Boundary Sentinel with Given Sensitivity in Population Dynamics Problem and Parameters Identification
DOI:
https://doi.org/10.29020/nybg.ejpam.v12i3.3479Keywords:
population dynamics, optimal control, controllability, sentinels, Carleman inequality.Abstract
The notion of sentinels with given sensitivity was introduced by J.L.Lions [11] in order to identify parameters in the problem of pollution ruled by a parabolic equation. He proves that the existence of such sentinels is reduced to the solution of exact controllability problem with constraints on the state. In population dynamics model, we reconsider this notion of sentinels in a more general framework. We prove the existence of the boundary sentinels by solving a boundary
null-controllability problem with constraint on the control. Our results use Carleman inequality which is adapted to the constraint.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.