Twice Order Slip on the Flows of Fractionalized MHD Viscoelastic Fluid
DOI:
https://doi.org/10.29020/nybg.ejpam.v12i3.3455Keywords:
Twice order slip, MHD Maxwell fluid, fractional derivative, unsteady flow, M-function, velocity field, shear stress, Laplace transforms.Abstract
The objective of this article is to investigate the effect of twice order slip on the MHD flow of fractionalized Maxwell fluid through a permeable medium produced by oscillatory movement of an infinite bottom plate. The governing equations are developed by fractional calculus approach. The exact analytical results for velocity field and related shear stress are calculated using Laplace transforms and presented in terms of generalized M-function satisfying all imposed initial and boundary conditions. The flow results for fractionalized Maxwell, traditional Maxwell and Newtonian fluid with and without slips, in the presence and absence of magnetic and porous effects are derived as the limiting cases. The impact of fractional parameter, slip coefficients, magnetic force and porosity parameter over the velocity field and shear stress are discussed and analyzed through graphical illustrations. The outcomes demonstrate that the speed comparing to streams with slip condition is lower than that for stream with non-slip conditions, and the speed with second-slip condition is lower than that with first-order slip condition.Downloads
Published
2019-07-25
Issue
Section
Nonlinear Analysis
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Twice Order Slip on the Flows of Fractionalized MHD Viscoelastic Fluid. (2019). European Journal of Pure and Applied Mathematics, 12(3), 1018-1051. https://doi.org/10.29020/nybg.ejpam.v12i3.3455