On Semitotal Domination in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v12i4.3501Keywords:
semitotal dominating set, secure semitotal dominating set, semitotal domination number, secure semitotal domination numberAbstract
A set $S$ of vertices of a connected graph $G$ is a semitotal dominating set if every vertex in $V(G)\setminus S$ is adjacent to a vertex in $S$, and every vertex in $S$ is of distance at most $2$ from another vertex in $S$. A semitotal dominating set $S$ in $G$ is a secure semitotal dominating set if for every $v\in V(G)\setminus S$, there is a vertex $x\in S$ such that $x$ is adjacent to $v$ and that $\left(S\setminus\{x\}\right)\cup \{v\}$ is a semitotal dominating set in $G$. In this paper, we characterize the semitotal dominating sets and the secure semitotal dominating sets in the join, corona and lexicographic product of graphs and determine their corresponding semitotal domination and secure semitotal domination numbers.
Downloads
Published
License
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.