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MHD flows of second grade fluid through the moving
porous cylindrical domain
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Abstract. The flows of Magnetohydrodynamics(MHD) second grade fluid between two infinite
porous coaxial circular cylinders are studied. At time t = 0+, the inner cylinder begins to rotate
around its axis and to slide along the same axis due to torsional and longitudinal time dependent
shear stresses and the outer cylinder is also rotate around its axis and to slide along the same
axis with acceleration. The exact solutions obtained with the help of discrete Laplace and finite
Hankel transform, satisfy all imposed initial and boundary conditions. The solution presented
in convolution product of Laplace transform . The corresponding solutions for second grade and
Newtonian fluids are also obtained as limiting cases with and without MHD effect. Finally, the
influence of pertinent parameters on the velocity components and shear stresses, as well as a
comparison among, second grade and Newtonian fluids with and without MHD is also analyzed
by graphical illustrations.
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1. Introduction

Now-a-days, the non-Newtonian fluids are more important and significant in science
and technological applications than the Newtonian fluids. In several sectors, like polymer
and petroleum, food and agriculture, chemical and manufacturing, pharmaceutical and
biotechnology industries non-Newtonian fluids are more important, the fluids are the so-
lution of either artificial or natural material with other Newtonian fluids as water, oils,
red cells and different substances having long chain molecules; the resulting fluids have
the non-Newtonian features [5, 6, 10, 16, 18, 20]. There are three famous solution other
than exact solutions, can be applicable, those are analytical solutions, numerical solutions
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and experimental solutions [21]. Analytical solution is the general information and closed-
form solution, but it has simple geometry / physics and it can solve only linear problem.
Numerical solution is used for complicated physical and nonlinear problems, but its main
disadvantages are truncation errors and inappropriate modeling while experimental solu-
tion is most realistic and reliable but due to equipment / operation costs, scaling problem,
measurement difficulties are not much appreciated [12–14, 17].

The flow issue in porous medium like tube, channel, pipes and space are considered
in many research literatures but the only few researcher used the porous medium in the
magnetohydrodynamic (MHD) flow of second grade fluid in an infinite cylindrical domain,
which is much more realistic and interested when the Reynold’s number is same with any
system, such as in blood circulation, digestive and urinary systems in any body, water and
other chemical sewerage filtration and purification plants, underground tube wheel, MHD
generators for generating electricity and its MHD pumps and other engineering applica-
tions [6–8, 10, 12, 16, 18].

The Navier-Stokes equation is used to solve the problem of Newtonian fluid but the
governing equations of non-Newtonian fluids are more convoluted and having the higher
order than the Nevier-Stokes equation for Newtonian fluids, therefore Navier-Stokes equa-
tions are inadequate and insufficient to designate their behavior [1, 4], so we used some
mathematical techniques and transforms to solve the flow problem of the non-Newtonian
fluid. In cylindrical domain, the Hankel and Laplace transform are the one of the best
transform to determine the exact or analytical solution [6, 9, 10, 12, 16].

The objective of this paper is to extend the concepts of boundary conditions and iden-
tities of Hankel transformation used in [2, 9] to second grade fluid with more generalized
boundary conditions from which we recover many general solutions as special solution to
our general solutions. We also point out that the boiundary conditions and indenties used
in mentioned paper [9, 15] are very rare in literature. Therefore motivated by these facts,
we study, the MHD flow of second grade fluid between two infinite porous coaxial circular
cylinders. At time t = 0+, the inner cylinder begins to rotate around its axis and to slide
along the same axis due to torsional and longitudinal time dependent shear stresses f1 t

p

and g1 t
p the outer cylinder is also rotate around its axis and to slide along the same axis

with velocities f2 t
p and g2 t

p . The exact solutions obtained with the help of Laplace and
finite Hankel transform, presented in convolution product of Laplace transform, which
satisfy all imposed initial and boundary conditions. As the limiting and special cases, we
find solutions for second grade with and without MHD/porous effects, Newtonian with
and without MHD/porous effects and discussed graphically. Furthermore the solutions for
the special case for p = 1 is also presented.
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2. Formation of the problem

Suppose that an incompressible second grade MHD fluid at rest is situated in the
annular region between two infinite coaxial circular cylinders of radii R1 and R2(> R1).
At time t = 0+ the inner cylinder begins to rotate around its axis and to slide along the
same axis due to the time-dependent shear stresses

Figure 1: Geometry of the problem for rotational and translational flows of fluid through an annulus

τω(R1, t) = f1 t
p and τv(R1, t) = g1 t

p, where p ≥ 0, (1)

and the outer cylinder also starts to rotate around its axis and slide along same axis
with rotational velocity f2 t

p and translated velocity g2 t
p, where f1, f2, g1 and g2 are

constants. Due to the shear, the fluid is gradually moved its velocity and extra stress
tensor are considered to be

V = V(r, t) = w(r, t)eθ + v(r, t)ez, S = S(r, t), (2)

where eθ and ez are unit vectors in the θ and z-directions of the cylindrical coordinate
system r, θ and z. The governing equations are given by [11, 19]

∂

∂t
ω(r, t) =

(
ϑ+ α

∂

∂t

)(
∂2

∂r2
+

∂

∂r
− 1

r2

)
ω(r, t)−M ω(r, t)− Φ

(
ϑ+ α

∂

∂t

)
ω(r, t); (3)

where r ∈ [R1, R2], t > 0,
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∂

∂t
v(r, t) =

(
ϑ+ α

∂

∂t

)(
∂2

∂r2
+

1

r

∂

∂r

)
v(r, t)−M v(r, t)− Φ

(
ϑ+ α

∂

∂t

)
v(r, t); (4)

where r ∈ [R1, R2], t > 0,

τω =

(
µ+ α1

∂

∂t

)(
∂

∂r
− 1

r

)
ω(r, t), (5)

τv =

(
µ+ α1

∂

∂t

)
∂v(r, q)

∂r
, (6)

where τω = srθ and τv = srz are the shear stresses that are different of zero and ν = µ/ρ
is the kinematic viscosity, µ is the dynamic viscosity, ρ is the density of the fluid and

Φ = φ
k and M = σB2

o
ρ are magnetic and porosity constants, where φ is the porosity and κ

is the permeability of the porous medium, B0 is the magnitude of applied magnetic field
and σ is the electrically conductively of fluid, while the appropriate initial and boundary
conditions are

w(r, 0) =
∂w(r, 0)

∂t
= v(r, 0) =

∂v(r, 0)

∂t
= 0 and τ1(r, 0) = τ2(r, 0) = 0; r ∈ [R1, R2], (7)

respectively,

τω(R1, t) =

(
µ+ α1

∂

∂t

)(
∂

∂r
− 1

r

)
ω(r, t)

∣∣∣∣
r=R1

= f1 t
p, t > 0, (8)

and

τv(R1, t) =

(
µ+ α1

∂

∂t

)(
∂

∂r
− 1

r

)
v(r, t)

∣∣∣∣
r=R1

= g1 t
p, t > 0, (9)

ω(R2, t) = f2 t
p and v(R2, t) = g2t

p; t > 0. (10)

In order to solve this problem we shall use Laplace Transforms and the finite Hankel trans-
forms.
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2.1. Estimation of the velocity field

Applying the Laplace transform to eqs. (3) and (4) and having in mind the initial
conditions (7), since the image functions ω(r, q) and v(r, q) be inverse Laplace transform,
we find that as

q ω(r, q) = ϑ

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ω(r, q) + α

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
q ω(r, q)

−M ω(r, q)− Φϑ− Φα q ω(r, q); r ∈ (R1, R2), (11)

q v(r, q) = ϑ

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
v(r, q) + α

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
q v(r, q)

−M v(r, q)− Φϑ− Φα q v(r, q); r ∈ (R1, R2), (12)

Similarly applying Laplace transform on eqs. (8), (9) and (10), we get

(
∂

∂r
− 1

r

)
ω(r, t)

∣∣∣∣
r=R1

=
f1 p !

qp+1 (µ+ α1 q)
; t > 0, (13)

and

∂

∂r
v(r, q)

∣∣∣∣
r=R1

=
g1 p !

qp+1 (µ+ α1 q)
; t > 0, (14)

also

ω(R2, t) =
f2 p !

qp+1
and v(R2, t) =

g2 p !

qp+1
. (15)

The Hankel transformation with respect to r is defined as [2, 3]

wH(r, s) =

∫ R2

R1

rw(r, s)Bw(r, rm)dr, m = 1, 2, 3, ... (16)

vH(r, s) =

∫ R2

R1

rv(r, s)Bv(r, rn)dr; n = 1, 2, 3, ... (17)
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where

Bw(r, rm) = J1(rrm)Y2(R1rm)− J2(R1rm)Y1(rrm),

Bv(r, rn) = J0(rrn)Y1(R1rn)− J1(R1rn)Y0(rrn),

also

∫ R2

R1

r

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
w(r, s)Bw(r, rm)dr = −r2

mwHm +
2

πrm

(
∂

∂r
− 1

r

)
w(r, s)

∣∣∣∣
r=R1

+rmR2w(r, s)Dw(R1, R2, rm) (18)

∫ R2

R1

r

(
∂2

∂r2
+

1

r

∂

∂r

)
v(r, t)Bv(r, rn)dr = −r2

nvHn +
2

πrn

∂

∂r
v(r, s)

∣∣∣∣
r=R1

+rnR2v(r, s)Dv(R1, R2, rn) (19)

where

Dw(R1, R2, rm) = J2(R2rm)Y2(R1rm)− J2(R1rm)Y2(R2rm),

Dv(R1, R2, rn) = J1(R2rn)Y1(R1rn)− J1(R1rn)Y1(R2rn).

Multiplying Eqs. (11) and (12) by rBw(rrm) and rBv(rrn), respectively, integrating
the results with respect to r from R1 to R2 and using the boundary conditions (13), (14)
and (15) and the identities (18), (19), we find that

ωH(r, q) =
2f1p !

π rm qp+1ρ (ϑ+ αq)

ϑ+ αq

q +M + Φ(ϑ+ αq) + r2
m(ϑ+ αq)

+f2R2 rm p! Dω(R1, R2, rm)
1

qp+1

ϑ+ αq

q +M + Φ(ϑ+ αq) + r2
m(ϑ+ αq)

, (20)

vH(r, q) =
2g1p !

π rn qp+1ρ (ϑ+ αq)

ϑ+ αq

q +M + Φ(ϑ+ αq) + r2
n(ϑ+ αq)
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+g2R2 rn p! Dv(R1, R2, rn)
1

qp+1

ϑ+ αq

q +M + Φ(ϑ+ αq) + r2
n(ϑ+ αq)

. (21)

After modifying the aforesaid outcomes (20) and (21) in more appropriate interchangeable
pattern, we get

ωH(r, q) =
2f1

π µ r3
m

p !

qp+1
− 2f1

π µ r3
m

p !

qp
[1 + α(Φ + r2

m)] + (M + Φϑ)q−1

[1 + α(Φ + r2
m)] + [M + ϑ(Φ + r2

m)]

+f2R2 rm Dω(R1, R2, rm)

[
p!

qp+1
+

p !

qp+1

[M + ϑ(Φ + r2
m − 1)] + [1 + α(Φ + r2

m − 1)]q

[1 + α(Φ + r2
m)]q + [M + ϑ(Φ + r2

m)]

]
,

(22)

vH(r, q) =
2g1

π µ r3
n

p !

qp+1
− 2g1

π µ r3
n

p !

qp
[1 + α(Φ + r2

n)] + (M + Φϑ)q−1

[1 + α(Φ + r2
n)] + [M + ϑ(Φ + r2

n)]

+g2R2 rn Dv(R1, R2, rn)

[
p!

qp+1
+

p !

qp+1

[M + ϑ(Φ + r2
n − 1)] + [1 + α(Φ + r2

n − 1)]q

[1 + α(Φ + r2
n)]q + [M + ϑ(Φ + r2

n)]

]
.

(23)

Additionally, we have the relation of discrete inverse Hankel transform, and apply the
discrete inverse Hankel transform formulae to (22) and (23), then we get the equations

ω(r, q) =
f1

2µ

(
R1

R2

)2(
r − R2

2

r

)
p !

qp+1
− f1π

µ

∞∑
m=1

J2
1 (R2rm)Bw(rrm)

rm[J2
2 (R1rm)− J2

1 (R2rm)]

1

1 + α(Φ + r2
m)

×

[
p !

qp
1 + α(Φ + r2

m)

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

+
p !

qp+1

M + Φ ϑ

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

]
+
f2R2π

2

2

∞∑
m=1

r3
mJ

2
1 (R2rm)Bw(rrm) Dω(R1, R2, rm)

J2
2 (R1rm)− J2

1 (R2rm)

×

[
p!

qp+1
− 1

1 + α(Φ + r2
m)

{
p !

qp+1

M + ϑ(Φ + r2
m − 1)

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

+
p !

qp
1 + α(Φ + r2

m − 1)

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

}]
,

(24)

v(r, t) =
g1

2µ
R1 ln

(
r

R2

)
p !

qp+1
− g1π

µ

∞∑
n=1

J2
0 (R2rn)Bv(rrn)

rn[J2
1 (R1rn)− J2

0 (R2rn)]

1

1 + α(Φ + r2
n)
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×

[
p !

qp
1 + α(Φ + r2

n)

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

+
p !

qp+1

M + Φ ϑ

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

]
+
g2R2π

2

2

∞∑
n=1

r3
nJ

2
0 (R2rn)Bv(rrn) Dv(R1, R2, rn)

J2
1 (R1rn)− J2

0 (R2rn)

×

[
p!

qq+1
− 1

1 + α(Φ + r2
n)

{
p !

qp+1

M + ϑ(Φ + r2
n − 1)

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

+
p !

qp
1 + α(Φ + r2

n − 1)

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

}]
.

(25)

In order to get the result of velocity field for rotational and longitude cases as ω(r, t) =
L[ω(r, q)] and v(r, t) = L[v(r, q)] respectively, applying the convolution theorem of inverse
Laplace transformation on eqs. (24) and (25), we get the velocity field for rotational case

ω(r, t) =
f1

2µ

(
R1

R2

)2(
r − R2

2

r

)
tp − f1π

µ

∞∑
m=1

J2
1 (R2rm)Bw(rrm)

rm[J2
2 (R1rm)− J2

1 (R2rm)]

1

1 + α(Φ + r2
m)

×
∫ t

0
(t− u)p

[
p (1 + α(Φ + r2

m))

t− u
+M + Φϑ

]
Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

u

]
du

+
f2R2π

2

2

∞∑
m=1

r3
mJ

2
1 (R2rm)Bw(rrm) Dω(R1, R2, rm)

J2
2 (R1rm)− J2

1 (R2rm)

{
tp − 1

1 + α(Φ + r2
m)

∫ t

0
(t− u)p

×
[
[M + ϑ(Φ + r2

m − 1)] +
p[1 + α(Φ + r2

m − 1)]

t− u

]
Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

u

]
du

}
,

(26)

and for longitude case, we have

v(r, q) =
g1

2µ
R1 ln

(
r

R2

)
tp − g1π

µ

∞∑
n=1

J2
0 (R2rn)Bv(rrn)

rn[J2
1 (R1rn)− J2

0 (R2rn)]

1

1 + α(Φ + r2
n)

×
∫ t

0
(t− u)p

[
p (1 + α(Φ + r2

n))

t− u
+M + Φϑ

]
Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

u

]
du

+
g2R2π

2

2

∞∑
n=1

r3
nJ

2
0 (R2rn)Bv(rrn) Dv(R1, R2, rn)

J2
1 (R1rn)− J2

0 (R2rn)

{
tp − 1

1 + α(Φ + r2
n)

∫ t

0
(t− u)p

×
[
[M + ϑ(Φ + r2

n − 1)] +
p[1 + α(Φ + r2

n − 1)]

t− u

]
Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

u

]
du

}
.

(27)
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2.2. Estimation of the shear stresses

In order to determine the shear stresses τω(r, t) and τv(r, t), with the initial conditions,
Taking eqs. (5) and (6) and applying the Laplace transformation, we get

τω(r, q) = (µ+ α1 q)

(
∂

∂r
− 1

r

)
ω(r, q), (28)

and

τv(r, q) = (µ+ α1 q)
∂v(r, q)

∂r
. (29)

Now taking eqs. (20) and (21), after modifying the outcomes in more appropriate inter-
changeable pattern for satisfying the initial and boundary conditions and applying the
inverse Hankel transform, then we get the results of

(
∂

∂r
− 1

r

)
ω(r, q) =

f1

ρ

(
R1

r

)2 p !

qp+1(ϑ+ αq)
+
f1π

ρ

×
∞∑
m=1

J2
1 (R2rm)Bw(rrm)

rm[J2
2 (R1rm)− J2

1 (R2rm)]

1

ϑ+ αq

p !

qp

{
1 + [M + Φ(ϑ+ αq)]q−1

[1 + α(Φ + r2
m)]q + [M + ϑ(Φ + r2

m)]

}
− f2R2π

2

2

×
∞∑
m=1

r3
mJ

2
1 (R2rm)Bw(rrm) Dω(R1, R2, rm)

J2
2 (R1rm)− J2

1 (R2rm)

{
(ϑ+ αq)

[1 + α(Φ + r2
m)]q + [M + ϑ(Φ + r2

m)]

}
,(30)

∂v(r, q)

∂r
=

g1

ρ
R1 ln

(
r

R2

)
p !

qp+1(ϑ+ αq)
+
g1π

ρ

×
∞∑
n=1

J2
0 (R2rn)Bv(rrn)

rn[J2
1 (R1rn)− J2

0 (R2rn)]

1

ϑ+ αq

p !

qp

{
1 + [M + Φ(ϑ+ αq)]q−1

[1 + α(Φ + r2
n)]q + [M + ϑ(Φ + r2

n)]

}
− g2R2π

2

2

×
∞∑
n=1

r3
nJ

2
0 (R2rn)Bv(rrn) Dv(R1, R2, rn)

J2
1 (R1rn)− J2

0 (R2rn)

{
(ϑ+ αq)

[1 + α(Φ + r2
n)]q + [M + ϑ(Φ + r2

n)]

}
. (31)

Put (30) and (31) in the eqs. (28) and (29) respectively, then the sample equivalent form,
which are
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τω(r, q) = f1

(
R1

r

)2 p !

qp+1
+ f1π

∞∑
m=1

J2
1 (R2rm)Bw(rrm)

J2
2 (R1rm)− J2

1 (R2rm)

1

1 + α(Φ + r2
m)

×

{
(p− 1) !

qp
p

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

+
p !

qp+1

M + Φ ϑ

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

+
(p− 1) !

qp
Φαp

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

}

+
f2R2π

2

2

∞∑
m=1

r4
mJ

2
1 (R2rm)Bw(rrm) Dω(R1, R2, rm)

J2
2 (R1rm)− J2

1 (R2rm)

{
p !

qp+1

ϑ2

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

+
(p− 1) !

qp
2α ϑp

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

+
(p− 2) !

qp−1

α2p (p− 1)

q + M+ϑ(Φ+r2m)
1+α(Φ+r2m)

}
, (32)

τv(r, q) = g1

(
R1

r

)
p !

qp+1
+ g1π

∞∑
n=1

J2
0 (R2rn)Bv(rrn)

J2
1 (R1rn)− J2

0 (R2rn)

1

1 + α(Φ + r2
n)

×

{
(p− 1) !

qp
p

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

+
p !

qp+1

M + Φ ϑ

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

+
(p− 1) !

qp
Φαp

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

}

+
g2R2π

2

2

∞∑
n=1

r4
nJ

2
0 (R2rn)Bv(rrn) Dv(R1, R2, rn)

J2
1 (R1rn)− J2

0 (R2rn)

{
p !

qp+1

ϑ2

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

+
(p− 1) !

qp
2α ϑp

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

+
(p− 2) !

qp−1

α2p (p− 1)

q + M+ϑ(Φ+r2n)
1+α(Φ+r2n)

}
. (33)

After applying the convolution theorem of inverse Laplace transformation on eqs. (32)
and (33), we get the shear stress for rotational case

τω(r, t) = f1

(
R1

r

)
tp + f1π

∞∑
m=1

J2
1 (R2 rm) Bω(r rm)

J2
2 (R1 rm)− J2

1 (R2 rm)

1

1 + α(Φ + r2
m)

∫ t

0
(t− u)p
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×
[
p (1 + αΦ)

t− u
+M + Φϑ

]
Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

u

]
du− f2

π2 ρR2

2

×
∞∑
m=1

r4
m J

2
1 (R2 rm) Bω(r rm) Dw(R1, R2, rm)

J2
2 (R1 rm)− J2

1 (R2 rm)

1

1 + α(Φ + r2
m)

∫ t

0
(t− u)p

×
[
ϑ2 +

2αϑP

t− u
+
α2 p(p− 1)

(t− u)2

]
Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

u

]
du, (34)

and for longitudinal case

τv(r, t) = g1

(
R1

r

)
tp + g1π

∞∑
n=1

J2
0 (R2 rn) Bv(r rn)

J2
1 (R1 rn)− J2

0 (R2 rn)

1

1 + α(Φ + r2
n)

∫ t

0
(t− u)p

×
[
p (1 + αΦ)

t− u
+M + Φϑ

]
Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

u

]
du− g2

π2 ρR2

2

×
∞∑
n=1

r4
n J

2
0 (R2 rn) Bω(r rn) Dv(R1, R2, rn)

J2
1 (R1 rn)− J2

0 (R2 rn)

1

1 + α(Φ + r2
n)

∫ t

0
(t− u)p

×
[
ϑ2 +

2αϑP

t− u
+
α2 p(p− 1)

(t− u)2

]
Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

u

]
du. (35)

3. The limiting and special cases

3.1. Second grade with porous (without MHD effect)

Making M→ 0 into (26), (27), (34) and (35), we obtain the velocity field components
and shear stresses for Second grade fluid with porous effect and without MHD.

3.2. MHD Second grade (without porous effect)

Putting Φ → 0 into resultant eqs. (26), (27), (34) and (35), we obtain the velocity
field components and the shear stresses for MHD Second grade without porous effects.
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3.3. Second grade fluid (without MHD and porous effects)

Applying M→ 0 & Φ→ 0 into (26), (27), (34) and (35), we get the solutions for
velocity fields components respectively the shear stresses for Second grade fluid without
MHD and porous effects.

3.4. MHD Newtonian with porous effect

Employing α→ 0 into eqs. (26), (27), (34) and (35), we get

ω(r, t) =
f1

2µ

(
R1

R2

)2(
r − R2

2

r

)
tp − f1π

µ

∞∑
m=1

J2
1 (R2rm)Bw(rrm)

rm[J2
2 (R1rm)− J2

1 (R2rm)]

∫ t

0
(t− u)p

[
p

t− u
+M + Φϑ

]

×Exp

[
− {M + ϑ (Φ + r2

m)}u
]
du+

f2R2π
2

2

∞∑
m=1

r3
mJ

2
1 (R2rm)Bw(rrm) Dω(R1, R2, rm)

J2
2 (R1rm)− J2

1 (R2rm)

{
tp

−
∫ t

0
(t− u)p

[
M + ϑ(Φ + r2

m − 1) +
p

t− u

]
Exp

[
− {M + ϑ (Φ + r2

m)}u
]
du

}
, (36)

v(r, q) =
g1

2µ
R1 ln

(
r

R2

)
tp − g1π

µ

∞∑
n=1

J2
0 (R2rn)Bv(rrn)

rn[J2
1 (R1rn)− J2

0 (R2rn)]

∫ t

0
(t− u)p

[
p

t− u
+M + Φϑ

]

×Exp

[
− {M + ϑ (Φ + r2

n)}u
]
du+

g2R2π
2

2

∞∑
n=1

r3
nJ

2
0 (R2rn)Bv(rrn) Dv(R1, R2, rn)

J2
1 (R1rn)− J2

0 (R2rn)

{
tp

−
∫ t

0
(t− u)p

[
M + ϑ(Φ + r2

n − 1) +
p

t− u

]
Exp

[
− {M + ϑ (Φ + r2

n)}u
]
du

}
, (37)

the solution for the velocity field components, and

τω(R1, t) = f1

(
R1

r

)
tp + f1π

∞∑
m=1

J2
1 (R2 rm) Bω(r rm)

J2
2 (R1 rm)− J2

1 (R2 rm)

∫ t

0
(t− u)p

[
p

t− u
+M + Φϑ

]

×Exp

[
− {M + ϑ (Φ + r2

m)}u
]
du− f2

π2 ρR2ϑ
2

2

∞∑
m=1

r4
m J

2
1 (R2 rm)Bω(r rm) Dω(R1, R2, rm)

J2
2 (R1 rm)− J2

1 (R2 rm)
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×
∫ t

0
(t− u)pExp

[
− {M + ϑ (Φ + r2

m)}u
]
du, (38)

τv(R1, t) = g1

(
R1

r

)
tp + g1π

∞∑
n=1

J2
0 (R2 rn) Bv(r rn)

J2
1 (R1 rn)− J2

0 (R2 rn)

∫ t

0
(t− u)p

[
p

t− u
+M + Φϑ

]

×Exp

[
− {M + ϑ (Φ + r2

n)}u
]
du− g2

π2 ρR2ϑ
2

2

∞∑
n=1

r4
n J

2
0 (R2 rn) Bv(r rn) Dv(R1, R2, rn)

J2
1 (R1 rn)− J2

0 (R2 rn)

×
∫ t

0
(t− u)pExp

[
− {M + ϑ (Φ + r2

n)}u
]
du, (39)

the shear stresses for MHD Newtonian with porous effect.

3.5. Newtonian with porous effect

Making M → 0 in Eqs. (36), (37), (38) and (39), we get solutions for Newtonian fuid
with porous effect and without MHD.

3.6. MHD Newtonian

Similarly, putting M → 0 in Eqs. (36), (37), (38) and (39), we get solutions for MHD
Newtonian fluid without porous effects.

3.7. Newtonian

By vanishing as M→ 0 & Φ→ 0 into the Eqs. (36), (37), (38) and (39), of velocity
field components and shear stresses, we get the Newtonian solutions,

ω(r, t) =
f1

2µ

(
R1

R2

)2(
r − R2

2

r

)
tp − f1π

µ

∞∑
m=1

J2
1 (R2rm)Bw(rrm)

rm[J2
2 (R1rm)− J2

1 (R2rm)]

∫ t

0
(t− u)p−1

×Exp(−ϑr2
mu)du+

f2R2π
2

2

∞∑
m=1

r3
mJ

2
1 (R2rm)Bw(rrm) Dω(R1, R2, rm)

J2
2 (R1rm)− J2

1 (R2rm)

{
tp

−
∫ t

0
(t− u)p

[
ϑ(r2

m − 1) +
p

t− u

]
Exp(−ϑ r2

m u )du

}
, (40)
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v(r, q) =
g1

2µ
R1 ln

(
r

R2

)
tp − g1p

µ

∞∑
n=1

J2
0 (R2rn)Bv(rrn)

rn[J2
1 (R1rn)− J2

0 (R2rn)]

∫ t

0
(t− u)p−1

×Exp(−ϑ r2
n u )du+

g2R2π

2

∞∑
n=1

r3
nJ

2
0 (R2rn)Bv(rrn) Dv(R1, R2, rn)

J2
1 (R1rn)− J2

0 (R2rn)

{
tp

−
∫ t

0
(t− u)p

[
ϑ(r2

n − 1) +
p

t− u

]
Exp(−ϑ r2

n u )du

}
, (41)

τω(R1, t) = f1

(
R1

r

)
tp + f1π

∞∑
m=1

J2
1 (R2 rm) Bω(r rm)

J2
2 (R1 rm)− J2

1 (R2 rm)

∫ t

0
(t− u)p

(
p

t− u

)

×Exp(−ϑr2
mu)du− f2

π2 ρR2ϑ
2

2

∞∑
m=1

r4
m J

2
1 (R2 rm) Bω(r rn) Dω(R1, R2, rm)

J2
2 (R1 rn)− J2

1 (R2 rm)

×
∫ t

0
(t− u)p Exp(−ϑr2

mu)du, (42)

τv(R1, t) = g1

(
R1

r

)
tp + g1π

∞∑
n=1

J2
0 (R2 rn) Bv(r rn)

J2
1 (R1 rn)− J2

0 (R2 rn)

∫ t

0
(t− u)p

(
p

t− u

)

×Exp(−ϑr2
nu)du− g2

π2 ρR2ϑ
2

2

∞∑
n=1

r4
n J

2
0 (R2 rn) Bv(r rn)Dv(R1, R2, rn)

J2
1 (R1 rn)− J2

0 (R2 rn)

×
∫ t

0
(t− u)p Exp(−ϑr2

nu)du. (43)
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3.8. The special solution for p = 1

Finally, switch p = 1 into the resultant equations of velocity field components as well
as shear stress (26), (27), (34) and (35), we get longitudinal and rotational cases result by
solving the integral from 0 to t

ω(r, t) =
f1

2µ

(
R1

R2

)2(
r − R2

2

r

)
t− f1[M + ϑ (Φ + r2

m)]

µ[1 + α (Φ + r2
m)]3

∞∑
m=1

J2
1 (R2rm)Bw(rrm)

rm[J2
2 (R1rm)− J2

1 (R2rm)]

×

[
ϑr2

m[1 + α (Φ + r2
m)]

(
1−Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

])
+ t[M(M + ϑ(2Φ + r2

m)) + Φϑ2(Φ + r2
m)]

]

+
f2R2π

2[1 + α(Φ + r2
m)]

∞∑
m=1

r3
mJ

2
1 (R2rm)Bw(rrm) Dω(R1, R2, rm)

J2
2 (R1rm)− J2

1 (R2rm)

{
t− 1

[M + ϑ (Φ + r2
m)]2

[
ϑ

−α[M + ϑ(Φ + r2
m − 1)]− tϑ[M + ϑ(Φ + r2

m)(Φ + r2
m − 1)]

](
1−Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

])

+t

[
M2 + ϑ2(Φ + r2

m)(Φ + r2
m − 1)Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

]]}
, (44)

v(r, q) =
g1

2µ
R1 ln

(
r

R2

)
t− g1[M + ϑ (Φ + r2

n)]

µ[1 + α (Φ + r2
n)]3

∞∑
n=1

J2
0 (R2rn)Bv(rrn)

rn[J2
1 (R1rn)− J2

0 (R2rn)]

×

[
ϑr2

n[1 + α (Φ + r2
n)]

(
1−Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

])
+ t[M(M + ϑ(2Φ + r2

n)) + Φϑ2(Φ + r2
n)]

]

+
g2R2π

2[1 + α(Φ + r2
n)]

∞∑
n=1

r3
nJ

2
1 (R2rn)Bv(rrn) Dv(R1, R2, rn)

J2
2 (R1rn)− J2

1 (R2rn)

{
t− 1

[M + ϑ (Φ + r2
n)]2

[
ϑ

−α[M + ϑ(Φ + r2
n − 1)]− tϑ[M + ϑ(Φ + r2

n)(Φ + r2
n − 1)]

](
1−Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

])

+t

[
M2 + ϑ2(Φ + r2

n)(Φ + r2
n − 1)Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

]]}
, (45)
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τω(R1, t) = f1

(
R1

r

)
t+ f1

∞∑
m=1

J2
1 (R2 rm) Bω(r rm)

J2
2 (R1 rm)− J2

1 (R2 rm)

1

1 + α(Φ + r2
m)

[
[1 + αΦ]

1 + α (Φ + r2
m)

M + ϑ (Φ + r2
m)

×
{

1−Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

t

]}
+ [M + Φϑ]

1 + α (Φ + r2
m)

[M + ϑ (Φ + r2
m)]2

{
t[M + ϑ (Φ + r2

m)]

−[1 + α (Φ + r2
m)]

[
1−Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

t

]]}]
− f2

π ρR2

2[1 + α(Φ + r2
m)]

×
∞∑
m=1

r4
m J

2
1 (R2 rm) Bω(r rm) Dw(R1, R2, rm)

J2
2 (R1 rm)− J2

1 (R2 rm)

[
ϑ2 1 + α (Φ + r2

m)

[M + ϑ (Φ + r2
m)]2

{
t[M + ϑ (Φ + r2

m)]

−[1 + α (Φ + r2
m)]

[
1−Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

t

]]}
+ 2αϑ

1 + α (Φ + r2
m)

M + ϑ (Φ + r2
m)

×
{

1−Exp

[
− M + ϑ (Φ + r2

m)

1 + α (Φ + r2
m)

t

]}]
, (46)

τv(R1, t) = g1

(
R1

r

)
t+ g1

∞∑
n=1

J2
0 (R2 rn) Bv(r rn)

J2
1 (R1 rn)− J2

0 (R2 rn)

1

1 + α(Φ + r2
n)

[
[1 + αΦ]

1 + α (Φ + r2
n)

M + ϑ (Φ + r2
n)

×
{

1−Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

t

]}
+ [M + Φϑ]

1 + α (Φ + r2
n)

[M + ϑ (Φ + r2
n)]2

{
t[M + ϑ (Φ + r2

n)]

−[1 + α (Φ + r2
n)]

[
1−Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

t

]]}]
− g2

π ρR2

2[1 + α(Φ + r2
n)]

×
∞∑
n=1

r4
n J

2
0 (R2 rn) Bv(r rn) Dv(R1, R2, rn)

J2
1 (R1 rn)− J2

0 (R2 rn)

[
ϑ2 1 + α (Φ + r2

n)

[M + ϑ (Φ + r2
n)]2

{
t[M + ϑ (Φ + r2

n)]

−[1 + α (Φ + r2
n)]

[
1−Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

t

]]}
+ 2αϑ

1 + α (Φ + r2
n)

M + ϑ (Φ + r2
n)

×
{

1−Exp

[
− M + ϑ (Φ + r2

n)

1 + α (Φ + r2
n)

t

]}]
. (47)
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4. Numerical results and discussion

In this part of the article, the obtained exact solutions are studied numerically in
order to determine the effects of several involved parameter such as material parameter α,
kinematic viscosity ν, magnetic parameter M , porosity parameter Φ, parameter p, time t
and radial distance r.

Comparison between two different fluid are also presented for understanding the pre-
sented flow problem.

Figure 2: Profiles of the velocity field components for MHD Second grade fluid with porous effect w(r, t), u(r, t)
and the shear stresses τw(r, t), τv(r, t) given by eqs. (26), (27), (34) and (35), for R1 = 0.1, R2 = 0.3, f1 =
g1 = 0.3, f2 = g2 = 0.2, ν = 0.6355, µ = 12.26, α = 0.2, M = 2, Φ = 2, p = 1 and different values of
time t.
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Figs. 2 exhibit the influence of time on the fluid motion. The velocity components
w(r, t) , v(r, t) and rotational shear stresses τw(r, t) are increasing function of time t. How-
ever the amplitude of the longitudinal shear stress τv(r, t) decreases with time.

These numerical values demonstrate the influence of above parameter on velocity com-
ponents and shear stresses profiles for the flow generated through the inner cylinder that
is subject to a rotational and longitudinal time dependent shear stresses and the outer
cylinder subject to a rotational and longitudinal velocities along its axes.

Figure 3: Profiles of the velocity field components for MHD Second grade fluid with porous effect w(r, t), u(r, t)
and the shear stresses τw(r, t), τv(r, t) given by eqs. (26), (27), (34) and (35), for R1 = 0.1, R2 = 0.3, f1 =
g1 = 0.3, f2 = g2 = 0.2, ν = 0.6355, µ = 12.26, α = 0.2, M = 2, Φ = 2, p = 1 and different values of
radius r.

The influence of the annular distance form R1 to R2 is shown in Figs. 3. It is found
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that rotational pair w(r, t), τw(r, t) are increases and longitudinal pair v(r, t), τv(r, t) de-
creases along the annular distance.

These diagrams of the velocity field components w(r, t) , v(r, t) and the shear stress
τw(r, t), τv(r, t) were presented against r for different values of t and of the above men-
tioned parameter.

All these comments are demonstrated through absolute sense where in the diagrams
negative values are appeared.

Figure 4: Profiles of the velocity field components for MHD Second grade fluid with porous effect w(r, t), u(r, t)
and the shear stresses τw(r, t), τv(r, t) given by eqs. (26), (27), (34) and (35), for R1 = 0.1, R2 = 0.3, f1 =
g1 = 0.3, f2 = g2 = 0.2, ν = 0.6355, µ = 12.26, M = 2, Φ = 2, p = 1, t = 1s and different values of
material parameter α.

Figs. 4 are plotted to show the effects of material parameter on velocities and shear
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stresses profiles. It can be observed that both velocity components and rotational shear
stress are decreasing function and longitudinal shear stress is decreasing function of the
parameter α when other parameter are fixed.

Viscous effects are important for both Newtonian and non-Newtonian fluids. In Figs.
5, the velocities and shear stresses profiles are depicted for different values of the kinematic
viscosity ν. Here the values of kinematic viscosity are chosen 0.3, 0.5 and 0.9.

It is observed that velocity components and shear stresses are decay with enhancing
the viscous effects, which is natural phonomania.

Figure 5: Profiles of the velocity field components for MHD Second grade fluid with porous effect w(r, t), u(r, t)
and the shear stresses τw(r, t), τv(r, t) given by eqs. (26), (27), (34) and (35), for R1 = 0.1, R2 = 0.3, f1 =
g1 = 0.3, f2 = g2 = 0.2, ρ = 19.292, α = 0.2, M = 2, Φ = 2, p = 1, t = 0.2s and different values of
kinematic viscosity ν.
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Figs. 6 present the nature of velocities and shear stresses profiles respectively for the
variation of magnetic parameter M . The range of the magnetic parameter is taken from
0.1 to 12.

It come to the observation that the higher the value of magnetic parameter rise the
velocities shear stresses values.

Figure 6: Profiles of the velocity field components for MHD Second grade fluid with porous effect w(r, t), u(r, t)
and the shear stresses τw(r, t), τv(r, t) given by eqs. (26), (27), (34) and (35), for R1 = 0.1, R2 = 0.3, f1 =
g1 = 0.3, f2 = g2 = 0.2, ν = 0.6355, µ = 12.26, α = 0.2, Φ = 2, p = 1, t = 0.5s and different values of
magnetic parameter M .

Figs. 7 illustrates the effects of the porosity parameter Φ on fluid motion. These fig-
ures show the variations of velocities as well as shear stresses profiles for increasing values
of porosity parameter Φ when other parameters are kept constant.
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Figs. 7 (a), (b) clearly indicates that porosity parameter have neglige effects on veloc-
ity filed components.

However share stresses have strong influence on the shear stresses profiles. The rota-
tional shear stress τw(r, t) decreases and longitudinal shear stress τv(r, t) decreases with
the strength of porosity parameter.

Figure 7: Profiles of the velocity field components for MHD Second grade fluid with porous effect w(r, t), u(r, t)
and the shear stresses τw(r, t), τv(r, t) given by eqs. (26), (27), (34) and (35), for R1 = 0.1, R2 = 0.3, f1 =
g1 = 0.3, f2 = g2 = 0.2, ν = 0.6355, µ = 12.26, α = 0.2, M = 2, p = 1, t = 0.2s and different values of
porosity Φ.

One of the significant parameter for the flow problem is considered, the power p, that
appeared in the boundary conditions (22)-(24).
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We consider only integer values of power p = 1, 2, 3 in Figs 8. It is brought to knowl-
edge that increase in the power parameter p causes a increase in rotational pair and decrees
the longitudinal pair of quantities for the flow problem under consideration.

Figure 8: Profiles of the velocity field components for MHD Second grade fluid with porous effect w(r, t), u(r, t)
and the shear stresses τw(r, t), τv(r, t) given by eqs. (26), (27), (34) and (35), for R1 = 0.1, R2 = 0.3, f1 =
g1 = 0.3, f2 = g2 = 0.2, ν = 0.6355, µ = 12.26, α = 0.2, M = 2, Φ = 2, t = 1s and different values of
the power p.

In the end, for comparison the velocities and shear stresses profiles corresponding to
two models MHD second grade and MHD Newtonian in porous medium are together de-
picted in Figs. 9 for same value of t, α, µ, ν, M and Φ .

It is found that MHD Newtonian fluid flows faster than the MHD second grade fluid
in porous medium. However the shear stresses are larger of MHD second grade fluid are
larger than the MHD Newtonian fluid.
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Figure 9: Profiles of the velocity field components for MHD Second grade fluid and MHD Newtonian with
porous effect w(r, t), u(r, t) and the shear stresses τw(r, t), τv(r, t) given by eqs. (26), (27), (34), (35), (36),
(37), (38) and (39) for R1 = 0.1, R2 = 0.3, f1 = g1 = 0.3, f2 = g2 = 0.2, ν = 0.6355, µ = 12.26, α =
0.2, M = 2, Φ = 2, p = 1 and t = 1s.

These comparison is completly agreement the Figs. 4 which also shows that when
α→ 0 the MHD second grade fluid flows fast in porous medium. SI units are considered
for material parameters in Figs. 2 - 9 and (2m−1)π/2(R2−R1) and (2n−1)π/2(R2−R1)
are used as approximated values of the roots rm and rn.
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5. Concluding remarks

The purpose of this chapter is to present the unsteady flow of second grade fluid be-
tween two infinite coaxial circular porous cylinders in the presence of magnetic field is
studied by techniques of the discrete Laplace and finite Hankel transforms. The flow of
the fluid is generated by the inner cylinder that is subject to a rotational and longitudi-
nal time dependent shear stresses and the outer cylinder also subject to a rotational and
longitudinal time dependent velocities along its axes when time t = 0+. The exact analyt-
ical solutions are obtained for the velocity field components w(r, t) , v(r, t) and the shear
stresses τw(r, t), τv(r, t) in series form and presented in term of convolution product of
Laplace transforms, satisfy all imposed initial and boundary conditions. The correspond-
ing solutions for, second grade, MHD Newtonian and Newtonian fluids in porous medium
are also obtained from general solutions for M → 0 and α→ 0. In the special case when
Φ→ 0, the general solution reduces to the solutions for second grade and Newtonian fluids
in the absence of porous medium. The following conclusions are extracted for this study:

The general solutions for velocities and shear stresses are written in simple forms in
term of convolution product of Laplace transforms.

In absolute sense velocity filed components are increasing functions of time. The
rotational velocity increases and longitudinal velocity decreases along radial direction.

The effects of material parameter α and kinematic viscosity ν are opposite on ve-
locity profiles. For instance rotational velocity is increasing and longitudinal velocity is
decreasing functions of α.

The increasing values of magnetic values enhance the velocity and shear stress quan-
tities.

The porosity parameter Φ have ignorable impact on the velocity profiles.
When both porous cylindrical helically moved, the MHD Newtonian fluid flows faster

than MHD second grade fluid.
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