EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 4, 2019, 1441-1454
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

The Smoothness of Schrödinger Operator With Electromagnetic Potential

Yahea Hashem Saleem ${ }^{1}$, Hadeel Ali Shubber ${ }^{1,2, *}$
${ }^{1}$ Department of Mathematics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq
${ }^{2}$ Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract. In this paper, we prove that the Feynman-Kac Itô formula of the Schrödinger operator with electromagnetic $\Psi(t, x)$ in equation (1) in [8] which defined as

$$
\Psi(t, x)=\int d \mu_{x}^{t}(\omega) \exp \left(-i \int_{0}^{t} b(\omega(s)) d \omega-\frac{i}{2} \int_{0}^{t} d i v b \omega(s) d s-\int_{0}^{t} V(\omega(s) d s) \varphi(\omega(t))\right.
$$

is differentiable of the variable t, and so establish that the infinitely differentiable in a region, therefore, investigate smoothness of this function.
2010 Mathematics Subject Classifications: 35J10, 35B65
Key Words and Phrases: Schrödinger operator, electric potential, magnetic potential, smoothness.

1. Introduction

The problem of the self-adjoint operator is central in the quantum machine (the Diracvon Neumann formulation of quantum mechanics, in which physical observables such as position, momentum, angular momentum).

Kato [5] who showed on the basis of his elegant inequality that, if $V(x) \geq 0$ and $V \in L_{l o c}^{2}$, then the Schrödinger operator is essentially self-adjoint on the set of infinitely differentiable finite functions. Nextly, Gaysinsky, Goldstein [4] they proved smoothness of the Schrödinger operator which is one important step to prove self-adjointness must be smoothness. After that, Adam Ward [1] investigated the essential self-adjointness of Schrödinger operator.

Many researchers studied self-adjoint operator were done, for example [2], [6], [7], [9].

[^0]Email addresses: yahea_h@mail.ru (Y. H. Saleem), hadeelali2007@yahoo.com (H. A. Shubber)

We consider the Schrödinger operator with electromagnetic potentials

$$
H=\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}+V(x),
$$

in $L^{2}\left(R^{n}\right)$ where, $b_{j}(X), j=1,2, \ldots, n$ and $V(x)$ are real-valued functions on $R^{n}, V \in$ $L_{l o c}^{1}\left(R^{n}\right), b \in C^{2}\left(R^{n}\right), \partial_{j}=\frac{\partial}{\partial x_{j}}$ and $i=\sqrt{-1}$.

We proved in [8] the Feynman-Kac Itô formula of the electromagnetic Schrödinger operator $\Psi(t, x)$ which define as the equation (1) in [8]

$$
\Psi(t, x)=\int d \mu_{x}^{t}(\omega) \exp \left(-i \int_{0}^{t} b(\omega(s)) d \omega-\frac{i}{2} \int_{0}^{t} d i v b \omega(s) d s-\int_{0}^{t} V(\omega(s) d s) \varphi(\omega(t))\right.
$$

converges and is an analytic function of the variable t.
In this work, we prove that the Feynman-Kac Itô formula of the Schrödinger operator with electromagnetic potentials $\Psi(t, x)$ in equation (1) in [8] is differentiable of the variable t, and we have $\frac{\partial}{\partial t} \Psi(t, x)=-\left\langle e^{-t H}, H h\right\rangle$. Then, we discuss the infinite differentiability of the function $\Psi(t, x)$ in $R^{n} \backslash A$ where the potential $V=+\infty$ on a set A. Finally, we investigate the smoothness of this function $\Psi(t, x)$.

2. Statement of the problem and the main result

In [8] we proved that $\Psi(t, x)$ converges and has an analytic extension for a variable t. Now, we prove that the smoothness to achieve this goal, we will follow the steps below.

Proposition 2.1. If $H=\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}+V(x)$ is the Schrödinger operator defined on the interval $[\alpha, \beta]^{n}$ with zero boundary conditions $(V(x)$ is a continuous function defined on $\left.[\alpha, \beta]^{n}\right), \phi, h \in C_{0}^{\infty}$, then $<e^{-t H} \phi, h>$ is a differentiable.

$$
\begin{equation*}
\frac{\partial}{\partial t}<e^{-t H} \varphi, h>=-<e^{-t H} \varphi, H h>. \tag{2.1}
\end{equation*}
$$

Proof. Let $F(t, V)$ be the analytic extension defined in [8] as

$$
\begin{equation*}
F(t, V)=\int_{R^{n}} \Psi(t, x) h(x) d x \tag{2.2}
\end{equation*}
$$

and let

$$
\begin{equation*}
F_{\alpha, \beta}(t, V)=\int_{R^{n}} \Psi_{\alpha, \beta}(t, x) h(x) d x \tag{2.3}
\end{equation*}
$$

be the same as in [8], where

$$
\begin{equation*}
\Psi_{\alpha, \beta}(t, x)=\int d y \exp \left(-t H_{\alpha, \beta}\right)\langle x, y\rangle, \tag{2.4}
\end{equation*}
$$

we define the operator H on the interval $[\alpha, \beta]^{n}$ which denoted by $H_{\alpha, \beta}$ we have

$$
\lim _{\substack{\alpha_{n} \rightarrow-\infty \\ \beta_{n} \rightarrow+\infty}}\left\|F_{\alpha_{n}, \beta_{n}}(t, V)-F(t, V)\right\|=0,
$$

uniformly by $t \in G$, where G is compact subdomain of $\left\{t=\tau+i \theta, \tau \geq \tau_{0}>0\right\}$. By the Weierstrass theorem

$$
\lim _{\substack{\alpha_{n} \rightarrow-\infty \\ \beta_{n} \rightarrow+\infty}}\left\|\frac{\partial F_{\alpha_{n}, \beta_{n}}}{\partial t}-\frac{\partial F}{\partial t}\right\|_{L^{2}\left(R^{n}, d V\right)}=0 .
$$

Let $H_{\alpha, \beta}$ as above then by equations (2.3), (2.4), we have

$$
\left\langle e^{-t H_{\alpha, \beta}} \varphi, h\right\rangle=F_{\alpha, \beta}(t, V) .
$$

Therefore,

$$
\begin{equation*}
\frac{\partial F_{\alpha, \beta}(t, V)}{\partial t}=-\int \Psi_{\alpha, \beta}(t, x) H_{\alpha, \beta} h(x) d x, \tag{2.5}
\end{equation*}
$$

provided supp φ, supph $\subset(\alpha, \beta)^{n}, h(x) \equiv 0$ in the neighborhood of the center $x=0$. Since $H_{\alpha, \beta} h=H h$, then the right side of (2.5) represents a value of form $F_{\alpha, \beta}(t, V)$, but only for function

$$
H h=\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} h+V(x) h .
$$

According to the estimates for such functions, we may pass to the limit as $\alpha \rightarrow-\infty, \beta \rightarrow$ $+\infty$.

We observe that we can determine the functions $\Psi(t, x)$ if the potentials V, b are equal to $+\infty$ on a set A that might have a positive measure

$$
\mu\{s: V(\omega(s))=+\infty, b(\omega(s))=+\infty\}>0,
$$

we set
$\exp \left(-\int_{0}^{t} V(\omega(s)) d s\right)=0, \exp \left(-\int_{0}^{t}-i b(\omega(s)) d s\right)=0, \exp \left(-\int_{0}^{t} \frac{-i}{2} \operatorname{divb}(\omega(s)) d s\right)=0$.
Then the function $\Psi(t, x)$ satisfies the equation

$$
\frac{\partial}{\partial t} \Psi(t, x) \varphi=\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} \Psi(t, x) \varphi+V(x) \Psi(t, x) \varphi .
$$

Since $\Psi(t, x)$ is analytical with respect to tha variable t, we prove that $\Psi(t, x)$ is a smooth function for almost every V, b where $x \in R^{n} \backslash A$.

Proposition 2.2. Let $V \in L^{2}\left(R^{n} \backslash A\right), \varphi, h \in C_{0}^{\infty}$ where A is closed set, $V(x)=+\infty, b_{j}(x)=$ $+\infty, x \in A$ such that supp $\varphi A=\emptyset$. Then $\Psi(t, x)$ is an infinitely differentiable function of the variable x for almost every V, b for Ret $\geq \tau_{0}>0$.

Proof. From equation (2.5) and definition of $F(t, V)$ in equation (2.1)

$$
\begin{equation*}
\frac{\partial}{\partial t} \int E(\Psi(t, x)) h(x)=-\int E(\Psi(t, x))\left[\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2} h(x)+V(x) h(x)\right] d x . \tag{2.6}
\end{equation*}
$$

Let $\theta(V) \in L^{2}\left(R^{n}, d v\right)$, we put

$$
f(t)=\int_{R^{n}} E(\Psi(t, x) \theta(V)) h(x) d x=E(F(t, V) \theta(V)) .
$$

depending on above that $f(t)$ is an analytic function and

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =E\left(\frac{\partial F(t, x)}{\partial t} \theta(V)\right) \\
& =-\int_{R^{n}} E\left\{\Psi(t, x)\left[\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2} h(x)+V(x) h(x)\right] \theta(V)\right\} d x \\
& =-\int_{R^{n}} E\left(\Psi(t, x) \theta(V) \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2}\right) h(x) d x-\int_{R^{n}} E(\Psi(t, x) V(x) \theta(V)) h(x) d x .
\end{aligned}
$$

On the other hand, $f(t)=\int_{R^{n}} f(t, x) h(x) d x$, where $f(t, x)=E(\Psi(t, x) \theta(V))$.
We have

$$
\begin{aligned}
|f(t, x)|^{2} & \leq E\left(\Psi(t, x)^{2}\right) E\left(\theta(V)^{2}\right) \\
& =\|\theta\|_{L^{2}\left(R^{n}, d V\right)}^{2} \times E\left(\Psi(t, x)^{2}\right) .
\end{aligned}
$$

Therefore,

$$
\int_{R^{n}} f(t, x)^{2} d x \leq \text { const }\|\theta\|_{L^{2}(d V)}^{2}
$$

i.e. $f(t, x) \in L^{2}\left(R^{n}, d V\right)$. Further,

$$
\begin{aligned}
\left|\int_{R^{n}} E(\Psi(t, x) V(x) \theta(V))\right| h(x) d x & \leq\left(\int_{R^{n}} h(x)^{2} d x\right)^{\frac{1}{2}}\left(\int_{R^{n}} E(\Psi(t, x) V(x) \theta(V))^{2} d x\right)^{\frac{1}{2}} \\
& \leq\|h\|_{L^{2}\left(R^{n}, d x\right)}\left(\int_{R^{n}} E\left(\Psi^{2}(t, x) V^{2}(x)\right) E\left(\theta^{2}(V(x))\right) d x\right)^{\frac{1}{2}} \\
& \leq\|h\|_{L^{2}\left(R^{n}, d x\right)}\|\theta\|_{L^{2}\left(R^{n}, d V\right)}\left(\int_{R^{n}} E\left(\Psi^{2}(t, x) V^{2}(x)\right) d x\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\leq \text { const }\|h\|_{L^{2}\left(R^{n}, d x\right)}\|\theta\|_{L^{2}\left(R^{n}, d V\right)},
$$

where we have used the estimates

$$
\begin{equation*}
\int_{R^{n}} E\left(\Psi(t, x)^{2}|V|^{m}\right) d x \leq \text { const }, \tag{2.7}
\end{equation*}
$$

where $m=1,2, \ldots$ and the constant depends on m. We estimate the value $\frac{\partial f}{\partial t}$ with the help Cauchy Schwartz inequality for drivatives of analytic function:

$$
\left|\frac{\partial f}{\partial t}\right| \leq \text { const. } \max _{|z-t|}|f(z)| .
$$

Further,

$$
\begin{aligned}
|f(z)| & =|E(F(z, V) \theta(V))| \\
& \leq\|\theta\|_{L^{2}\left(R^{n}, d V\right)} E\left(|F(z, V)|^{2}\right)^{\frac{1}{2}} \\
& \leq \text { const }\|\theta\|_{L^{2}\left(R^{n}, d V\right)}\|h\|_{L^{2}\left(R^{n}, d x\right)} .
\end{aligned}
$$

Thus,

$$
\left|\int_{R^{n}} f(t, x) \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} h(x) d x\right| \leq \text { const }\|\theta\|_{L^{2}\left(R^{n}, d V\right)}\|h\|_{L^{2}\left(R^{n}, d x\right)} .
$$

One may check in just same way that if $h_{1}(x), \ldots, h_{p}(x), \theta_{1}(V), \ldots, \theta_{p}(V)$ and constats $C_{k, l}, k, l=1, \ldots, p$ are given, then

$$
\left|E\left(\int_{R^{n}} \Psi(t, x) \sum_{k, l=1}^{p} C_{k, l} \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} h_{k}(x) \theta_{l}(V) d x\right)\right| \leq \text { const }\left\|\sum_{k, l=1}^{p} C_{k, l} h_{k}(x) \theta_{l}(V)\right\|_{L^{2}\left(R^{n}, d x, d V\right)},
$$

the left side equal to

$$
\left|E\left(\int_{R^{n}} \Psi(t, x) \sum_{k, l=1}^{p} C_{k, l} \sum_{j=1}^{n} \frac{1}{2}\left(\partial_{j}^{2}+i \partial_{j} b_{j}(x)+i b_{j}(x) \partial_{j}+b_{j}^{2}(x)\right) h_{k}(x) \theta_{l}(V) d x\right)\right|,
$$

we pass at the left side to Fourier transformation by the variable x.
We get the following expression:-

$$
\left|E\left(\int_{R^{n}} \hat{\Psi}(t, q) \sum_{k, l=1}^{p} C_{k, l} \sum_{j=1}^{n} \frac{1}{2}\left(\partial_{j}^{2}+i \partial_{j} \hat{b_{j}}(q)+i \hat{b_{j}}(q) \partial_{j}+{\hat{b_{j}}}^{2}(q)\right) \hat{h_{k}}(q) \theta_{l}(V) d q\right)\right|,
$$

which equal to

$$
\left|E\left(\int_{R^{n}} \hat{\Psi}(t, q) \sum_{k, l=1}^{p} C_{k, l}\left(\sum_{j=1}^{n} \frac{-1}{2}|q|^{2}+\sum_{j=1}^{n} \frac{i}{2} \partial_{j} \hat{b}_{j}(q)+\sum_{j=1}^{n} \frac{i}{2} \hat{b_{j}}(q)|-q i|+\sum_{j=1}^{n} \frac{1}{2}{\hat{b_{j}}}^{2}(q)\right) \hat{h_{k}}(q) \theta_{l}(V) d q\right)\right|
$$

$$
\begin{aligned}
& =\left\langle\hat{\Psi}(t, q), \sum_{k, l=1}^{p} C_{k, l}\left(\sum_{j=1}^{n} \frac{-1}{2}|q|^{2}+\sum_{j=1}^{n} \frac{i}{2} \partial_{j} \hat{b_{j}}(q)+\sum_{j=1}^{n} \frac{i}{2} \hat{b}_{j}(q)|-q i|+\sum_{j=1}^{n} \frac{1}{2}{\hat{b_{j}}}^{2}(q)\right) \hat{h_{k}}(q) \theta_{l}(V)\right\rangle_{L^{2}\left(R^{n}, d q, d V\right)} \\
& =\left\langle\hat{\Psi}(t, q), \sum_{k, l=1}^{p} C_{k, l}\left(\frac{-n}{2}|q|^{2}+\sum_{j=1}^{n} \frac{i}{2} \partial_{j} \hat{b_{j}}(q)+\sum_{j=1}^{n} \frac{i}{2} \hat{b_{j}}(q)|q|+\sum_{j=1}^{n} \frac{1}{2} \hat{b}_{j}^{2}(q)\right) \hat{h_{k}}(q) \theta_{l}(V)\right\rangle_{L^{2}\left(R^{n}, d q, d V\right)} \\
& =\left\langle\hat{\Psi}(t, q)\left(\frac{-n}{2}|q|^{2}+\sum_{j=1}^{n} \frac{i}{2} \partial_{j} \hat{b_{j}}(q)+\sum_{j=1}^{n} \frac{i}{2} \hat{b_{j}}(q)|q|+\sum_{j=1}^{n} \frac{1}{2} \hat{b}_{j}^{2}(q)\right), \sum_{k, l=1}^{p} C_{k, l} \hat{h_{k}}(q) \theta_{l}(V)\right\rangle_{L^{2}\left(R^{n}, d q, d V\right)}
\end{aligned}
$$

The right side after the passage to the Fourier transform gains the form

$$
\left\|\sum_{k, l=1}^{p} C_{k, l} \hat{h_{k}}(q) \theta_{l}(V)\right\|_{L^{2}\left(R^{n}, d q, d V\right)}
$$

From this we get

$$
\begin{equation*}
\left\|\left(\frac{-n}{2}|q|^{2}+\sum_{j=1}^{n} \frac{i}{2} \partial_{j} \hat{b_{j}}(q)+\sum_{j=1}^{n} \frac{i}{2} \hat{b}_{j}(q)|q|+\sum_{j=1}^{n} \frac{1}{2} \hat{b}_{j}^{2}(q)\right) \hat{\Psi}(t, q)\right\|_{L^{2}\left(R^{n}, d q, d V\right)} \leq \text { const. } \tag{2.8}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\int_{R^{n}}\left(\frac{-n}{2}|q|^{2}+\sum_{j=1}^{n} \frac{i}{2} \partial_{j} \hat{b}_{j}(q)+\sum_{j=1}^{n} \frac{i}{2} \hat{b}_{j}(q)|q|+\sum_{j=1}^{n} \frac{1}{2} \hat{b}_{j}^{2}(q)\right)^{2}|\hat{\Psi}(t, q)|^{2} d q<+\infty, \tag{2.9}
\end{equation*}
$$

for almost every V and b, i.e. $\Psi(t, x) \in W_{1}$ for almost every V and b. Besides, $\|\Psi\|_{W_{1}}^{2}$ is an integrable function of V.

Further, in just the same way as it was as done while deducing (2.6) one can show that

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} \int E(\Psi(t, x)) h(x) d x & =\int E(\Psi(t, x))\left[\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}+V(x)\right)^{2} h(x)\right] d x . \\
\frac{\partial^{2}}{\partial t^{2}} \int E(\Psi(t, x)) h(x) d x & =\int E(\Psi(t, x))\left[\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}\right)^{2} h(x)+\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} V(x) h(x)\right. \\
& \left.+V(x) \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} h(x)+V^{2}(x) h(x)\right] d x .
\end{aligned}
$$

Let us multiply the above equation by $\theta(V)$ and integrate over $d V$, extract the expression containing $\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}\right)^{2} h(x)$ and estimate the other terms in this equation.

The term

$$
\frac{\partial^{2}}{\partial t^{2}} \int E(\Psi(t, x)) h(x) \theta(V) d x
$$

is estimated in just the same way as in the case of the first derivative, i.e. with the help of the Cauchy integral formula.

The term

$$
\int E\left(\Psi(t, x) h(x) V^{2}(x)\right) d x
$$

admits application of the estimates see equation (2.7). Let us write

$$
\begin{aligned}
& \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} V(x) h(x)+V(x) \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} h(x) \\
& =\sum_{j=1}^{n}-\frac{1}{2} \partial_{j}^{2}(V(x) h(x))+\sum_{j=1}^{n} \frac{i}{2} \partial_{j} b_{j}(x)(V(x) h(x))+\sum_{j=1}^{n} \frac{i}{2} b_{j}(x) \partial_{j}(V(x) h(x))+\sum_{j=1}^{n} \frac{1}{2} b_{j}^{2}(x)(V(x) h(x)) \\
& +V(x) \sum_{j=1}^{n}-\frac{1}{2} \partial_{j}^{2}(h(x))+V(x) \sum_{j=1}^{n} \frac{i}{2} \partial_{j} b_{j}(x)(h(x))+V(x) \sum_{j=1}^{n} \frac{i}{2} b_{j}(x) \partial_{j}(h(x))+V(x) \sum_{j=1}^{n} \frac{1}{2} b_{j}^{2}(x)(h(x)) \\
& \left.=\sum_{j=1}^{n}-\frac{1}{2} \partial_{j}^{2}(V(x)) h(x)+\sum_{j=1}^{n}-\frac{1}{2} V(x) \partial_{j}^{2}(h(x))+2 \sum_{j=1}^{n}\left(-\frac{1}{2} \partial_{(j)}(V(x))\right)\left(-\frac{1}{2} \partial_{(} j\right)(h(x))\right) \\
& +\sum_{j=1}^{n} \frac{i}{2} \partial_{j} b_{j}(x)(V(x) h(x))+\sum_{j=1}^{n} \frac{i}{2} b_{j}(x) \partial_{j}(V(x)) h(x)+\sum_{j=1}^{n} \frac{i}{2} b_{j}(x) V(x) \partial_{j}(h(x))+\sum_{j=1}^{n} \frac{1}{2} b_{j}^{2}(x)(V(x) h(x)) \\
& +V(x) \sum_{j=1}^{n}-\frac{1}{2} \partial_{j}^{2}(h(x))+V(x) \sum_{j=1}^{n} \frac{i}{2} \partial_{j} b_{j}(x)(h(x))+V(x) \sum_{j=1}^{n} \frac{i}{2} b_{j}(x) \partial_{j}(h(x))+V(x) \sum_{j=1}^{n} \frac{1}{2} b_{j}^{2}(x)(h(x)) \\
& \left.=\sum_{j=1}^{n}-\frac{1}{2} \partial_{j}^{2}(V(x)) h(x)+\sum_{j=1}^{n}-V(x) \partial_{j}^{2}(h(x))+2 \sum_{j=1}^{n}\left(-\frac{1}{2} \partial_{(j)}\right)(V(x))\right)\left(-\frac{1}{2} \partial_{(j)}(h(x))\right) \\
& +\sum_{j=1}^{n} i \partial_{j} b_{j}(x)(V(x) h(x))+\sum_{j=1}^{n} \frac{i}{2} b_{j}(x) \partial_{j}(V(x)) h(x)+\sum_{j=1}^{n} i b_{j}(x) V(x) \partial_{j}(h(x))+\sum_{j=1}^{n} b_{j}^{2}(x)(V(x) h(x)) .
\end{aligned}
$$

According to the definition of the potential $V(x)$,

$$
\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} V(x)=\xi_{j-1, m} \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} V_{j-1, m}\left(x-\left(a_{j-1, m 1}, a_{j-1, m 2}, \ldots, a_{j-1, m n}\right)\right)
$$

$$
+\xi_{j, m} \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} V_{j, m}\left(x-\left(a_{j, m 1}, a_{j, m 2}, \ldots, a_{j, m n}\right)\right)
$$

for $x \in \prod_{d=1}^{n}\left[a_{j, m d}, a_{j-1, m d}\right)$ hence the term

$$
\int E\left(\Psi(t, x) \theta(V) h(x) \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} V(x)\right) d x
$$

also admits application of the estimates see equation (2.7). Let us pass in the expression

$$
\begin{aligned}
& \int E\left(\Psi(t, x) V(x) \theta(V) \sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} h(x)\right) d x \\
& E\left(\Psi(t, x) \sum_{j=1}^{n}-\frac{1}{2} \partial_{j}(V(x)) \theta(V) \sum_{j=1}^{n}-\frac{1}{2} \partial_{j}(h(x))\right) d x
\end{aligned}
$$

to the Fourier transform over the variable x. Consider, for example, the second one. It will have the following form:-
$E\left(\int_{R^{n}} \hat{\Psi}(t, q) \hat{h}(q) \hat{V}(q)\left(\sum_{j=1}^{n} \frac{-1}{2}|q|^{2}+\frac{1}{2} \sum_{j=1}^{n} i \partial_{j} \hat{b}_{j}(q)+\frac{1}{2} \sum_{j=1}^{n} i \hat{b}_{j}(q)|-i q|+\frac{1}{2} \sum_{j=1}^{n} \hat{b}_{j}^{2}(q)\right) d q \theta(V)\right)$
and its absolute value is less or equal to the expression
const $\left[E\left(\int_{R^{n}}|\hat{\Psi}(t, q)|^{2}\right) \times\left(\sum_{j=1}^{n} \frac{-1}{2}|q|^{2}+\frac{1}{2} \sum_{j=1}^{n} i \partial_{j} \hat{b}_{j}(q)+\frac{1}{2} \sum_{j=1}^{n} i \hat{b}_{j}(q)|-i q|+\frac{1}{2} \sum_{j=1}^{n} \hat{b}_{j}^{2}(q)\right)^{2} d q\right]$

$$
\|\hat{h}(q)\|_{L^{2}(d x)}\|\theta(V)\|_{L^{2}(d V)}
$$

Now we get from the above estimate,

$$
\int_{R^{n}} E\left(\Psi(t, x)\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}\right)^{2} h(x) \theta(V)\right) d x \leq \text { const }\|h\|_{L^{2}\left(R^{n}, d x\right)}\|\theta\|_{L^{2}\left(R^{n}, d V\right)} .
$$

We apply also calculations to a random variable of the form $\sum_{k, l=1}^{p} C_{k, l} h_{k}(x) \theta_{l}(V)$.
We get the estimate of the form (2.7) where $\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} h_{k}(x)$ is replaced by $\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}\right)^{2} h_{k}(x)$. From this, we get the estimates (2.8) and (2.9) where q is replaced by q^{2}. Thus $\Psi(t, x) \in W_{2}$ for almost every V, b. Besides, $\|\Psi\|_{W_{2}}^{2}$ is an integrable function of V.

We can continue this arguments. As a result, we get that $\Psi(t, x) \in W_{m}$ for all $m=$ $1,2, \ldots$, and for almost every V and $\|\Psi\|_{W_{m}}^{2}$ is an integrable function of V. Therefore, $\Psi(t, x)$ is an infinitely differentiable function of the variable x for almost every V. In addition, the function Ψ satisfies, in the classical sense, the following differential equation

$$
\frac{\partial \Psi}{\partial t}=\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} \Psi(t, x)-V(x) \Psi(t, x)
$$

for almost every V.
Let us consider an initial condition which is satisfied by the function Ψ. Since $\Psi(t, x)$ is defined for $t>0$, we have to find $\lim _{t \rightarrow 0} \Psi(t, x)$. We record
$\Psi(t, x)=\int_{R^{n}} d y\left(\int d \mu_{x}^{t}(\omega) \exp \left(-i \int_{0}^{t} b(\omega(s)) d \omega-\frac{i}{2} \int_{0}^{t} d i v b(\omega(s)) d s-\int_{0}^{t} V(\omega(s)) d s\right)\right) \varphi(y)$,
where the integral converges for almost every V, b, x.

$$
\begin{aligned}
& \int_{R^{n}} E(\Psi(t, x)-\varphi(x))^{2} d x=\int_{R^{n}} d x E\left(\int _ { R ^ { n } } d y \left(\int d \mu _ { x } ^ { t } (\omega) \operatorname { e x p } \left(-i \int_{0}^{t} b(\omega(s)) d \omega-\frac{i}{2} \int_{0}^{t} d i v b(\omega(s)) d s-\right.\right.\right. \\
& \left.\left.\left.\int_{0}^{t} V(\omega(s)) d s\right)\right) \phi(\omega(t))-\int p(x, y, t) \varphi(x) d y\right)^{2} \\
& \left.=\int_{R^{n}} d x \int_{R^{n}} \int_{R^{n}} d y d z \iint d \mu_{x, y}^{t}(\omega) d \mu_{x, z}^{t}(\eta)\right) E\left(\operatorname { e x p } \left(-i \int_{0}^{t} b(\omega(s)) d \omega-\frac{i}{2} \int_{0}^{t} d i v b(\omega(s)) d s-\right.\right. \\
& \left.\left.\int_{0}^{t} V(\omega(s)) d s\right)\right) \varphi(y)-\varphi(x)\left(\exp \left(-i \int_{0}^{t} b(\eta(s)) d \eta-\frac{i}{2} \int_{0}^{t} d i v b(\eta(s)) d s-\int_{0}^{t} V(\eta(s)) d s\right) \varphi(z)-\varphi(x)\right),
\end{aligned}
$$

Now

$$
\begin{gather*}
\exp \left(-i \int_{0}^{t} b(\gamma(s)) d \gamma-\frac{i}{2} \int_{0}^{t} \operatorname{divb}(\gamma(s)) d s-\int_{0}^{t} V(\gamma(s)) d s\right) \\
=1-\int_{0}^{1}\left(-i \int_{0}^{t} b(\gamma(s)) d \gamma-\frac{i}{2} \int_{0}^{t} \operatorname{div} b(\gamma(s)) d s-\int_{0}^{t} V(\gamma(s)) d s\right) \\
. \exp \alpha\left(-i \int_{0}^{t} b(\gamma(s)) d \gamma-\frac{i}{2} \int_{0}^{t} \operatorname{divb}(\gamma(s)) d s-\int_{0}^{t} V(\gamma(s)) d s\right) d \alpha \tag{2.10}
\end{gather*}
$$

We get from (2.10) and from the estimates in (proposition 2.1 in [8]).

$$
\left\lvert\, E\left[\int d y \int d \mu_{x, y}^{t}(\omega)\left[\exp \left(-i \int_{0}^{t} b(\omega(s)) d \omega-\frac{i}{2} \int_{0}^{t} d i v b(\omega(s)) d s-\int_{0}^{t} V(\omega(s)) d s\right)(\varphi(y)-\varphi(x))\right]\right.\right.
$$

$$
\begin{gathered}
.\left[\left.\int d z \int d \mu_{x, z}^{t}(\omega)\left[\exp \left(-i \int_{0}^{t} b(\omega(s)) d \omega-\frac{i}{2} \int_{0}^{t} d i v b(\omega(s)) d s-\int_{0}^{t} V(\omega(s)) d s\right)(\varphi(z)-\varphi(x))\right] \right\rvert\,\right. \\
\leq\left(\int p(x, y, t) \varphi(y) d y-\varphi(x)\right)\left(\int p(x, z, t) \varphi(z) d z-\varphi(x)\right)+\text { const }\left|\int p(x, y, t) \varphi(y) d y-\varphi(x)\right| t \\
+ \text { const }\left|\left(\int p(x, z, t) \varphi(z) d z-\varphi(x)\right)\right| t+\text { const. } t^{2}
\end{gathered}
$$

since $\varphi(x) \in C_{0}^{\infty}$, we have

$$
\int_{R^{n}} E(\Psi(t, x)-\varphi(x))^{2} d x \rightarrow 0 .
$$

Thus $\Psi(t, x)$ satisfies the equation $\frac{\partial \Psi}{\partial t}=\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2} \Psi(t, x)-V(x) \Psi(t, x)$ with the initial condition $\Psi(t, x) \rightarrow \varphi(x)$ in $L^{2}\left(R^{n}, d x, d V\right)$ as $t \rightarrow 0$. Repeating the same estimates, we can show that $\tilde{\Psi}_{1}(t, x) \rightarrow H \varphi(x)$ in $L^{2}\left(R^{n}, d x, d V\right)$ as $t \rightarrow 0$ where $\tilde{\Psi}$ corresponds $H \varphi(x)$, and also $\tilde{\Psi}_{m}(t, x) \rightarrow H^{m} \varphi(x)$ in $L^{2}\left(R^{n}, d x, d V\right)$ as $t \rightarrow 0$ where $\tilde{\Psi}$ corresponds $H^{m} \varphi(x)$.

First, we note that since the function $\Psi(t, x)$ satisfies the estimates equation (2.7) and, by lemma (3.1) in [8], may be analytically extended into the mentioned band, then we can repeat literally all the arguments of this section for $x \in R^{n} \backslash A$ and show that the function $\Psi(t, x)$ is infinitely differentiable if $x \in R^{n} \backslash A$.

We now consider the case $x \in A$. We assume, that the function $V(x)$ in a neighborhood of $x \in A$ satisfies the following requirements considered in the work of M.D. Gaysinsky (see[3],p.23):
(I) There exists $\epsilon>0, \delta>0, k, N$ are some constant such that $0<V(x)-d(x, A)^{-2-\epsilon}<$ $k d(x, A)^{-N}$, if $0<d(x, A)<\delta$; where $x \in R^{n} \backslash A, d(x, A)$ is the distance between x and closed set A.
(II) For each $\alpha=\left(\alpha_{1}, \alpha_{2},, \alpha_{n}\right)$ there exists $\delta_{\alpha}>0$ such that $\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}} V(x)\right|=O\left(d(x, A)^{-k_{\alpha}}\right.$, if $0<d(x, A)<\delta_{\alpha}$ where k_{α} are some constants.

We will show now that, in this case, $\Psi(t, x)$ is infinitely differentiable at zero for almost every V, b, and also estimate the derivations of $\Psi(t, x)$ in a neighborhood of $x \in A$ if the support of the function $\varphi(x)$ is disjoint with the closed set A. First, we show that $\Psi(t, x)$ fast decreases as x approach to the set A.

Proposition 2.3. Let $V \in L^{2}\left(R^{n} \backslash A\right), \varphi, h \in C_{0}^{\infty}$ where A is closed set, $V(x)=+\infty, b_{j}(x)=$ $+\infty$, if $x \in A, 0<V(x)-d(x, A)^{-2-\epsilon}<K d(x, A)^{-N}$, if $0<d(x, A)<\delta$; where $x \in R^{n} \backslash A$, $d(x, A)$ is the distance between x and closed set $A, \epsilon>0, \delta>0, k, N$ are some constant, and let for each $\alpha=\left(\alpha_{1}, \alpha_{2},, \alpha_{n}\right)$ there exists $\delta_{\alpha}>0$ such that
$\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}} V(x)\right|=O\left(d(x, A)^{-k_{\alpha}}\right.$, if $0<d(x, A)<\delta_{\alpha}$ where k_{α} are some constants. Let $\varphi \in C_{0}^{\infty}$ such that supp $\varphi \cap A=\emptyset$. Then $\Psi(t, x)$ is an infinitely differentable function.

Proof. Following the works of M.D. Gaysinsky [3], we will say that a random variable $\tilde{V}(x)$ has A-property if

$$
E\left|\frac{\partial^{m}}{\partial x^{m}} \tilde{V}(x)\right|^{r} \leq O\left(d(x, A)^{-k_{m, r}}\right.
$$

for $d(x, A)<\delta_{m, r}$ where $\delta_{m, r}, k_{m, r}>0$ are constant, $m=1,2, \ldots$

$$
E\left|\frac{\partial^{m}}{\partial x^{m}} \tilde{V}(x)\right|^{r} \leq \exp \left(C_{m, r} x^{2}\right)
$$

where $C_{m, r}>0$ is some constant, $m=0,1,2, \ldots$.
It is evident that the derivations of a function $(\tilde{V}(x))$, having the A-property, also have the A-property; the product of functions, having the A-property, also has the A-property. We prove, by induction, that for any random function \tilde{V} with A-property of the function $\tilde{V} \Psi(t, x)$ belongs to the Sobolev space $W_{m}, m=0,1,2, \ldots$, for almost every V, b. Consider a sequence of smooth function $\lambda_{\nu}(x)$ such that
(a) $\lambda_{\nu}(x)=0$ if $d(x, A)<\frac{1}{\nu}$ or $d(x, A)>\nu$
(b) $\lambda_{\nu}(x)=1$ if $\frac{2}{\nu}<d(x, A)<\nu-1$
(c) $\max _{|\alpha| \leq 2}\left|\frac{\partial^{\alpha}}{\partial x^{\alpha}} \lambda_{\nu}(x)\right| \leq M \nu^{s}$, where M, s are constant.

Let $M=0$. We record

$$
\begin{equation*}
E|\Psi(t, x) \tilde{V}(x)|^{2} \leq\left(E(\Psi(t, x))^{4}\right)^{\frac{1}{2}}\left(E(\tilde{V}(x))^{4}\right)^{\frac{1}{2}} \leq \tilde{\beta}_{0} \tag{2.11}
\end{equation*}
$$

where $\tilde{\beta}_{0}$ is some constant.
Now, it follows from (2.11) and corollary(2.2)in [8] that

$$
E\left(\int_{R^{n}}|\Psi(t, x) \tilde{V}(x)|^{2}\right) d x \leq \beta_{0}
$$

where β_{0} is a constant. We can write for any $h(x), \theta(V)$

$$
\begin{gathered}
E\left(\int \tilde{V}(x) \Psi(t, x)\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2}\right) h(x) \theta(V)\right) d x \\
=\lim _{\nu \rightarrow \infty}\left(\int \tilde{V}(x) \Psi(t, x)\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2}\right) \lambda_{\nu} h(x) \theta(V)\right) d x \\
=\lim _{\nu \rightarrow \infty}\left(\int \tilde{V}(x) \Psi(t, x)\left[\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2}\right)\left(\tilde{V} \lambda_{\nu} h(x)\right)+V \tilde{V} \lambda_{\nu} h(x)\right]-V \tilde{V} \Psi(t, x) \lambda_{\nu} h(x)\right.
\end{gathered}
$$

$-\Psi(t, x) \lambda_{\nu} h(x)\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2}\right) \tilde{V}-2 \Psi(t, x)\left(\sum_{j=1}^{n}-\frac{1}{2} \partial_{j}(\tilde{V})\right)\left(\sum_{j=1}^{n}-\frac{1}{2} \partial_{j}\left(\lambda_{\nu} h\right)\right) \theta(V) d x$.
Since the support of the functions $\tilde{h}(x)=\tilde{V}(x) \lambda_{\nu} h(x)$ is disjoint with the neighborhood of the point $x \in A$, we can repeat literally for $\tilde{h}(x) \theta(V)$ all the arguments which we have stated in the case when $V(x)$ has no singular points. We have then

$$
E\left(\int \Psi(t, x) H \tilde{h}(x) \theta(V)\right) d x=E\left(\int \Psi^{(1)}(t, x) \tilde{h}(x) \theta(V)\right) d x
$$

where $\Psi^{1}(t, x)$ corresponds to the function $\varphi^{(1)}(x)=H \varphi(x)$. Thus, we have

$$
\begin{gathered}
\lim _{\nu \rightarrow \infty} E\left(\int \Psi(t, x)\right. \\
\left.\left.=\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2}\right)\left(\tilde{V} \lambda_{\nu} h(x)\right)+V \tilde{V} \lambda_{\nu} h(x)\right] \theta(V)\right) d x \\
=\lim _{\nu \rightarrow \infty} E\left(\int \Psi^{(1)}(t, x)\left(\tilde{V} \lambda_{\nu} h(x)\right) \theta(V)\right) d x
\end{gathered}
$$

In addition,

$$
\begin{gathered}
\left|E\left(\int V \tilde{V} \Psi(t, x) h(x) \theta(V)\right) d x\right| \leq \text { const } \int E\left(V(x)^{2}|\Psi(t, x)|\right)^{\frac{1}{2}} E\left(\tilde{V}(x)^{2}|\Psi(t, x)|\right)^{\frac{1}{2}} d x \\
\left.E\left(\tilde{V}(x)^{2}|\Psi(t, x)|\right) \leq E\left(\tilde{V}(x)^{4}\right)^{\frac{1}{2}} E(\Psi(t, x))^{2}\right)^{\frac{1}{2}} \leq \text { const } \exp \left(-\sum_{k=0}^{l-1}\left(t_{k+1}-t_{k}\right)\left(b_{k}\right)^{2}\right) \exp \left(-\frac{(x-\alpha)^{2}}{c t}\right),
\end{gathered}
$$

where $c>0$ is constants. The similar estimate is true if we replace \tilde{V} by $\sum_{j=1}^{n} \frac{1}{2} \partial_{j} \tilde{V}$ or $\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2}\right)(\tilde{V})$ (we use the A-property).

Since $\lambda_{\nu}(x)$ is bounded and $\lambda_{\nu}(x) \neq 1$ whenever $d(x, A)<\frac{2}{\nu}$ or $d(x, A)>\nu-1$, we have

$$
\begin{aligned}
& E\left(\int-V \tilde{V} \Psi(t, x) \lambda_{\nu} h(x)-\Psi(t, x) \lambda_{\nu} h(x)\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2}\right) \tilde{V}-2 \Psi(t, x)\left(\sum_{j=1}^{n}-\frac{1}{2} \partial_{j}(\tilde{V})\right)\right. \\
& \left(\sum_{j=1}^{n}-\frac{1}{2} \partial_{j}\left(\lambda_{\nu} h\right)\right) \theta(V) d x-E\left(\int V \tilde{V} \Psi(t, x) h(x)-\Psi(t, x) h(x)\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}\right)^{2}\right) \tilde{V}\right. \\
& \left.-2 \Psi(t, x)\left(\sum_{j=1}^{n}-\frac{1}{2} \partial_{j}(\tilde{V})\right)\left(\sum_{j=1}^{n}-\frac{1}{2} \partial_{j} h\right)\right) \theta(V) d x \\
& \quad \leq \text { const } \int_{\left\{d(x, A)<\frac{2}{\nu}\right\} \cup\{d(x, A)>\nu-1\}} \exp \left(-\sum_{k=0}^{l-1}\left(t_{k+1}-t_{k}\right)\left(b_{k}\right)^{2}\right) \exp \left(-\frac{(x-\alpha)^{2}}{c t}\right) d x,
\end{aligned}
$$ where $c>0$ is constants.

Therefore,

$$
\begin{aligned}
& E\left(\int \tilde{V}(x) \Psi(t, x)\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}\right) h(x) \theta(V)\right) d x=E\left(\int \Psi^{(1)}(t, x) \tilde{V}(x) h(x) \theta(V)\right) d x \\
& +E\left(\int \left[V(x) \tilde{V}(x) \Psi(t, x) h(x)-\Psi(t, x) h(x)\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}\right) \tilde{V}(x)-2 \Psi(t, x)\left(\sum_{j=1}^{n}-\frac{1}{2} \partial_{j}(\tilde{V})\right)\right.\right. \\
& \left.\left.\qquad\left(\sum_{j=1}^{n}-\frac{1}{2} \partial_{j} h\right) \theta(V)\right]\right) d x .
\end{aligned}
$$

Now, we act in just the same way as in the case of the potential without singularities. Namely, we make the fourier transform by the variable x at the left side. We get the following expression:
$E\left(\int(\tilde{V}(\widehat{x) \Psi(t}, x))(k)\left(\sum_{j=1}^{n} \frac{-1}{2}|k|^{2}+\frac{1}{2} \sum_{j=1}^{n} i \partial_{j} \hat{b}_{j}(k)+\frac{1}{2} \sum_{j=1}^{n} i \hat{b}_{j}(k)|-k i|+\frac{1}{2} \sum_{j=1}^{n} i \hat{b_{j}^{2}}(k)\right) \tilde{h}(k) \theta(V) d k\right.$.

Since $V(x) \tilde{V}(x)$ and $\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}\right)$ have the A-property, we have

$$
\begin{gather*}
|E(V(x) \tilde{V}(x) \Psi(t, x) h(x) \theta(V)) d x| \leq \text { const }\|h(x) \theta(V)\|_{L^{2}\left(\left(R^{n},, d x, d V\right)\right.} \tag{2.13}\\
\left|E\left(\int \Psi(t, x)\left(\sum_{j=1}^{n} \frac{1}{2}\left(i \partial_{j}+b_{j}(x)\right)^{2}\right) \tilde{V}(x) h(x) \theta(V)\right) d x\right| \leq c o n s t\|h(x) \theta(V)\|_{L^{2}\left(\left(R^{n},, d x, d V\right)\right.} . \tag{2.14}
\end{gather*}
$$

In the last term we also make the Fourier transform by x. We get the following expression:

$$
\begin{equation*}
2 i E\left(\int\left(\Psi(t, x)\left(\sum_{j=1}^{n} \widehat{\frac{-1}{2} \partial_{j}((\tilde{V}))}\right)\right)(k) \tilde{h}(k)\left(\frac{-n k}{2}\right) \theta(V)\right) d k . \tag{2.15}
\end{equation*}
$$

Now, it follows from (2.12)-(2.15) that

$$
\left\lvert\, E\left(\int \left(\left.\tilde{V}(\widehat{x) \Psi(t, x)})(k) \frac{\sum_{j=1}^{n} \frac{-|k|^{2}}{2}+\frac{i}{2} \sum_{j=1}^{n} \partial_{j} \hat{b_{j}}(k)+\frac{i}{2} \sum_{j=1}^{n} \hat{b_{j}}(k)|-k i|+\frac{i}{2} \sum_{j=1}^{n} \hat{b_{j}^{2}}(k)}{1+\left|\frac{-n k}{2}\right|} \tilde{h}(k) \theta(V) d k \right\rvert\,\right.\right.\right.
$$

$$
\begin{equation*}
\leq \operatorname{const}\|h(x) \theta(V)\|_{L^{2}\left(R^{n}, d x, d V\right)} \tag{2.16}
\end{equation*}
$$

Further the estimate (2.16) is literally transferred onto functions of the form $\sum C_{k, l} h_{k}(x) \theta_{l}(V)$. Therefore, $\tilde{V}(x) \Psi(t, x) \in W_{1}$ for almost every V, b

$$
\|\tilde{V}(x) \Psi(t, x)\|_{W_{1}}^{2} \leq \beta_{1}(V),
$$

where $E\left(\beta_{1}(V)\right)<+\infty$. Continuting these arguments of induction, we get $\tilde{V}(x) \Psi(t, x) \in$ W_{m} for almost every V, b

$$
\begin{equation*}
\|\tilde{V}(x) \Psi(t, x)\|_{W_{m}}^{2} \leq \beta_{m}(V) \tag{2.17}
\end{equation*}
$$

where $E\left(\beta_{m}(V)\right)<+\infty$.
Thus, we have proved that the function $\Psi(t, x)$ for almost every V, b is infinitely differentiable for all x, in particular, at the point $x \in A$. Besides, for any function with the A-property, the estimates of the form (2.17) take place.

References

[1] D.W. Adam The Essential Self-Adjointness Of Schrödinger operator With Oscillating Potential, New Zealand J. OF Math., Vol. 46, 2016, P. 65-72.
[2] T.O.Bonafos, L.Vega, A Strategy for self-adjointness of Dirac operators: Applications to the Mit Bag model and δ-Shell interactions, Publ. Mat. 62, 2018, P. 397- 437.
[3] M.D. Gaysinsky, Investigation of self-adjointness of Schrödinger operator and its powers with the help of integrals along trajectories, Dissertation for the candidate degree. Tashkent, 1990[Russian].
[4] M.D. Gaysinsky, M.S. Goldstein Self -Adjointness of Schrödinger operator and Wiener Integral Integr.Equat.Opera.Th., Vol. 15, 1992, P.973-990.
[5] T. Kato, Schrödinger operators with singular potentials. Israel J. Math., 13, 1973, P. 135-148.
[6] E.S. Nathanson et al, Trotters limit formula for the Schrödinger equation with singular potential, J. of Math. Phy. 58, 122101, 2017.
[7] L.M.Nieto et al, Towards Modelling QFT in Real Metamaterials: Singular Potentials and Self-Adjoint Extensions, J. Phys.: Conf. Ser. 839 012007, 2017.
[8] Y.H. Saleem, H.A. Hassen, Convergence of Schrödinger Operator with electromagnetic potential, Sci.Int.Lahore, Vol.31, 2, 2019, P.303-308.
[9] X.C. Xu et al, Determination of the self-adjoint matrix Schrödinger operators without the bound state data, Inverse Problems, Vol.34, 6, 2018.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3515

