EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 2, 2019, 499-505 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

On Topologies Induced by Graphs Under Some Unary and Binary Operations

Caen Grace S. Nianga^{1,*}, Sergio R. Canoy Jr.¹

¹ Department of Mathematics and Statistics, College of Science and Mathematics, Center of Graph Theory, Algebra, and Analysis-PRISM, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. Let G = (V(G), E(G)) be any simple undirected graph. The open hop neighborhood of $v \in V(G)$ is the set $N_G^2(v) = \{u \in V(G) : d_G(u,v) = 2\}$. Then G induces a topology τ_G on V(G) with base consisting of sets of the form $F_G^2[A] = V(G) \setminus N_G^2[A]$, where $N_G^2[A] = A \cup \{v \in V(G) : N_G^2(v) \cap A \neq \emptyset\}$ and A ranges over all subsets of V(G). In this paper, we describe the topologies induced by the complement of a graph, the join, the corona, the composition and the Cartesian product of graphs.

2010 Mathematics Subject Classifications: 05C76

Key Words and Phrases: Join, Corona, Lexicographic product, Cartesian product, Open hop neighborhood

1. Introduction

Let G=(V(G),V(H)) be any simple undirected graph. The distance d(u,v) between two vertices u and v in G is the length of a shortest path joining u and v. Let $v\in V(G)$. The neighborhood of v is the set N(v) consisting of all $u\in V(G)$ which are adjacent with v and the closed neighborhood is $N[v]=N(v)\cup\{v\}$. For any $A\subseteq V(G)$, $N(A)=\{x:xa\in E(G)\text{ for some }a\in A\}$ is called the neighborhood of A and $N[A]=N(A)\cup A$ is called the closed neighborhood of A. Moreover, for each $v\in V(G)$, the open hop neighborhood of v is the set $N_G^2(v)=\{u\in V(G):d_G(u,v)=2\}$ and the closed hop neighborhood of v is the set $N_G^2[v]=\{v\}\cup N_G^2(v)$. Also, for any $A\subseteq V(G)$, $N_G^2(A)=\{v\in V(G):N_G^2(v)\cap A\neq\emptyset\}$ is called the open hop neighborhood of A and the set $N_G^2[A]=A\cup N_G^2(A)$ is the called closed hop neighborhood of A. Denote by $F_G^2[A]$ the complement of $N_G^2[A]$, i.e., $F_G^2[A]=V(G)\backslash N_G^2[A]$.

In 1983, Diesto and Gervacio in [5] proved that given a simple graph G = (V(G), E(G)), G induces a topology on V(G), denoted by τ_G , with base consisting of sets of the form

DOI: https://doi.org/10.29020/nybg.ejpam.v12i2.3421

Email addresses: caengrace1997@gmail.com (C. Nianga), sergio.canoy@g.msuiit.edu.ph (S. Canoy Jr.)

^{*}Corresponding author.

 $F_G(A) = V(G) \setminus N_G(A)$, where $N_G(A) = A \cup \{x : xa \in E \text{ for some } a \in A\}$ and A ranges over all subsets of V(G). Their construction was further investigated in [2], [3] and [6]. In particular, Canoy and Lemence in [2] described the topologies induced by the complement of a graph, the join of graphs, composition and Cartesian product of graphs.

In [1], Canoy and Gimeno presented another way of constructing a topology τ_G from a connected graph G by considering the family $\Omega(G) = \{F_G^2[A] : A \subseteq V(G)\}$ where $F_G^2[A] = \{x \in V(G) : x \notin A \text{ and } d_G(x,a) \neq 2 \text{ for all } a \in A\}$. They showed that this family is a base for some topology τ_G on V(G). This construction is also studied by Nianga et al, in [4] for any graph G. It is also shown that the family $\mathcal{B}_G = \{F_G^2[A] : A \subseteq V(G)\}$ and $\mathcal{S}_G = \{F_G^2[v] : v \in V(G)\}$ are, respectively, base and subbase for the topology τ_G on V(G).

Concepts on Graph Theory and Topology are taken from [7] and [8], respectively.

2. Results

Definition 1. The complement of graph G, denoted by \overline{G} is the graph with $V(G) = V(\overline{G})$ and $uv \in E(\overline{G})$ if and only if $uv \notin E(G)$, where $u, v \in V(G) = V(\overline{G})$.

Theorem 1. Let G be any graph and \overline{G} its complement. Then for each $v \in V(G)$,

$$F_{\overline{G}}^{2}[v] = \begin{cases} F_{G}[v] \cup \left[\bigcap_{u \in F_{G}[v]} N_{G}(u)\right], & \text{if } F_{G}[v] \neq \emptyset \\ N_{G}(v), & \text{if } F_{G}[v] = \emptyset. \end{cases}$$

$$(1)$$

Proof. Let G be any graph and \overline{G} its complement. Let $v \in V(G)$ and set $A = \bigcap_{u \in F_G[v]} N_G(u)$. Suppose $F_G[v] = \emptyset$. Then $N_G(v) = V(G) \setminus \{v\}$. Hence, v is an isolated vertex in \overline{G} . Thus, $F_{\overline{G}}^2[v] = N_G(v)$. Suppose $F_G[v] \neq \emptyset$. Let $u \in F_G[v]$. Then $u \neq v$ and $u \notin N_G(v)$. Hence, $u \neq v$ and $u \in N_{\overline{G}}(v)$. Thus, $u \in F_{\overline{G}}^2[v]$. Next, let $w \in A$. Then $w \in N_G(u)$ for all $u \in F_G[v]$. Since $u \notin N_G(v)$, it follows that $w \neq v$. Also, $w \notin N_{\overline{G}}(u)$ for all $u \in N_{\overline{G}}(v)$. It implies that $d_{\overline{G}}(w,v) \neq 2$. Hence, $w \in F_{\overline{G}}^2[v]$. Consequently, $F_G[v] \cup [\bigcap_{u \in F_G[v]} N_G(u)] \subseteq F_{\overline{G}}^2[v]$. Next, let $x \in F_{\overline{G}}^2[v]$. Then $x \neq v$ and $x \notin N_{\overline{G}}^2(v)$. If $x \in F_G[v]$, then we are done. Suppose $x \notin F_G[v]$. Then $x \in N_G(v)$. Suppose further that there exists $u \in F_G[v]$ such that $x \notin N_G(u)$. Thus, $u \in N_{\overline{G}}(v)$ and $x \in N_{\overline{G}}(u)$. Also, since $x \in N_G(v)$, $x \notin N_{\overline{G}}(v)$. Thus, $d_{\overline{G}}(x,v) = 2$, that is, $x \in N_{\overline{G}}^2(v)$, a contradiction. Therefore, $x \in N_G(u)$ for all $u \in F_G[v]$. This shows that $x \in A$. Accordingly, $F_{\overline{G}}^2[v] \subseteq F_G[v] \cup [\bigcap_{u \in F_G[v]} N_G(u)]$. This establishes the desired equality. □

Theorem 2. Let G be any graph and \overline{G} its complement. If v is an isolated vertex of G (or of \overline{G}), then $\{v\} \in \tau_G \cap \tau_{\overline{G}}$.

Proof. Suppose v is an isolated vertex of G (or of \overline{G}). Then $\{v\} = F_G^2[V(G)\setminus\{v\}] = F_G^2[V(\overline{G})\setminus\{v\}]$ and so, $\{v\} \in \mathcal{B}_G$ and $\{v\} \in \mathcal{B}_{\overline{G}}$. Thus, $\{v\} \in \tau_G$ and $\{v\} \in \tau_{\overline{G}}$. Therefore, $\{v\} \in \tau_G \cap \tau_{\overline{G}}$.

Remark 1. The converse of theorem 17 is not true.

Consider $G = P_5 = [a, b, c, d, e]$. Then $\{e\} = F_G^2[a, b]$ and $\{e\} = F_{\overline{G}}[a, c]$. However, e is not an isolated vertex of G nor of \overline{G} .

Definition 2. The join $G_1 + G_2$ of graphs G_1 and G_2 is the graph G with $V(G) = V(G_1) \cup V(G_2)$ and

$$E(G) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1) \text{ and } v \in V(G_2)\}.$$

Theorem 3. Let G = (V(G), E(G)) and H = (V(H), E(H)) be graphs and let $\emptyset \neq A \subseteq V(G)$ and $\emptyset \neq B \subseteq V(H)$. Then

- (i) $F_{G+H}^2[A] = V(H) \cup [\cap_{a \in A} N_G(a)]$;
- (ii) $F_{G+H}^2[B] = V(G) \cup [\cap_{b \in B} N_H(b)]$ and
- $(iii) \ F_G^2[\emptyset] = V(G) \cup V(H).$

Proof. Let G = (V(G), E(G)) and H = (V(H), E(H)) be graphs. Let $\emptyset \neq A \subseteq V(G)$ and $\emptyset \neq B \subseteq V(H)$.

(i) Note that

$$N_{G+H}^2[A] = A \cup \{v \in V(G+H) : d_{G+H}(v,a) = 2 \text{ for some } a \in A\}.$$

Since $V(H) \subseteq N_{G+H}(A)$,

$$N_{G+H}^2[A] = A \cup \{v \in V(G) : d_{G+H}(v, a) = 2 \text{ for some } a \in A\}$$

= $A \cup \{v \in V(G) : d_G(v, a) \neq 1 \text{ for some } a \in A\}.$

Hence,

$$F_{G+H}^2[A] = V(H) \cup \left[\cap_{a \in A} N_G(a) \right].$$

(ii) Similarly,

$$F_{G+H}^{2}[B] = V(G) \cup [\cap_{b \in B} N_{H}(b)].$$

(iii) Clearly,
$$F_{G+H}^2[\emptyset] = V(G) \cup V(H)$$
.

Remark 2. Let G be any graph and let $A_1, A_2 \subseteq V(G)$. Then

$$N_G^2[A_1 \cup A_2] = N_G^2[A_1] \cup N_G^2[A_2].$$

Theorem 4. Let G = (V(G), E(G)) and H = (V(H), E(H)) be graphs. Then for any $A \subseteq V(G+H)$ such that $A \cap V(G) = A_G \neq \emptyset$ and $A \cap V(H) = A_H \neq \emptyset$,

$$F_{G+H}^2[A] = F_{G+H}^2[A_G] \cap F_{G+H}^2[A_H].$$

Proof. Let $A \subseteq V(G+H)$. Suppose $A \cap V(G) = A_G \neq \emptyset$ and $A \cap V(H) = A_H \neq \emptyset$. Then $x \in F^2_{G+H}[A]$ if and only if $x \notin N^2_{G+H}[A]$. By Remark 2, $x \in F^2_{G+H}[A]$ if and only if $x \in F^2_{G+H}[A_G] \cap F^2_{G+H}[A_H]$.

The next theorem follows from Theorem 3 (i) and (ii).

Corollary 1. Let G = (V(G), E(G)) and H = (V(H), E(H)) be graphs. Then for any $v \in V(G) \cup V(H)$,

$$F_{G+H}^2[v] = \begin{cases} V(H) \cup N_G(v), & \text{if } v \in V(G) \\ V(G) \cup N_G(v), & \text{if } v \in V(H). \end{cases}$$
 (2)

Definition 3. The corona $G \circ H$ of graphs G and H is the graph obtained by taking one copy of G and |V(G)| copies H and then forming the sum $\langle v \rangle + H^v = v + H^v$ for each $v \in V(G)$, where H^v is a copy of H corresponding to the vertex v.

Theorem 5. Let G = (V(G), E(G)) and H = (V(H), E(H)) be graphs. Then for any $a \in V(G \circ H)$,

$$F_{G \circ H}^{2}[a] = \left\{ \begin{array}{c} F_{G}^{2}[a] \cup \left[\bigcup_{v \in V(G) \backslash N_{G}(a)} V(H^{v}) \right], & \text{if } a \in V(G) \\ N_{H^{w}}(a) \cup \left[V(G) \backslash N_{G}(w) \right] \cup \left[\bigcup_{v \in V(G) \backslash \{w\}} V(H^{v}) \right], & \text{if } a \in V(H^{w}) \end{array} \right.$$
(3)

Proof. Let $x \in F_{G \circ H}^2[a]$. Then $x \neq a$ and $x \notin N_{G \circ H}^2(a)$. Consider the following cases: Case 1. Suppose $a \in V(G)$. If $x \in V(G)$, then $x \notin N_G^2(a)$ since $x \notin N_{G \circ H}^2(a)$. Hence, $x \in F_G^2[a]$. Suppose $x \notin V(G)$. Let $u \in V(G)$ such that $x \in V(H^u)$. If u = a, then $x \in V(H^u)$ and $u \in V(G) \setminus N_G(a)$. Suppose $u \neq a$. Since $x \notin N_G^2(a)$ and $d_{G \circ H}(a, y) = 2$ for all $y \in V(H^z)$ with $z \in N_G(a)$, it follows that $u \in V(G) \setminus N_G(a)$. Thus,

$$F_{G \circ H}^2[a] \subseteq F_G^2[a] \cup \left[\bigcup_{v \in V(G) \setminus N_G(a)} V(H^v) \right] = X.$$

Now, let $w \in X$. If $w \in F_G^2[a]$, then $w \notin N_G^2[a]$. Hence, $w \notin N_{G \circ H}^2[a]$. This implies that $w \in F_{G \circ H}^2[a]$. Suppose $w \in \bigcup_{v \in V(G) \backslash N_G(a)} V(H^v)$. Then there exists $v \in V(G) \backslash N_G(a)$ such that $w \in V(H^v)$. It follows that $w \neq a$ and $d_{G \circ H}(w,a) \neq 2$. Thus, $w \in F_{G \circ H}^2[a]$. Therefore,

$$F_G^2[a] \cup \left[\bigcup_{v \in V(G) \setminus N_G(a)} V(H^v) \right] \subseteq F_{G \circ H}^2[a].$$

Case 2. Suppose $a \in V(H^w)$ for some $w \in V(G)$. If x = w, then $x \in V(G) \setminus N_G(w)$. Suppose $x \neq w$. If $x \in V(G)$, then $d_G(x, w) \neq 1$ because $d_{G \circ H}(x, a) \neq 2$. Hence, $x \in V(G) \setminus N_G(w)$. Suppose $x \in V(H^q)$ for some $q \in V(G)$. If q = w, then $x \in V(H^w)$. Since $x \neq a$ and $a \in V(H^w)$, $x \in N_{H^w}(a)$ (otherwise, $d_{G \circ H}(a, x) = 2$). Suppose $q \neq w$. Then $x \in V(H^q)$ and $q \in V(G) \setminus \{w\}$. Thus,

$$z \in N_{H^w}(a) \cup [V(G) \setminus N_G(w)] \cup [\cup_{v \in V(G) \setminus \{w\}} V(H^v)] = Y.$$

Suppose now that $p \in Y$. If $p \in N_{H^w}(a)$, then $d_{G \circ H}(p, a) = d_{H^w}(p, a) = 1$. Hence, $p \in F_{G \circ H}^2[a]$. If $p \in V(G) \setminus N_G(w)$, then $d_{G \circ H}(p, w) = d_G(p, w) \neq 1$. Hence, $p \neq a$ and $d_{G \circ H}(a, p) \neq 2$. This implies that $p \in F_{G \circ H}^2[a]$. Finally, if $p \in \bigcup_{v \in V(G) \setminus \{w\}} V(H^v)$, then there exists $r \in V(G) \setminus \{w\}$ such that $p \in V(H^r)$. Since

$$d_{G \circ H}(a, p) = d_{G \circ H}(a, w) + d_{G \circ H}(r, w) + d_{G \circ H}(r, p) = 2 + d_{G \circ H}(r, w) \ge 3,$$

it follows that $p \in F_{G \circ H}^2[a]$. Therefore,

$$N_{H^w}(a) \cup [V(G) \setminus N_G(w)] \cup [\cup_{v \in V(G) \setminus \{w\}} V(H^v)] \subseteq F_{G \circ H}^2[a].$$

Accordingly, the desired equality follows.

Definition 4. The lexicographic product (composition) of graphs G and H, denoted by G[H], is the graph with $V(G[H]) = V(G) \times V(H)$ and $(u, v)(u', v') \in E(G[H])$ if and only if either $uu' \in E(G)$ or u = u' and $vv' \in E(H)$.

Theorem 6. Let G = (V(G), E(G)) and H = (V(H), E(H)) be any two graphs and let $(v, a) \in V(G[H])$. Then

$$F^2_{G[H]}[(v,a)] = \left(F^2_G[v] \times V(H)\right) \cup \left(\{v\} \times F^2_H[a]\right).$$

Proof. Note that $(x,q) \in F_{G[H]}^2[(v,a)]$ if and only if $(x,q) \neq (v,a)$ and $d_{G[H]}((x,q),(v,a)) \neq 2$. Consider the following cases:

Case 1. Suppose x = v. Then $q \neq a$. Since

$$d_{G[H]}((v,q),(v,a)) = d_H(a,q) \neq 2, q \in F_H^2[a],$$

 $q \in F_H^2[a]$. Hence, $(x,q) \in \{v\} \times F_H^2[a]$.

Case 2. Suppose $x \neq v$. Then

$$d_G(x,v) = d_{G[H]}((x,q),(v,a)) \neq 2.$$

Hence, $x \in F_G^2[v]$ and $(x,q) \in F_G^2[v] \times V(H)$. Therefore,

$$F_{G[H]}^2[(v,a)] \subseteq \left(F_G^2[v] \times V(H)\right) \cup \left(\{v\} \times F_H^2[a]\right).$$

Next, let $(w,p) \in F_G^2[v] \times V(H)$. Then $w \in F_G^2[v]$, that is, $w \neq v$ and $d_G(w,v) \neq 2$. It follows that $(w,p) \neq (v,a)$ and

$$d_{G[H]}((w,p),(v,a)) = d_G(w,v) \neq 2.$$

This shows that $(w,p) \in F^2_{G[H]}[(v,a)]$. Hence, $F^2_G[v] \times V(H) \subseteq F_{G[H]}[(v,a)]$. Finally, let $(z,t) \in \{v\} \times F^2_H[a]$. Then z=v and $t \in F^2_H[a]$. Hence, $t \neq a$ and $d_H(a,t) \neq 2$. Consequently, $(z,t) \neq (v,a)$ and

$$d_{G[H]}((z,t),(v,a)) = d_H(a,t) \neq 2,$$

showing that $(z,t) \in F^2_{G[H]}[a]$. Thus, $\{v\} \times F^2_H[a] \subseteq F^2_{G[H]}[(v,a)]$. This establishes the desired equality.

Definition 5. The Cartesian Product of two graphs G_1 and G_2 denoted by $G_1 \square G_2$ is a graph with $V(G_1 \square G_2) = V(G_1) \times V(G_2)$ and two vertices $a = (u_1, u_2)$ and $b = (v_1, v_2)$ are adjacent in $G_1 \square G_2$ if and only if either $u_1 = v_1$ and $u_2 v_2 \in E(G_2)$ or $u_2 = v_2$ and $u_1 v_1 \in E(G_1)$.

Theorem 7. Let $K = G \square H = (V(K), E(K))$, where G = (V(G), E(G)) and H = (V(H), E(H)). Then for each $(v, a) \in V(K)$,

$$F_K^2[(v,a)] = \left[F_G^2[v] \times \{a\} \right] \cup \left[\{v\} \times F_H^2[a] \right] \cup \left[F_G[v] \times V(H) \setminus \{a\} \right] \cup \left[N_G(v) \times F_G[a] \right].$$

Proof. Let $(v, a) \in V(K) = V(G \square H)$ and $(x, q) \in F_K^2[(v, a)]$. Then $(v, a) \neq (x, q)$ and $d_K((v, a), (x, q)) \neq 2$. Now, consider the following cases:

Case 1. Assume that x = v. Then $q \neq a$ and $d_H(q, a) = d_K((x, q), (x, a)) \neq 2$ and so, $q \in F_H^2[a]$. Hence, $(x, q) \in \{v\} \times F_H^2[a]$.

Case 2. Assume that $x \neq v$.

Subcase 1. Let q = a. Then $d_G(x, v) = d_K((x, q), (v, q)) \neq 2$ and thus, $x \in F_G^2[v]$. It follows that $(x, q) \in F_G^2[v] \times \{a\}$.

Subcase 2. Let $q \neq a$. Suppose that $x \in N_G(v)$. If $q \in N_H(a)$, then

$$d_K((x,q),(v,a)) = d_G(x,v) + d_H(q,a) = 2,$$

a contradiction. Thus, $q \in V(H) \setminus N_H[a]$. Hence, $(x,q) \in N_G(v) \times F_G[a]$. Suppose $x \notin N_G(v)$. Then $x \in F_G[v]$. Hence, $(x,q) \in F_G[v] \times V(H) \setminus \{a\}$. Therefore,

$$F_K^2[(v,a)] \subseteq \left[F_G^2[v] \times \{a\}\right] \cup \left[\{v\} \times F_H^2[a]\right] \cup \left[F_G[v] \times V(H) \setminus \{a\}\right] \cup \left[N_G(v) \times F_G[a]\right].$$

Next, let $(v, p) \in \{v\} \times F_H^2[a]$. Then $p \neq a$ and $d_H(a, p) \neq 2$. Hence, $(v, p) \neq (v, a)$ and $d_K((v, p), (v, a)) = d_H(a, p) \neq 2$, that is, $(v, p) \in F_K^2[(v, a)]$. If $(x, a) \in F_G^2[v] \times \{a\}$, then $x \neq v$ and $d_G(x, v) \neq 2$. Hence, $(x, a) \neq (v, a)$ and $d_K((v, a), (x, a)) = d_G(x, v) \neq 2$, that is, $(x, a) \in F_K^2[(v, a)]$. Now, $(y, b) \in N_G(v) \times F_H[a]$ implies $d_G(y, v) = 1$ and $d_H(b, a) \geq 2$. It follows that $(y, b) \neq (v, a)$ and

$$d_K((y,b),(v,a)) = d_G(y,v) + d_H(b,a) \ge 3.$$

Hence, $(y, b) \in F_K^2[(v, a)]$. Finally, $(z, t) \in [F_G[v] \times V(H) \setminus \{a\}]$ implies $d_G(z, v) \ge 2$ and $d_H(t, a) \ge 1$. This means that $(z, t) \ne (v, a)$ and

$$d_K((z,t),(v,a)) = d_G(z,v) + d_H(t,a) \ge 3.$$

Thus, $(z,t) \in F_K^2[(v,a)]$. Therefore,

$$[F_G^2[v] \times \{a\}] \cup [\{v\} \times F_H^2[a]] \cup [F_G[v] \times V(H) \setminus \{a\}] \cup [N_G(v) \times F_G[a]] \subseteq F_K^2[(v,a)].$$

This establishes the desired equality.

REFERENCES 505

Acknowledgements

This research is funded by the Philippine Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP) and Mindanao State University-Iligan Institute of Technology.

References

- [1] S. Canoy and J. Gimeno. Which Connected Graphs Induce the Indiscrete and the Discrete Topologies? *Journal of Research in Science and Engineering*, 1:17–19, 2004.
- [2] S. Canoy and R. Lemence. Another Look at the Topologies Induced by Graphs. *Matimyas Matematika*, 21:1–7, 1998.
- [3] S. Canoy and R. Lemence. Topologies Induced by Some Special Graphs. *Journal of Mathematics*, 2:45–50, 1999.
- [4] S. Canoy and C. G. Nianga. On A Finite Topological Space Induced by Hop Neighborhoods of a Graph. Advances and Applications in Discrete Mathematics, submitted.
- [5] S. Diesto and S. Gervacio. Finite Topological Graphs. *Journal of Research and Development*, MSU-IIT, 1:76–81, 1983.
- [6] R. Guerrero and S. Gervacio. Characterization of Graphs which Induce the Discrete and Indiscrete Topological Spaces. *Matimyas Matematika*, *Special Issue*, 1:11–15, 1989.
- [7] F. Harary. Graph Theory. Addison-Wesley Publishing Company, USA, 1969.
- [8] S. Lipschutz. General Topology, Schaum's Outline Series. McGraw Hill International Publishing Co., 1987.