Then by assumption, there is a neighborhood f−1[η̂] of Pα,B.
Take η̂′ = f−1[η̂]. Thus, f [η̂′] = f [f−1[η̂]] = η̂ whenever f is onto.

Conversely, suppose that for each IVFI point Pα,B and each neighborhood η̂ of f [Pα,B],
there is a neighborhood η̂′ of Pα,B such that f [η̂′] = η̂ whenever f is onto. Let Pα,B be
an IVFI point in I I(X) and η̂ be a neighborhood of f [Pα,B]. Then by assumption, there
is a neighborhood η̂′ of Pα,B such that f [η̂′] = η̂. But note that by Theorem 5 (v),
f [f−1[η̂]] = η̂ whenever f is onto. Take η̂′ = f−1[η̂] so that f−1[η̂] is a neighborhood of
Pα,B.

(iv) ⇐⇒ (i)
Suppose that for each IVFI point Pα,B and each neighborhood η̂ of f [Pα,B], there

is a neighborhood η̂′ of Pα,B such that f [η̂′] = η̂ whenever f is onto. Let η̂ ∈ T ′2 and
Pα,B be an IVFI point in I I(X). By assumption, η̂ is a neighborhood of f [Pα,B]. Thus,
there exists a neighborhood η̂′ of Pα,B such that f [η̂′] = η̂. Taking the inverse images,
f−1[f [η̂′]] = f−1[η̂]. Note that by Theorem 5 (vi), η̂′ 6 f−1[f [η̂′]], and so η̂′ = f−1[η̂].
Thus, by Theorem 8, f−1[η̂] ∈ T ′1 . Hence, f is IVFI continuous.

Conversely, suppose that f is IVFI continuous. Let Pα,B be an IVFI point in I I(X)

and η̂ be a neighborhood of f [Pα,B]. Then there exists ω̂ ∈ T ′2 such that f [Pα,A] ∈ ω̂ 6 η̂.
Taking the inverse images, we have f−1[f [Pα,B]] ∈ f−1[ω̂] 6 f−1[η̂]. Note that by Theorem
5 (vi), Pα,B 6 f−1[f [Pα,B]], and so Pα,B ∈ f−1[ω̂] 6 f−1[η̂]. Since f is continuous,
f−1[ω̂] ∈ T ′1 . Hence, f−1[η̂] is a neighborhood of Pα,B. Take η̂′ = f−1[η̂]. Taking the
images, we have f [η̂′] = f [f−1[η̂]] = η̂, whenever f is onto. Hence, f [η̂′] = η̂.
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