The Higher-Order CESE Method for Two-dimensional Shallow Water Magnetohydrodynamics Equations
DOI:
https://doi.org/10.29020/nybg.ejpam.v12i4.3538Keywords:
Shallow Wanter Equations, Hyperbolic Conservation Laws, Nonlinear Partial Differential EquationsAbstract
The numerical solution of two-dimensional shallow water magnetohydrodynamics model is obtained using the $4^{th}$-order conservation element solution element method (CESE). The method is based on unified treatment of spatial and temporal dimensions contrary to the finite difference and finite volume methods. The higher-order CESE scheme is constructed using same definitions of conservation and solution elements that are used for $2^{nd}$-order CESE scheme formulation. Hence it is more convenient to increase accuracy of CESE methods as compared to the finite difference and finite volume methods. Moreover the scheme is developed using the conservative formulation and do not require change in the source term for treating the degenerate hyperbolic nature of shallow water magnetohydrodynamics system due to divergence constraint. The spatial and temporal derivatives have been obtained by incorporating $4^{th}$-order Taylor expansion and the projection method is used to handle the divergence constraint. The accuracy and robustness of the extended method is tested by performing a benchmark numerical test taken from the literature. Numerical experiment revealed the accuracy and computational efficiency of the scheme.Downloads
Published
2019-10-31
Issue
Section
Nonlinear Analysis
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
The Higher-Order CESE Method for Two-dimensional Shallow Water Magnetohydrodynamics Equations. (2019). European Journal of Pure and Applied Mathematics, 12(4), 1464-1482. https://doi.org/10.29020/nybg.ejpam.v12i4.3538