Neighborhood Connected k-Fair Domination Under Some Binary Operations
DOI:
https://doi.org/10.29020/nybg.ejpam.v12i3.3506Abstract
Let G=(V(G),E(G)) be a simple graph. A neighborhood connected k-fair dominating set (nckfd-set) is a dominating set S subset V(G) such that |N(u)Â intersection S|=k for every u is an element of V(G)\S and the induced subgraph of S is connected. In this paper, we introduce and invistigate the notion of neighborhood connected k-fair domination in graphs. We also characterize such dominating sets in the join, corona, lexicographic and cartesians products of graphs and determine the exact value or sharp bounds of their corresponding neighborhood connected k-fair domination number.Downloads
Published
2019-08-02
Issue
Section
Nonlinear Analysis
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Neighborhood Connected k-Fair Domination Under Some Binary Operations. (2019). European Journal of Pure and Applied Mathematics, 12(3), 1337-1349. https://doi.org/10.29020/nybg.ejpam.v12i3.3506