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1. Introduction

Integro differential equations [1] arise quite frequently as mathematical models in vari-
ous disciplines of physical, social and biological sciences and engineering. Models involving
integro differential equations can be found in unsteady aerodynamics and aero-elastic phe-
nomena etc. The qualitative theory of integro differential equations deals with existence
and uniqueness of solutions, stability of solutions etc. The existence and uniqueness results
are studied using various approaches like fixed point theory and iterative techniques.

There are various iterative techniques for solving integro differential equations. Some
of the iterative methods are monotone iterative technique, quasilinearization and their
generalizations. The monotone iterative technique and quasilinearization are two iterative
techniques that are widely used to obtain existence and uniqueness results of various
types of differential equations. Both monotone iterative technique and quasilinearization
[2, 3, 4, 5] along with the method of upper and lower solutions yield monotone iterates
which are solutions of certain linear differential equations obtained from the hypothesis of
the given problem. These iterates converge to a solution of the original problem.
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The monotone iterative technique had undergone various extensions and generaliza-
tions. The right hand side of the problem was considered as a sum of a nondecreasing and
nonincreasing function. This gave rise to various notions of coupled solutions and much
work has been done in this setup for various types of differential equations.

In [6, 7] the authors obtained the existence of solutions for an integro differential
equation with periodic boundary condition using monotone iterative technique. This was
a very interesting result because of two reasons: 1) no additional lemmas were needed to
prove the result 2) no extra conditions were needed for uniqueness, as the uniqueness of
solution was generated by the method itself.

This led to a spurt of publications in monotone iterative technique for various types
of differential equations [8, 9].

This idea has been extended to quasilinearization and generalized quasilinearisation
had been developed for periodic boundary value problem of a graph differential equation
and a matrix differential equation through natural upper and lower solutions [10].

In [11] it was observed that quasilinearization for periodic boundary value problem
through coupled lower and upper solutions of the initial value problem can be obtained
with certain restrictions.

In this paper, using the approach given in [11] we develop quasilinearization technique,
using coupled lower and upper solutions, for initial value problem of an integro differential
equation and using this result to obtain existence and uniqueness of solutions for periodic
boundary value problem of an integro differential equation.

2. Preliminaries

Consider the periodic boundary value problem of an integro differential equation given
by

x′ = f1(t, x, Sx) + f2(t, x, Sx), (1)

x(0) = x(T ). (2)

To develop the method of the quasilinearization technique (1) and (2), we first develop
quasilinearization technique for the corresponding initial value problem of an integro dif-
ferential equation given by

x′ = f1(t, x, Sx) + f2(t, x, Sx), (3)

x(0) = x0, (4)

where f1, f2 ∈ C[I × Rn × Rn, Rn], Sx(t) =
t∫
0

K(t, s)x(s)ds, with K ∈ C[I × I,R+] and

I=[0,T].
To do so we first define the various types of lower and upper solution for (3) and (4),

Definition 1. Let α0, β0 ∈ C1[I,Rn]. Then α0, β0 are said to be
(a) natural lower and upper solutions of (3) and (4) if

α′0 ≤ f1(t, α0, Sα0) + f2(t, α0, Sα0), α0(0) ≤ x0,
β′0 ≥ f1(t, β0, Sβ0) + f2(t, β0, Sβ0), β0(0) ≥ x0, t ∈ I;

}
(5)
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(b) coupled lower and upper solutions of Type I of (3) and (4) if

α′0 ≤ f1(t, α0, Sα0) + f2(t, β0, Sβ0), α0(0) ≤ x0,
β′0 ≥ f1(t, β0, Sβ0) + f2(t, α0, Sα0), β0(0) ≥ x0, t ∈ I;

}
(6)

(c) coupled lower and upper solutions of Type II of (3) and (4) if

α′0 ≤ f1(t, β0, Sβ0) + f2(t, α0, Sα0), α0(0) ≤ x0,
β′0 ≥ f1(t, α0, Sα0) + f2(t, β0, Sβ0), β0(0) ≥ x0, t ∈ I;

}
(7)

(d) coupled lower and upper solutions of Type III of (3) and (4) if

α′0 ≤ f1(t, β0, Sβ0) + f2(t, β0, Sβ0), α0(0) ≤ x0,
β′0 ≥ f1(t, α0, Sα0) + f2(t, α0, Sα0), β0(0) ≥ x0, t ∈ I.

}
(8)

We observe that whenever we have α(t) ≤ β(t), t ∈ I, f1(t, x, Sx) is nondecreasing in
x and y and f2(t, x, Sx) is nonincreasing in x and y for each t ∈ I, the lower and upper
solutions defined by (5) and (8) reduce to (6) and (7) consequently, hence it is sufficient
to investigate the cases (6) and (7).

3. Generalized quasilinearization for initial value problem of an integro
differential equation.

In this section we develop the method of generalized quasilinearization for the initial
value problem of an integro differential equation and use it in the next section.

we first state a known result from [1] corresponding to an integro differential equation
which is useful in developing a sequence of iterates to be constructed while developing the
quasilinearization.

Lemma 1. Let p ∈ C1[I,R], where I = [0, T ] is such that and

p ′(t) ≤ −Mp(t)−NSp(t) on I, p(0) ≤ 0, (9)

where M > 0, N ≥ 0 are constants such that

Nk1T (eMT − 1) ≤M, (10)

where k1 = maxt∈I K(t, s). Then p(t) ≤ 0 on I.

To prove the main theorem we need the following assumptions which are listed below
for convenience.
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H1 : (i) Second order Frechet derivatives of f1(t, x, ξ), f2(t, x, ξ) with respect to
all variables exist and are bounded;

(ii) f1(t, x, ξ) is convex in x, ξ ;

(iii) f1x(t, x, ξ) is nondecreasing in ξ for each (t, x);

(iv) f1 is nondecreasing function in x, ξ for each t ∈ I and f2 is nonincreasing
function in x, ξ for each t ∈ I.

H2 : (i) −M1 ≤ f1x(t, x, ξ) ≤ −M, 0 < M < M1;

(ii) −M2 ≤ f1ξ(t, x, ξ) ≤ −N, 0 < N < M2;

(iii) Nk1T < M ;

where M > 0, N ≥ 0.

H3 : α0, β0 are coupled lower and upper solutions of (3) and (4).

H4 : (i) f1(t, x, Sx) ≥ f1(t, y, Sy) + f1x(t, y, Sy)(x− y) + f1ξ(t, y, Sy)(Sx− Sy);

(ii) |f1x(t, x, Sx)− f1x(t, y, Sy)| ≤ L1(x− y) +M1(Sx− Sy), L1,M1 ≥ 0.

Theorem 1. Suppose that the assumptions H1 to H4 are satisfied. Then there exists
monotone sequence {αn}, such that αn → ρ, as n → ∞ uniformly and monotonically
to the unique solution ρ = u of an integro differential equation (3) and (4)on I and the
convergence is quadratic.

Proof: In order to construct a sequence of lower iterates that converge to the solution of
the IVP we fix the upper solution β0. Now consider the following linear problem for
n = 0, 1, 2, 3, ...

α′n+1 = f1(t, αn, Sαn) + f1x(t, αn, Sαn)[αn+1 − αn] + f1ξ(t, αn, Sαn)[Sαn+1 − Sαn]
+f2(t, β0, Sβ0),

}
(11)

αn+1(0) = x0. (12)

Since the above equation is a linear integro differential equation, it has unique solution
αn+1(t) on I for each n. Now we claim that

α0 ≤ α1 ≤ α2 ≤ ... ≤ αn−1 ≤ αn ≤ ... ≤ β0 (13)

on I.
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We begin by setting p = α0 − α1. Then

p′ = α′0 − α′1
≤ {f1(t, α0, Sα0) + f2(t, β0, Sβ0)}

−{f1(t, α0, Sα0) + f1x(t, α0, Sα0)[α1 − α0]
+ f1ξ(t, α0, Sα0)[Sα1 − Sα0] + f2(t, β0, Sβ0)}

≤ f1x(t, α0, Sα0)[α0 − α1] + f1ξ(t, α0, Sα0)[Sα0 − Sα1]

p′(t) ≤ −Mp(t)−NSp(t).
Also p(0) = α0(0) − α1(0) ≤ 0. Hence by Lemma 1 we have p(t) ≤ 0. So α0 ≤ α1 on I.
Next, we show that α1 ≤ α2 on I. For this set p = α1 − α2. Then

p′ = α′1 − α′2
≤ f1(t, α1, Sα1)− {f1(t, α1, Sα1) + f1x(t, α1, Sα1)[α2 − α1]

+ f1ξ(t, α1, Sα1)[Sα2 − Sα1]}

= f1x(t, α1, Sα1)[α1 − α2] + f1ξ(t, α1, Sα1)[Sα1 − Sα2]

≤ −Mp(t)−NSp(t).

Also p(0) = α1(0) − α2(0) = 0. Hence by Lemma 1 we have p(t) ≤ 0. Thus α1 ≤ α2

on I. Now we show α1 ≤ β0 on I by setting p = α1 − β0. Then,

p′ = α′1 − β′0
≤ {f1(t, α0, Sα0)− f1(t, β0, Sβ0)}+ {f1x(t, α0, Sα0)[α1 − α0]

+ f1ξ(t, α0, Sα0)[Sα1 − Sα0]}+ {f2(t, β0, Sβ0)− f2(t, α0, Sα0)}
≤ f1x(t, α0, Sα0)[α1 − β0] + f1ξ(t, α0, Sα0)[Sα1 − Sβ0]

≤ −Mp(t)−NSp(t).

Also p(0) = α1(0) − β0(0) ≤ 0. Hence by Lemma 1 we have p(t) ≤ 0. Which means
that α1 ≤ β0 on I. Similarly we can show α2 ≤ β0 on I.

Thus
α0 ≤ α1 ≤ α2 ≤ β0,

on I.
Now we assume that the result holds for n = k and prove it for n = k+1. We now consider
the following linear integro differential equation,

α′k+1 = f1(t, αk, Sαk)+f1x(t, αk, Sαk)[αk+1−αk]+f1ξ(t, αk, Sαk)[Sαk+1−Sαk]+f2(t, β0, Sβ0),

αk+1(0) = x0.
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The above linear integro differential equation has the unique solution αk+1 where αk and β0
are known lower and upper solutions of (3) and (4). Further αk is the solution of the linear
integro differential equation

α′k = f1(t, αk−1, Sαk−1) + f1x(t, αk−1, Sαk−1)[αk − αk−1]

+f1ξ(t, αk−1, Sαk−1)[Sαk − Sαk−1] + f2(t, β0, Sβ0),

αk(0) = x0.

We now consider p = αk − αk+1

p′ = α′k − α′k+1

≤ {f1x(t, αk, Sαk)[αk − αk+1] + f1ξ(t, αk, Sαk)[Sαk − Sαk+1]

≤ −Mp(t)−NSp(t).

Also p(0) = αk(0)−αk+1(0) = 0. Hence by Lemma 1 we have p(t) ≤ 0. Thus αk ≤ αk+1

on I. To show αk+1 ≤ β0 on I.
Set p = αk+1 − β0

p′ = α′k+1 − β′0
≤ {f1x(t, αk, Sαk)[αk − β0] + f1ξ(t, αk, Sαk)[Sαk − Sβ0]}]

+ {f1x(t, αk, Sαk)[αk+1 − αk] + f1ξ(t, αk, Sαk)[Sαk+1 − Sαk]}
+ {f2(t, β0, Sβ0)− f2(t, α0, Sα0)}

≤ {f1x(t, αk, Sαk)[αk+1 − αk] + f1ξ(t, αk, Sαk)[Sαk+1 − Sαk]}

≤ −Mp(t)−NSp(t).

Also p(0) = αk+1(0) − β0(0) ≤ 0. Hence by Lemma 1 we have p(t) ≤ 0 which implies
that αk+1 ≤ β0 on I. Thus

αk ≤ αk+1 ≤ β0,

on I. Now using the principle of mathematical induction, we deduce the relation (13) and
our claim holds. Also from relation (13), we can seen that the sequences are uniformly
bounded. Since f1, f2 are uniformly bounded, the sequence {αn} is equicontinuous on
[0, T ] and therefore by using Ascoli-Arzela Theorem, there exists a subsequence {αnk

}
that converges uniformly on [0, T ]. In view of (13) it also follows that the entire sequence
{αn} converges uniformly to ρ. Since f1x exists and is bounded on [0, T ], we obtain that
f1 is Lipschitz and hence the solution u is unique.

To show that the convergence is quadratic, we begin by writing pn+1 = u− αn+1 and
consider

p′n+1 = u′ − α′n+1
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= [f1(t, u, Su) + f2(t, u, Su)]
− [{f1(t, αn, Sαn) + f1x(t, αn, Sαn)[αn+1 − αn]
+ f1ξ(t, αn, Sαn)[Sαn+1 − Sαn] + f2(t, β0, Sβ0)}]

p′n+1 ≤ A+B + f1x(t, αn, Sαn)pn+1 + f1ξ(t, αn, Sαn)Spn+1 (14)

where
A = f1(t, u, Su)− f1(t, αn, Su)− f1x(t, αn, Sαn)[u− αn];
B = f1(t, αn, Su)− f1(t, αn, Sαn)− f1ξ(t, αn, Sαn)[Su− Sαn].

Our aim is to simplify each of the term A,B and substitute in (14). In this direction,
consider

A = f1(t, u, Su)− f1(t, αn, Su)− f1x(t, αn, Sαn)[u− αn];

= [f1x(t, η1, Su)(u− αn) − f1x(t, αn, Sαn)](u− αn)

= [f1x(t, η1, Su) − f1x(t, αn, Sαn)](u− αn)

= [f1x(t, η1, Su)− f1x(t, αn, Su)
+f1x(t, αn, Su)− [f1x(t, αn, Sαn)]pn(t)

= f1xx(t, τ1, Su)pn[η1 − αn]

+
1∫
0

f1xξ(t, αn, sSu+ (1− s)Sαn)[Su− Sαn]pnds

≤ f1xx(t, τ1, Su)pn
2 +

1∫
0

f1xξ(t, αn, sSu+ (1− s)Sαn)[Spn]pnds

≤ l1|pn|2 + l2k1T |pn||pn|
1∫
0

ds

≤ l1|pn|2 + l2k1T |pn|2

Next consider
B = f1(t, αn, Su)− f1(t, αn, Sαn)− f1ξ(t, αn, Sαn)[Su− Sαn];

=
1∫
0

[f1ξ(t, αn, s(Su) + (1− s)Sαn)− [f1ξ(t, αn, Sαn)](Su− Sαn)ds.

Let η2(s) = s(Su) + (1− s)Sαn. Then

B =
1∫
0

[f1ξ(t, αn, η2(s))− f1ξ(t, αn, Sαn)](Su− Sαn)ds

=
1∫
0

1∫
0

f1ξξ(t, αn, σ η2(s) + (1− σ)Sαn)s(Spn)(Su− Sαn)dsdσ

=
1∫
0

1∫
0

f1ξξ(t, αn, σ η2(s) + (1− σ)Sαn)s(Spn)(Spn)dsdσ
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=
1∫
0

1∫
0

f1ξξ(t, αn, σ η2(s) + (1− σ)Sαn)s(Spn)2dsdσ

≤ l3k21T 2|p2n|
1∫
0

1∫
0

s dsdσ

≤ l3k21T 2|p2n|

p′n+1 ≤ {l1|pn|2 + l2k1T |pn|2}+ {l3k21T 2|p2n|} −Mpn+1(t)−NSpn+1(t)

≤ l −Mpn+1(t)−NSpn+1(t)

where l = {l1|pn|2 + l2k1T |pn|2} + {l3k21T 2|p2n|}. Now multiplying throughout by eMt

and setting p̃n+1 = eMtpn+1, we get

(pn+1(t)e
Mt)′ ≤ Nk1

h2∫
0

pn+1(s)e
Mtds+ leMt

≤ Nk1
∫ t
0 p̃n+1(s)e

M(t−s)ds+ leMt

= w′(t) (say)

Then choosing w(0)=0, we get p̃n+1 ≤ w(t) on I. Clearly w′(t) ≥ 0, which means that
w(t) is nondecreasing on I. Now for t ∈ I,

w(t) ≤ Nk1
t∫
0

z∫
0

p̃n+1(s)e
M(z−s)dsdz +

t∫
0

leMudu

≤ Nk1
t∫
0

z∫
0

w(z)eM(z−s)dsdz + l[max[0,T ]{ e
Mt

M − 1
M }]

≤ Nk1
t∫
0

z∫
0

w(z)eM(z−s)dsdz + l[max[0,T ]{ e
Mt

M }]

≤ Nk1
t∫
0

z∫
0

w(z)eM(z−s)dsdz + l{ eMT

M }

by setting c2 = l{ eMT

M } and c1 = N
M k1e

Mt we get

w(t) ≤ c1
t∫
0

w(z)dz + c2.

Now by using Gronwall’s inequality we get

w(t) ≤ c2e
t∫
0

c1ds
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≤ c2ec1t

≤ c2ec1T .

Hence
p̃n+1(t) ≤ w(t) ≤ max[0,T ]l(t)[eMt]ec1T

p̃n+1(t) ≤ w(t) ≤ max[0,T ]l(t)[e(M+c1)t]

|pn+1| ≤ (e(N1+c1)T )[M |pn|2],

Therefore the sequence {αn} converges quadratically on I. Hence the theorem.

4. Generalized quasilinearization for periodic boundary value problem

In this section an existence and uniqueness result is obtained for an PBVP of an integro
differential equation using the method of generalized quasilinearization. For this first we
define the various types of lower and upper solutions for the periodic boundary value
problem of an integro differential equation given by

x′ = f1(t, x, Sx) + f2(t, x, Sx), (15)

x(0) = x(T ), (16)

where f1, f2 ∈ C[I×Rn×Rn, Rn], Sx(t) =
t∫
0

K(t, s)x(s)ds, and K ∈ C[I×I,R+], I=[0,T].

Definition 2. Let α0, β0 ∈ C1[I,Rn]. Then α0, β0 are said to be
(a) natural lower and upper solutions of (15) and (16) if

α′0 ≤ f1(t, α0, Sα0) + f2(t, α0, Sα0), α0(0) ≤ α0(T ),
β′0 ≥ f1(t, β0, Sβ0) + f2(t, β0, Sβ0), β0(0) ≥ β0(T ), t ∈ I;

}
(17)

(b) coupled lower and upper solutions of Type I of (15) and (16) if

α′0 ≤ f1(t, α0, Sα0) + f2(t, β0, Sβ0), α0(0) ≤ α0(T ),
β′0 ≥ f1(t, β0, Sβ0) + f2(t, α0, Sα0), β0(0) ≥ β0(T ), t ∈ I;

}
(18)

(c) coupled lower and upper solutions of Type II of (15) and (16) if

α′0 ≤ f1(t, β0, Sβ0) + f2(t, α0, Sα0), α0(0) ≤ α0(T ),
β′0 ≥ f1(t, α0, Sα0) + f2(t, β0, Sβ0), β0(0) ≥ β0(T ), t ∈ I;

}
(19)

(d) coupled lower and upper solutions of Type III of (15) and (16) if

α′0 ≤ f1(t, β0, Sβ0) + f2(t, β0, Sβ0), α0(0) ≤ α0(T ),
β′0 ≥ f1(t, α0, Sα0) + f2(t, α0, Sα0), β0(0) ≥ β0(T ), t ∈ I.

}
(20)
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Now we will prove the following theorem related to coupled lower and upper solutions of
Type I and we develop the generalized quasilinearization method for the periodic boundary
value problem of an integro diffential equation via the initial value problem approach.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. Then there exists
monotone sequence {αn}, such that αn → ρ, as n → ∞ uniformly and monotonically to
the unique solution ρ = u for PBVP of an integro differential equation (15) and (16)on I
and the convergence is quadratic.

Proof: In order to construct a sequence of lower and upper iterates that converge to
the solution of the PBVP we fix the upper solution β0. Now consider the following linear
problem for n= 0,1,2,3...

α′n+1 = f1(t, αn, Sαn)+f1x(t, αn, Sαn)[αn+1−αn]+f1ξ(t, αn, Sαn)[Sαn+1−Sαn]+f2(t, β0, Sβ0),

αn+1(0) = αn(T ).

Since the above equation is a linear integro differential equation, so it has unique solution
αn+1(t) on I. Now we claim that

α0 ≤ α1 ≤ α2 ≤ ... ≤ αn−1 ≤ αn ≤ ... ≤ β0 (21)

on I.
We begin by setting p = α0 − α1. Then

p′ = α′0 − α′1

= f1x(t, α0, Sα0)p(t) + f1ξ(t, α0, Sα0)Sp(t)

p′(t) ≤ −Mp(t)−NSp(t)

Also p(0) = α0(0) − α1(0) ≤ 0. Hence by Lemma 1 we have p(t) ≤ 0. Thus α0 ≤ α1

on I.
Now we show α1 ≤ β0 on I by setting

p = α1 − β0. Then,
p′ = α′1 − β′0
≤ {f1(t, α0, Sα0)− f1(t, β0, Sβ0)}+ {f1x(t, α0, Sα0)[α1 − α0]

+ f1ξ(t, α0, Sα0)[Sα1 − Sα0]}+ {f2(t, β0, Sβ0)− f2(t, α0, Sα0)}
≤ f1x(t, α0, Sα0)[α1 − β0] + f1ξ(t, α0, Sα0)[Sα1 − Sβ0]

≤ −Mp(t)−NSp(t).

Also p(0) = α1(0) − β0(0) ≤ 0. Hence by Lemma 1 we have p(t) ≤ 0. Hence α1 ≤ β0
on I. Thus

α0 ≤ α1 ≤ β0
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on I.

Now assuming that the result is true for n = k and prove it for n = k + 1. In order to
prove our claim we consider the following linear integro differential equation.

α′k+1 = f1(t, αk, Sαk)+f1x(t, αk, Sαk)[αk+1−αk]+f1ξ(t, αk, Sαk)[Sαk+1−Sαk]+f2(t, β0, Sβ0),

αk+1(0) = αk(T ).

The above linear integro differential equation has unique solution αk+1, where αk and β0
are known lower and upper solutions of (15) and (16). Further αk is the solution of the
linear integro differential equation

α′k = f1(t, αk−1, Sαk−1)+f1x(t, αk−1, Sαk−1)[αk−αk−1]+f1ξ(t, αk−1, Sαk−1)[Sαk−Sαk−1]

+f2(t, β0, Sβ0),

αk(0) = αk−1(T ).

We now claim that αk ≤ αk+1 on I. For this set p = αk − αk+1

p′ = α′k − α′k+1

≤ {f1x(t, αk, Sαk)[αk − αk+1] + f1ξ(t, αk, Sαk)[Sαk − Sαk+1]

≤ −Mp(t)−NSp(t)

Also p(0) = αk(0)− αk+1(0) ≤ 0. Then by Lemma 1 Thus p(t) ≤ 0. So αk ≤ αk+1 on
I. Next to show αk+1 ≤ β0 on I,
Set p = αk+1 − β0

p′ = α′k+1 − β′0
≤ {f1x(t, αk, Sαk)[αk+1 − αk] + f1ξ(t, αk, Sαk)[Sαk+1 − Sαk]}

≤ −Mp(t)−NSp(t)
Also p(0) = αk+1(0) − β0(0) ≤ 0. Using Lemma 1 we get p(t) ≤ 0. Which means that
αk+1 ≤ β0 on I.

Now using the principle of mathematical induction, we deduce the relation (21) and
our claim holds. Also from relation (21), we can seen that the sequences are uniformly
bounded. Since f1, f2 are uniformly bounded so the sequence {αn} equicontinuous on
[0, T ] and therefore by using Ascoli-Arzela Theorem, there exists subsequence {αnk

} that
converges uniformly on [0, T ]. In view of (21) it also follows that the entire sequence {αn}
converges uniformly to ρ. Since f1x exists and is bounded on [0, T ], we obtain that f1 is
Lipschitz and hence the solution u is unique.
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To show that the convergence is quadratic, we begin by writing pn+1 = u−αn+1. Then

p′n+1 = u′ − α′n+1

≤ [f1(t, u, Su) + f2(t, u, Su)]
− [{f1(t, αn, Sαn) + f1x(t, αn, Sαn)[αn+1 − αn]
+ f1ξ(t, αn, Sαn)[Sαn+1 − Sαn] + f2(t, β0, Sβ0)}]

= A+B + fx(t, αn, Sαn)pn+1

+fξ(t, αn, Sαn, αnt, α
t
n)Spn+1

= A+B + f1x(t, αn, Sαn)pn+1 + f1ξ(t, αn, Sαn)Spn+1 (22)

where
A = f1(t, u, Su)− f1(t, αn, Su)− f1x(t, αn, Sαn)[u− αn];
B = f1(t, αn, Su)− f1(t, αn, Sαn)− f1ξ(t, αn)[Su− Sαn].

Our aim is to simplify each of the term A,B and substitute in (22). In this direction,
consider

A = f1(t, u, Su)− f1(t, αn, Su)− f1x(t, αn, Sαn)[u− αn];

≤ f1xx(t, τ1, Su)pn
2 +

1∫
0

f1xξ(t, αn, sSu+ (1− s)Sαn)[Spn]pnds

≤ l1|pn|2 + l2k1T |pn||pn|
1∫
0

ds

≤ l1|pn|2 + l2k1T |pn|2

Next consider
B = f1(t, αn, Su)− f1(t, αn, Sαn)− f1ξ(t, αn)[Su− Sαn];

=
1∫
0

[f1ξ(t, αn, s(Su) + (1− s)Sαn)− [f1ξ(t, αn, Sαn)](Su− Sαn)ds.

Let η2(s) = s(Su) + (1− s)Sαn. Then

B =
1∫
0

[f1ξ(t, αn, η2(s))− f1ξ(t, αn, Sαn)](Su− Sαn)ds

≤ l3k21T 2|p2n|
1∫
0

1∫
0

s dsdσ

≤ l3k21T 2|p2n|

p′n+1 ≤ {l1|pn|2 + l2k1T |pn|2}+ {l3k21T 2|p2n|} −Mpn+1(t)−NSpn+1(t)

≤ l −Mpn+1(t)−NSpn+1(t)
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where l = {l1|pn|2 + l2k1T |pn|2} + {l3k21T 2|p2n|}. Now multiplying throughout by eMt

and setting p̃n+1 = eMtpn+1, we get

(pn+1(t)e
Mt)′ ≤ Nk1

h2∫
0

pn+1(s)e
Mtds+ leMt

≤ Nk1
∫ t
0 p̃n+1(s)e

M(t−s)ds+ leMt

= w′(t) (say)

Then choosing w(0)=0, we get p̃n+1 ≤ w(t) on I. Clearly w′(t) ≥ 0, which means that
w(t) is nondecreasing on I. Now for t ∈ I,

w(t) ≤ Nk1
t∫
0

z∫
0

p̃n+1(s)e
M(z−s)dsdz +

t∫
0

leMudu

by setting c2 = l{ eMT

M } and c1 = N
M k1e

Mt we get

w(t) ≤ c1
t∫
0

w(z)dz + c2.

Now by using Gronwall’s inequality we get

w(t) ≤ c2e
t∫
0

c1ds

≤ c2ec1t

≤ c2ec1T

Hence
p̃n+1(t) ≤ w(t) ≤ max[0,T ]l(t)[eMt]ec1T

p̃n+1(t) ≤ w(t) ≤ max[0,T ]l(t)[e(M+c1)t]

|pn+1| ≤ (e(N1+c1)T )[M |pn|2],

Therefore the sequence {αn} converges quadratically on I. Hence the theorem.
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