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1. Introduction

In 1966, Y. Imai and K. Iseki [5] introduced the idea of BCK-algebra as a generaliza-
tion of the concept of set-theoretic difference and propositional calculi. In the same year,
K. Iseki [6] introduced the notion of BCI-algebra as a generalization of BCK-algebra.
Studies on different types of algebraic structures followed, among them B-algebras, G-
algebras, BCH-algebras, BE-algebras, and SU-algebras. In 2009, C. Prabpayak and U.
Leerawat [11] introduced the notion of KU-algebra and investigated some related proper-
ties. In 2017, A. lampan [3] introduced a class of algebra called UP-algebra (UP means
the University of Phayao). He established its structure and defined some concepts such as
UP-subalgebras, UP-ideals, congruences, and UP-homomorphism. He determined some
properties of UP-homomorphism, which led to four isomorphism theorems for UP-algebras.
He also presented some connections between UP-algebras and KU-algebras and showed
that the notion of UP-algebra is a generalization of KU-algebra.
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In 1993, Jun, Hong, and Roh [7] introduced a class of algebra related to BCI-algebras
and semigroups with distributive laws property, called a BCI-semigroup. Jun et al. [8, 9]
renamed the BCI-semigroup as the [S-algebra and studied related properties. In 2018, F.
Kareem and E. Hasan [10] introduced the concept of KU-semigroup which is a combination
of KU-algebra and semigroup. In the same year, A. Iampan [4] introduced a new class
of algebra called a fully UP-semigroup (or f-UP-semigroup) which is a combination of
UP-algebra and semigroup. In this study, the notion of f-UP-semigroup is investigated
and some of its properties are established.

2. Preliminaries

An algebra of type (2,0) is an algebra with a binary operation and a constant element.

Definition 1. [11] A KU-algebra is an algebra (X;x,0) of type (2,0) satisfying the fol-
lowing axioms: for all z,y,z € X,

(KU) (25y) % [(y 2) % (2% 2)] = 0,
(KU2) 0%z =

(KU3) 20 =0,
(KU4)

KU4) zxy =y *xx =0 implies x = y.

Example 1. [11] Let X = {0,a,b,c} be a set with a binary operation * defined by the
following Cayley table:

o T o O %
S O O OO
oY O |
o o T oo
S0 o oo

Then, (X;x*,0) is a KU-algebra.

Definition 2. [3] A UP-algebra is an algebra (X; *,0) of type (2, 0) satisfying the following
axioms: for all x,y,z € X,

(UPL) (y#2) % [(xx y) * (w  2)] =0,
(UP2) 0%z =

(UP3) 2 %0 =0,

(UP4) zxy =y *x = 0 implies z = .

Example 2. [3] Let X = {0,a,b,c} be a set with a binary operation x defined by the
following Cayley table:
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o T o O %
o O O OO
» O M|
o o o oo
o T T o|lo

Then, (X;*,0) is a UP-algebra.

Definition 3. [3] Let X be a UP-algebra. A subset S of X is called a UP-subalgebra of
X if the constant zero of X is in S and (S;*,0) itself forms a UP-algebra.

Definition 4. [1] Define x Ay = (y*x)*z. Then X is said to be a commutative UP-algebra
if for any z,y € X, (y*z)*xx = (xxy) *xy, that is, t Ay =y A x.

Definition 5. [3] Let X be a UP-algebra. Then, a subset I of X is called a UP-ideal of
X if it satisfies:

(i) the constant zero of X is in I, and
(ii) for any z,y,z € X, x* (y*z2) €  and y € [ imply x x z € I.

Proposition 1. [3] In a UP-algebra (X;x*,0), the following properties hold: for any
z,y,z € X,

(i) zxx =0,
(i) zxy=0and yxz =0 imply x * z = 0,
(791) = xy =0 implies (z*z)* (zxy) =0,
(tv) xxy =0 implies (y* z) * (xx2z) =0,

(v) z*(y*z) =0,

(vi) (y*z)*xx =0 implies v =y =z, and
(vii) z* (y*y) =0.

The next result gives a relationship between UP-algebras and KU-algebras.
Theorem 1. [3] Any KU-algebra is a UP-algebra.

The converse of Theorem 1 does not hold. To see this, consider the UP-algebra (X; *,0)
in Example 2. Let © = 0, y = a, and z = ¢. Observe that (z *xy) * [(y * 2) * (z x 2)] =
(Oxa)*[(axc)x(0xc)] =ax*x(bxc) =axb=>b%#0,so (KUl) is not satisfied. Thus,
(X;%,0) is not a KU-algebra.

In view of Theorem 1, the notion of UP-algebras is a generalization of KU-algebras.

Proposition 2. [3] A nonempty subset S of a UP-algebra (X;x,0) is a UP-subalgebra of
X if and only if S is closed under the * operation.
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Let X be a UP-algebra and A be a nonempty subset of X. Then X % A is given by
X*xA= U (x*a).

rzeX,a€A

Theorem 2. [3] Let X be a UP-algebra and B a UP-ideal of X. Then X * B C B. In
particular, B is a UP-subalgebra of X.

Let (X;%,0) be a UP-algebra and B be a UP-ideal of X. Define the binary relation
~p on X as follows: for all z,y € X, x ~p yif and only if zxy € B and y xx € B.
An equivalence relation p on X is called a congruence if for any x,y,z € X, zpy implies

(z*x2)p(y *2) and (zxx)p(z * y).
If € X, then the p-class of = is [z], defined as [z], = {y € X : ypr}. The set

of all p-classes is called the quotient set of X by p, and is denoted by X/p. That is,
X/p={[z],: x € X}.

Theorem 3. [3] Let (X;*,0) be a UP-algebra and B a UP-ideal of X. Then the following
hold:
(i) the ~p-class [0]~, is a UP-ideal and a UP-subalgebra of X,
(17) a ~p-class [x]~, is a UP-ideal of X if and only if x € B,
(17i) a ~p-class [x]~, is a UP-subalgebra of X if and only if x € B, and
)

(iv) (X/ ~p;*,[0]~p) is a UP-algebra under the operation * defined by [x]~,*[y|~p = [x*
Y|~y forall z,y € X, called the quotient UP-algebra of X induced by the congruence
NB.

Definition 6. [10] A KU-semigroup is a nonempty set X together with two binary oper-
ations * and - and a constant 0 satisfying the following:

(KUS1) (X;x,0)is a KU-algebra;
(KUS2) (X,-) is a semigroup; and

(KUS3) the operation - is left and right distributive over the operation *, that is,
x-(yxz)=(r-y)*x(x-z)and (xxy)-z=(x-2)*(y-2).

Example 3. [10] Let X = {0, a,b,c} be a set with the binary operations * and - defined
by the following Cayley tables:

o T o O *
o O OO0
S v O |
o o T To
o0 o oo
o T o O -
[Nl No)
OO OOl
T o o olT
o T O oo
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Then, (X;x*,-,0) is a KU-semigroup.

Definition 7. [4] A fully UP-semigroup (or f-UP-semigroup) is a nonempty set X to-
gether with two binary operations * and - and a constant 0 satisfying the following:

(fUP1) (X;%,0) is a UP-algebra;
(fUP2) (X,-) is a semigroup; and

(fUP3) the operation - is left and right distributive over the operation .

A. Tampan [4] analogously introduced a left [resp., right] UP-semigroup as a nonempty
set X together with two binary operations * and - and a constant 0 satisfying (fUP1),
(fUP2), and the operation - is left [resp. right] distributive over the operation *. Thus,
an f-UP-semigroup is both a left and a right UP-semigroup.

Example 4. [4] Let X = {0,a,b,c} be a set with the binary operations * and - defined
by the following Cayley tables:

o T o O %
O O O OO
Y v O |
oo T T|T
o0 o oo
o T o O
o o o olo
O O O Ol
» O O OoO|lT
o O Olo

Then, (X;*,-,0) is an f-UP-semigroup.

Example 5. Let X = {0,a,b,c} be a set with the binary operations * and - defined by
the following Cayley tables:

o T o O %
O O O OO
o v O |
o o o oo
o0 o oo
o T o
o o o oo
» O O Ol
o O O o|lT
0o O o oo

Then, routine calculations show that (X;x,-,0) is an f-UP-semigroup.

Example 6. Let X = {0,a,b,c,d} be a set with the binary operations * and - defined by
the following Cayley tables:

o T o O *
o O O O o
» O M|
oo T T|T
o0 o oo
o T O -
o O O O o
O T o Ol
» o T olT
T o olo
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Then, routine calculations show that (X;x,-,0) is an f-UP-semigroup.
Hereinafter, let X denote the f-UP-semigroup (X;x,-,0), unless otherwise indicated.

Definition 8. A nonempty subset S of an f-UP-semigroup X is called an f-UP-subsemigroup
of X if the constant 0 of X is in S and (S; %, -,0) itself forms an f-UP-semigroup.

Obviously, {0} and X are f-UP-subsemigroups of X. In Example 4, the set S; = {0,b}
is an f-UP-subsemigroup of X, while the set Sy = {0,b, ¢} is not an f-UP-subsemigroup
since b-c=a ¢ Ss.

The following remark immediately follows from Definitions 8, 7, and 3.

Remark 1. Every f-UP-subsemigroup of (X;*,-,0) is a UP-subalgebra of X with respect
to *.

The converse of Remark 1 does not hold. To see this, consider Example 4. It can be
easily verified that S = {0,b,c} is a UP-subalgebra of (X;#,0) but S is not an f-UP-
subsemigroup of (X;*,-,0) sinceb-c=a ¢ S.

Definition 9. An f-UP-semigroup X is said to be commutative if a -b = b - a for all
a,be X. If X is not commutative, then it is called a noncommutative f-UP-semigroup.

Routine calculations show that the f-UP-semigroups in Examples 4 and 6 are commu-
tative while the f-UP-semigroup in Example 5 is noncommutative since a-¢ = 0 # a = c-a.

Definition 10. Let X be an f-UP-semigroup. An element e € X is called a unity in X
ifr-e=x=ec¢-xforallze X.

Proposition 3. Let X be an f-UP-semigroup. If the unity of X exists, then it is unique.

Proof. Let X be an f-UP-semigroup with unity. Suppose 1,1’ € X both satisfy the
properties of being a unity. Then, forallz € X, z-1=1-2=zandz-1'=1 -2 =2 If
z=1,wehave1-1"=1. If z = 1’, we have 1-1’ = 1’. Therefore, 1 =1’. O

If an f-UP-semigroup X has unity, it shall be denoted by 1.

Definition 11. Let X be an f-UP-semigroup with unity 1. An element a of X is called
1-invertible if there exists b € X such that a-b=1=10"-a.

We next introduce the concepts of f-UP-field and f-UP-domain analogous to the
definitions of JB-field and JB-domain given by J. Endam and J. Vilela [2].

Definition 12. Let X be an f-UP-semigroup with unity 1. Then X is called an f-UP-field
if the following hold:

(i) the semigroup (X, -) is commutative; and

(ii) every 0 # a € X is l-invertible.
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Definition 13. A nonzero element a of an f-UP-semigroup X is called a O-divisor if there
exists b € X such that b # 0 and either a-b=0or b-a = 0.

Note that 0 is not a 0-divisor.

Remark 2. An element cannot be 1-invertible and a 0-divisor at the same time. Thus,

an f-UP-field has no 0-divisors.

Definition 14. Let X be an f-UP-semigroup with unity 1. Then X is called an f-UP-
domain if the following hold:

(i) the semigroup (X, -) is commutative; and
(ii) X has no 0-divisors.
The f-UP-semigroup in Example 6 is an f-UP-domain.
Remark 3. Fvery f-UP-field is an f-UP-domain.

3. Elementary Properties of f-UP-semigroups

This section presents some elementary properties of f-UP-semigroups. Throughout
this section, X means an f-UP-semigroup (X;x,-,0).

Theorem 4. Let a,b,c € X. Then the following properties hold:

(i
(1) a-(0xb)=(0xa)-b=a-b,

a-0=0-a=0,

)
)
(ii0) a-(bx (0% ) = (a-b)*(a-c) and (b (0xc))-a= (b-a)* (c-a),
(i) a-(bAc)=(a-b)A(a-c)and (aAb)-c=(a-c)A(b-c),

(v) Ifa-b=0, thena- (b*c) =a-c,

(vi) Ifa-c=0, then (axb)-c=b-c.
Proof. Let a,b,c € X.

(i) By Proposition 1(7) and (fUP3),a-0=a-(0%0) = (a-0)* (a-0) = 0. Similarly,
0-a=0.

(7i) By (UP2),a-(0%xb)=a-b=(0%a)-b.

(731) By (UP2) and (fUP3), a- (b* (0*c)) =
(bx(0xc))-a=(bxc)-a=(b-a)x(c-a)

(1v) By Definition 4 and (fUP3), a-(bAc) = a-[(c*xb)*xb] = [a-(c*xb)]*(a-b) =
[(a-c)*(a-b)]*(a-b) = (a- ) (a-c) and (a/\b) = [(bxa)*a]-c = [(bxa)-c|*(a-c) =
[(b-c)x(a-c)*(a-¢)=(a-c)A(b-c)

a-(bxc) = (a-b)*(a-c). Similarly,
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(v) Suppose a-b = 0. Then by (fUP3) and (UP2), a-(bxc) = (a-b)x(a-c) = 0x(a-c) = a-c.
(vi) If a-¢ =0, then by (fUP3) and (UP2), (a*b)-c = (a-¢)x(b-¢c) =0x%(b-c) =b-c. 0O

The following theorem gives a necessary and sufficient condition for a subset of an
f-UP-semigroup to be an f-UP-subsemigroup.

Theorem 5. A nonempty subset S of an f-UP-semigroup (X;*,-,0) is an f-UP-subsemi-
group of X if and only if x xy,x-y €S for all xz,y € S.

Proof. Let @ # .5 C X. Suppose S is an f-UP-subsemigroup of X. Then by Defini-
tion 8, (S;*,-,0) is an f-UP-semigroup. Thus, the binary operations % and - are closed in
S, that is, xxy,z-y € S for all x,y € S. Conversely, suppose zxy,x-y € S for all z,y € S.
Then 0 = x xx € S. By Proposition 2, (S;*,0) is a UP-subalgebra of X, hence (fUP1)
holds. Let z,y,2 € S C X. Then z -y € S by our assumption and z - (y - 2) = (x - y) - 2
by associativity in X. Hence, (5,-) is a semigroup and (fUP2) is satisfied. Moreover,
(fUP3) holds for all z,y,z € S C X. Thus, S is an f-UP-subsemigroup of X. O

Theorem 6. Let X be an f-UP-semigroup and {A; : i € I} a family of f-UP-subsemigroups
of X. Then ﬂ A; is an f-UP-subsemigroup of X.
el

Proof. Since A; is an f-UP-subsemigroup of X, 0 € A; for all 4 € I. Thus, 0 € ﬂ A;

el
and ﬂAi # . Let z,y € ﬂAi. Then for all ¢ € I, z,y € A; and by Theorem 5,
icl iel
rxy,x-y € A;. Hence, zxy,x-y € ﬂ A;. Therefore, ﬂ A; is an f-UP-subsemigroup of
icl iel
X. O

The next result shows a relationship between KU-semigroups and f-UP-semigroups.
Theorem 7. Any KU-semigroup is an f-UP-semigroup.

Proof. Let X = (X;x*,-,0) be a KU-semigroup. By Theorem 1, (X;%,0) is a UP-
algebra. By Definition 6, (X, -) is a semigroup and left and right distributivity hold for -
over *, thus X is an f-UP-semigroup. O

Remark 4. The converse of Theorem 7 does not hold.

To see this, let X = {0,a,b,c,d} be a set with the binary operations % and - defined
by the following Cayley tables:

*x 0 a b ¢ d 10 a b ¢ d
0]0 a b ¢ d 0j0 0 0 0 O
al0 0 0 0 O al0 0 0 0 O
b|0O b 0 0 0 bj|0 0 0 0 O
c|0 b b 0 0 c|0 0O 0 0 O
d|/0 b b d 0 d|/o 0 0 0 O
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Then by routine calculations, (X;*,-,0) is an f-UP-semigroup. Let x = 0,y = ¢, and
z = a. Observe that (zxy)*[(y*2)*(x*2)] = (0xc)*[(c*xa)*(0*a)] = cx(b*xa) = cxb =10,
so (KU1) is not satisfied. Thus, (X;*,-,0) is not a KU-semigroup.

Theorem 8. Let X be an f-UP-semigroup with unity 1 and let T be the set of all 1-
invertible elements of X. Then

(1) 1eT,
(i) 0¢ T, and
(791) a-beT foralla,beT.
Proof. Let T be the set of all 1-invertible elements of X.
(¢) Since 1-1=1,1€T. Thus, T # .

(73) Suppose 0 € T'. Then there exists b € X such that 0-b=1=15-0. But 0-b =0 and
so, 0 =1, a contradiction. Thus, 0 ¢ T'.

(791) Let a,b € T. Then there exist ¢,d € X such that a-c=1=c-aandb-d=1=d-b.
Moreover, d-c € X. By (fUP2), (a-b)-(d-¢)=((a-b)-d)-c=(a-(b-d))-c=
(a-1)-:¢c=a-c=1and (d-¢)-(a-b) = ((d-¢)-a)-b=(d-(c-a))-b=(d-1)-b=d-b=1.
Hence, a-beT. O

The next result establishes a relation between 0O-divisors and the cancellation property
of an f-UP-semigroup.

Theorem 9. If an f-UP-semigroup X has no 0-divisors, then left and right cancellation
laws hold, that is, for all a,b,c € X, a # 0, a-b = a-c implies b = ¢ (left cancellation)
and b-a = c-a implies b = ¢ (right cancellation). If either left or right cancellation law
holds, then X has no 0-divisors.

Proof. Let a,b,c € X such that a-b =a-cand a # 0. Then a-(bxc) = (a-b)x(a-c) =0
by Proposition 1(¢). Since X has no 0-divisors and a # 0, we have bxc = 0. Since a-b = a-c,
we have 0 =a - (bxc)=(a-b)*(a-c)=(a-c)x(a-b) =a-(cxb) and so, cxb=0. By
(UP4), b = c. Hence, the left cancellation law holds. Similarly, the right cancellation law
holds.

Conversely, suppose one of the cancellation laws holds, say, the left cancellation. Let a
be a nonzero element of X and b € X. Suppose a-b = 0. Then by Theorem 4(i), a-b = a-0
and so by left cancellation, b = 0. Suppose b-a = 0 and b # 0. Then by Theorem 4(3),
b-a =b-0 and so by left cancellation, a = 0, a contradiction. Therefore, b = 0 and X has
no O-divisors. Similarly, the right cancellation law implies that X has no 0-divisors. [

Theorem 10. A finite commutative f-UP-semigroup X with more than one element and
without 0-divisors is an f-UP-field.
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Proof. Let ai1,a9,...,a, be the distinct elements of X. Let a € X with a # 0. Now,

a-a; € X forall i =1,2,...,nand so {a-aj,a-as,...,a-a,} CX. fa-a; =a-aj,
then by Theorem 9, a; = a;. Thus, the elements a-a1,a-as,...,a-a, are distinct and so
X ={a-a1,a-ag,...,a-a,}. Hence, one of the elements, say a - a;, must be equal to a.

Since X is commutative, a;-a = a-a; = a. Let b € X. Then there exists a; € X such that
b=a-aj. Thus, b-a; =a;-b=a;-(a-a;) = (a;-a)-a; = a-a; =b. This implies that a; is
the unity of X. We denote the unity of X by 1. Now, 1 € X = {a-a1,a-a2,...,a-a,} and
so one of the elements, say a-ax, must be equal to 1. By commutativity, ag-a = a-ar = 1.
Hence, every nonzero element of X is 1-invertible. Therefore, X is an f-UP-field. O

As a consequence of Theorem 10, the following corollary holds.

Corollary 1. Every finite f-UP-domain is an f-UP-field.

4. f-UP-Ideal and the Quotient f-UP-semigroup

Definition 15. A nonempty subset I of an f-UP-semigroup X is called an f-UP-ideal
of X if the following hold:

(fUPI1) the constant 0 of X is in I,
(fUPI2) for any z,y,z € X, x* (y*xz2) € [ and y € [ imply x * 2z € I, and

(fUPI3) foranyac l,z € X,a-z,x-a € 1.

Obviously, the subsets {0} and X are f-UP-ideals of X. Consider the f-UP-semigroup
in Example 4. Routine calculations show that the set I = {0, a,b} is an f-UP-ideal of X
while the set Iy = {0,b,c} is not an f-UP-ideal of X since b-c=a ¢ Is.

Theorem 11. Let (X;*,-,0) be an f-UP-semigroup and I an f-UP-ideal of X. Then I
15 an f-UP-subsemigroup of X.

Proof. By (fUP1), (X;%,0) is a UP-algebra and by definition, I is a UP-ideal of the
UP-algebra X. By Theorem 2, I is a UP-subalgebra of X. Let z,y € I C X. Then by
Proposition 2, x xy € I. Since I is an f-UP-ideal of the f-UP-semigroup X, z-y € I by
(fUPI3). Thus, I is an f-UP-subsemigroup of X by Theorem 5. O

Theorem 12. Let X be an f-UP-semigroup and {A; : i € Z} be a nonempty collection
of f-UP-ideals of X. Then ﬂ A; is an f-UP-ideal of X.
€S
Proof. Suppose {A; : i € #} is a nonempty collection of f-UP-ideals of X. Since
0€ A; foralli € 7,0 € ﬂ A; and so ﬂ A; # @. Suppose z,y,z € X such that
€S €S
xx(yxz) € ﬂ A; and y € ﬂ A;. Then z* (y*z) € A; and y € A; for all i € .#. Since
i€y (184
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each A; is an f-UP-ideal for all i € .#, it follows that x x z € A; for all ¢ € .#. Hence,
Txz E ﬂ A;. Let a € ﬂAi and £ € X. Then a € A; for all © € .#. Since each A4; is

€S €S
an f-UP-ideal for all i € Z, a-z,x-a € A; for all i € .Z. Hence, a-x,x-a € ﬂ A;.
€S
Therefore, ﬂ A; is an f-UP-ideal of X. O
€S

Let (X;*,-,0) be an f-UP-semigroup and I be an f-UP-ideal of X. Define the binary
relation ~; on X as follows: for all z,y € X, x ~y y if and only if z xy € I and
y+x € I. Denote [z]; as the equivalence class containing z € X and X/I as the set of
all equivalence classes of X with respect to “~;”, that is, [z]; = {y € X : z ~; y} and

X/I={[z];:x € X}.

Remark 5. Let X be an f-UP-semigroup and I be an f-UP-ideal of X. Then x € [z]s
forallz € X.

Lemma 1. Let X be an f-UP-semigroup and I be an f-UP-ideal of X. Then [z]r = [y]1
if and only if x ~1 y.

Proof. Suppose [z]; = [y];. Since y € [y];r = [z]r, we have x ~; y. Conversely, suppose
x ~1y. Let z € [z];. Then x ~; z. By symmetric property, z ~; z. By transitivity,
z ~1 y and by symmetric property, y ~; z and so, z € [y];. Thus, [z]; C [y];. Let
z € [y|;. Then y ~; z. By transitivity, x ~j z, that is, z € [z]|;. Thus, [y|; C [z];. Hence,
[]r = [yr. O

Proposition 4. Let X be an f-UP-semigroup and I be an f-UP-ideal of X. Then
(1) [0]r =1,
(1) [z]r =1 if and only if x € I, for all x € I, and
(tit) I« [x]; = [z]1 for allz € X.
Proof. Let I be an f-UP-ideal of X.

(i) If « € [0]7, then by definition, 0 ~; x and by (UP2), x = 0%z € I. Thus, [0]; C I.
Let x € I. By (UP2), 0xx =x € I. By (UP3) and (fUPI1), x 0 =0 € I. Thus,
0 ~; z and so, = € [0];. Hence, I C [0];. Therefore, [0]; = I.

(13) Suppose [z]; = I. Then by Remark 5, z € I. Conversely, let x € I. By (UP2),
Oxx =z € I. By (UP3) and (fUPI1), xx0 =0 € I. Thus, 0 ~; x, and by Lemma 1,
[0l7 = [z]1- By (i), I = [z]r.

(7i7) For all x € X, [z]; = [0 % x|y = [0]; * [x]; as defined in Theorem 3(iv). By (i),
[z]r = I = [x]]. O
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Theorem 13. If X is an f-UP-semigroup and I an f-UP-ideal of X, then (X/I;x,-,[0]r)
is an f-UP-semigroup, where x and - are defined by [x]r+[y]; = [z*y|r and [x]r-[y]r = [z-y]1,
respectively. If X is commutative, then X /I is commutative and if X has unity, then X/I
has unity.

Proof. Let I be an f-UP-ideal of X. Then I is a UP-ideal of the UP-algebra (X;x,0).
By Theorem 3, (X/I; %, [0]r) is a UP-algebra, where « is defined by [z]r*[y]r = [z*y];. We
show that the binary operation - on X/I is well-defined. Let [z]; = [2/]; and [y]; = [¢']1.
Then x ~; 2’ and y ~; ¢y which imply x x 2/, 2" * 2,y * ¢/, x y € I. By Theorem 4(ii),
(UP2), and (fUPI3), (z-y)*(z-¢) =2 (yx(0xy')) =2 (yxy') € [ and (z-¢) x(z-y) =
z-(y*(0xy)) = z-(y'xy) € I. Thus, x-y ~1 z-y/'. Similarly, (x- y) (a'y) = (a;*(O*:c ))- y =
(xxz')-y € Tand (' -y )x(x-y') = (&'« (0xx)) -y = (2’ *x)-y € [. Thus, z-y' ~y2'-y.
By transitivity, z -y ~y 2/ -y/. By Lemma 1, [z]; - [y]; = [z - y]r = [2" - V|1 = [2']1 - [V]1-

Let [z]1, [y]1, [2]r € X/I. Since (X, -) is a semigroup, then

[z]r - ([y]1 - [2]1)

Hence, (X/1,-) is semigroup. Moreover, by distributive property on X,

[z]1 - ([ylr * [2]r) = [2]1 - [y * 21
=[z-(y*2)1

and

Thus, the distributive property holds on X/I. Therefore, (X/I;*,-,[0];) is an f-UP-
semigroup. Suppose X is commutative. Then z-y =y -« for all z,y € X. Let [z]1,[y]r €
X/I. Then [z];- [yl = [z -ylr = [y-z]r = [y]r - [z]7. Hence, X/I is commutative. If X has
unity 1, then X /I has unity [1]7 since [z]7-[1]; = [z-1]; = [z]; and [1]7-[z]; = [1-z]; = [z]1
for any z € X. O

The f-UP-semigroup (X/I;*, -, [0]7) in Theorem 13 is called the quotient f-UP-semigroup
of X by I.
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5. Conclusion

This paper investigated fully UP-semigroups, a new class of algebra related to UP-
algebras and semigroups, which was introduced by A. Iampan [4] in 2018. It established
some structural properties of f-UP-semigroups. It also introduced and examined f-UP-
fields, f-UP-domains, f-UP-ideals, and quotient f-UP-semigroups. Moreover, the rela-
tionship between an f-UP-field and an f-UP-domain is determined. In the subsequent
study, we introduce and investigate homomorphisms on f-UP-semigroups, which lead to
the isomorphism theorems on f-UP-semigroups.
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