Neighborhood Connected k-Fair Domination Under Some Binary Operations
DOI:
https://doi.org/10.29020/nybg.ejpam.v12i3.3506Abstract
Let G=(V(G),E(G)) be a simple graph. A neighborhood connected k-fair dominating set (nckfd-set) is a dominating set S subset V(G) such that |N(u)Â intersection S|=k for every u is an element of V(G)\S and the induced subgraph of S is connected. In this paper, we introduce and invistigate the notion of neighborhood connected k-fair domination in graphs. We also characterize such dominating sets in the join, corona, lexicographic and cartesians products of graphs and determine the exact value or sharp bounds of their corresponding neighborhood connected k-fair domination number.Downloads
Published
2019-08-02
How to Cite
Bent-Usman, W. M., Isla, R., & Canoy, S. (2019). Neighborhood Connected k-Fair Domination Under Some Binary Operations. European Journal of Pure and Applied Mathematics, 12(3), 1337–1349. https://doi.org/10.29020/nybg.ejpam.v12i3.3506
Issue
Section
Nonlinear Analysis
License
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.