Global Dynamics of an Hepatitis C Virus Mathematical Cellular Model with a Logistic Term
DOI:
https://doi.org/10.29020/nybg.ejpam.v12i3.3454Keywords:
HCV cellular model, local and global solution, invariant set, stability, basic reproduction ratio, lyapunov functionAbstract
In this paper, the aim is to analyze the global dynamics of Hepatitis C Virus (HCV) cellular mathematical model under therapy with uninfected hepatocytes proliferation. We prove that the solution of the model with positive initial values are global, positive and bounded. In addition, firstly we show that the model is locally asymptotically stable at free virus equilibrium and also at infected equilibrium. Secondly we show that the model is globally asymptotically stable at the free virus equilibrium by using an appropriate lyapunov function.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.