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Abstract. In the 19th century, non-Euclidean geometries were discovered and studied. In the
20th century, non-Diophantine arithmetics were discovered and studied. Construction of non-
Diophantine arithmetics is based on very general mathematical structures, which are called ab-
stract prearithmetics, as well as on the projectivity relation between abstract prearithmetics. In a
similar way, as set theory gives a foundation for mathematics, the theory of abstract prearithmetics
provides foundations for the theory of the Diophantine and non-Diophantine arithmetics. In this
paper, we study relations between operations in abstract prearithmetics exploring how properties
of operations in one prearithmetic impact properties of operations in another prearithmetic. In
addition, we explore how to build new prearithmetics from existing ones.
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1. Introduction

One of the most basic objects in mathematics is the arithmetic N of all natural
numbers. People in general and mathematicians in particular think that the laws of
this arithmetic are universal and unique. The formula 2 × 2 = 4 is regarded a perpet-
ual unconditional truth. However, for a long time the best thinkers had reservations
with respect to universality of N considering numerous situations when the rules of this
arithmetic, which is called the Diophantine arithmetic, are not true (cf., for example,
[6, 11, 13, 21, 22, 28, 29, 41, 42, 67, 73]).

Here we present only three of such examples although there are much more.

(i) One raindrop added to another raindrop does not make two raindrops but only one
[73]. Mathematically, it is described by the equality 1 + 1 = 1.

(ii) If one puts a lion and a rabbit in a cage, one will not find two animals in the cage
later on (cf. [42, 67]). In terms of numbers, it will mean 1 + 1 = 1.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3545

Email address: mburgin@math.ucla.edu (M. Burgin)

http://www.ejpam.com 1787 c© 2019 EJPAM All rights reserved.



M. Burgin / Eur. J. Pure Appl. Math, 12 (4) (2019), 1787-1810 1788

(iii) When a cup of milk is added to a cup of popcorn, then only one cup of mixture
will result because the cup of popcorn will very nearly absorb a whole cup of milk
without spillage [21]. So, in this case, we also have 1 + 1 = 1.

In addition, recently the expression 1 + 1 = 3 has become a very popular metaphor for
synergy in a variety of areas: in business and industry (cf., for example, ( [2, 33, 34, 38,
45, 58])), in economics and finance (cf., for example, [9], in psychology and sociology (cf.,
for example,[4, 12, 25, 26, 40, 55, 72]), library studies (cf., for example, [57]), biochemistry
and bioinformatics (cf., for example, [46]), computer science (cf., for example, [24, 30, 50])
, physics (cf., for example, [49]), medicine (cf., for example, [15, 64, 71]) and pedagogy
(cf., for example, [62]).

All these examples indicated existence of other non-Diophantine arithmetics, in which
it would be possible to explain all these cases in a rigorous mathematical way. Some
researchers predicted this (cf., for example, [29, 41, 66]. These predictions became true
when the first class of non-Diophantine arithmetics was discovered and explored in 1975 al-
though the first publication appeared in 1977 [10]. Later other classes of non-Diophantine
arithmetics were constructed [7, 11]. Recently non-Diophantine arithmetics found ex-
plicit applications in physics [17, 18, 20] and psychology [19] although implicit utilization
non-Diophantine arithmetics in physics and psychology existed for quite a while (cf., for
example, [52–54, 56]).

Following the classical understanding of arithmetic, here non-Diophantine arithmetics
are treated as arithmetics of natural numbers although it is also possible, for example, to
consider non-Diophantine arithmetics of real or integer numbers.

Construction of non-Diophantine arithmetics is based on more general mathematical struc-
tures, which are called abstract prearithmetics, as well as on the projectivity relation be-
tween abstract prearithmetics [7, 10, 11]. In a similar way, as set theory forms a foundation
for mathematics, the theory of abstract prearithmetics provides foundations for the theory
of the Diophantine arithmetic and non-Diophantine arithmetics.

The term arithmetic means not only a mathematical structure but also a branch of
mathematics aimed at the study of number systems with operations and relations. This
allows treating abstract prearithmetics as the basic structures in the field of arithmetic.
In addition, the theory of abstract prearithmetics includes theories of various conventional
mathematical structures, such as rings, semirings, fields, ordered rings, ordered fields,
lattices and Boolean algebras, as its subtheories. This allows using constructions from
the theory of abstract prearithmetics for its subtheories of conventional mathematical
structures. For instance, it is possible to study projectivity relations for rings or Boolean
algebras. Abstract prearithmetics also provide a unified algebraic context for some tra-
ditional mathematical constructions, such as logarithmic scales, modular arithmetics and
computer arithmetics, which are used in many applications in mathematics, science and
technology.
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In essence, an abstract prearithmetic is a universal algebra (algebraic system) with two bi-
nary operations and a partial order. Operations are called addition and multiplication but
in a general case, there are no restrictions on these operations. Some of abstract prearith-
metics are numerical, that is, their elements are numbers, e.g., natural numbers or real
numbers. A numerical prearithmetic that satisfies additional conditions, in particular,
containing all natural numbers and no other elements is called an arithmetic of natural
numbers. A numerical prearithmetic that satisfies additional conditions, in particular,
contains all integer numbers and no other elements is called an arithmetic of integer num-
bers. Everybody knows the conventional Diophantine arithmetic N of natural numbers.
However, there are also many non-Diophantine arithmetics of natural numbers introduced
and studied in [5–7, 10, 11].

An important relation between prearithmetics or arithmetics is projectivity as it is demon-
strated in [5, 7, 11]. It has three types: weak projectivity, projectivity per se and exact
projectivity. These relations allow deducing properties of one arithmetic or prearith-
metic from properties of another arithmetic or prearithmetic. Besides, they are used for
building new prearithmetics and arithmetics. Projectivity between two prearithmetics
(arithmetics) means that both operations – addition and multiplication - of one them
are expressed using the corresponding operation in the second one by means of the same
function (parameter of the projectivity).

The goal of this paper is the further development of the theory of abstract prearith-
metics by considering different forms of weak projectivity, in which projectivity connects
separate operations, e.g., addition or multiplication. That is why it is called partial weak
projectivity. It allows building new prearithmetics or arithmetics from the existing ones
by changing only one operation or in a different way changing both operations – addition
and multiplication – using specific parameters for each of them. In turn, we also obtain
more flexible tools for finding relations between properties of prearithmetics or arithmetics
connected by partial weak projectivity relations.

The author would like to express gratitude to the reviewers for their useful remarks.

2. Abstract prearithmetics

An abstract prearithmetic is a set (often a set of numbers) A with a partial order ≤
and two binary operations + (addition) and ◦ (multiplication), which are defined for all
its elements. It is denoted by A = (A; +, ◦,≤). The set A is called the set of elements or
set of numbers or the carrier of the prearithmetic A. As always, if x ≤ y and x 6= y, then
we denote this relation by x < y. Operation + is called addition and operation ◦ is called
multiplication in the abstract prearithmetic A.

Note that an abstract prearithmetic can have more than two operations and more than
one order relation.
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Example 1. Naturally, the conventional Diophantine arithmetic N of all natural num-
bers, the conventional arithmetic W of all whole numbers, the conventional arithmetic Z
of all integer numbers, the conventional arithmetic Q of all rational numbers, the conven-
tional arithmetic R of all real numbers and the conventional arithmetic C of all complex
numbers are abstract prearithmetics.

Example 2. Another example of abstract prearithmetics is modular arithmetic, which is
sometimes known as residue arithmetic or clock arithmetic [48]. It is studied in mathe-
matics and used in physics and computing. In modular arithmetic, operations of addition
and multiplication are defined but in contrast to the conventional arithmetic, its numbers
form a cycle upon reaching a certain value, which called the modulus. A rigorous approach
to the theory of modular arithmetic was worked out by Carl Friedrich Gauss.

Example 3. Many algebraic structures studied in algebra are abstract prearithmetics with
a trivial order, i.e., any ring, lattice, Boolean algebra, linear algebra, field, Ω-group, Ω-
ring, Ω-algebra [1, 48], topological ring, topological field, normed ring, normed algebra,
normed field, and in essence, any universal algebra with two operations is an abstract
prearithmetic with a trivial order. The same structures with nontrivial order are also
abstract prearithmetics.

Examples are given by ordered rings, ordered linear algebras and ordered fields. Be-
sides, it is possible to treat universal algebras with one operation as abstract prearithmetics
with a trivial order and trivial multiplication.

All these examples show that conventional mathematical structures are abstract prearith-
metics. However, there are many unusual abstract prearithmetics.

Example 4. Let us consider the set N of all natural numbers with the standard order ≤,
addition +, multiplication · and introduce the following operations:

a⊕ b = a · b

a⊗ b = ab

Then the system A = (N ;⊕,⊗,≤) is an abstract prearithmetic with addition ⊕ and
multiplication ⊗.

Example 5. Let us consider the set R++ of all positive real numbers is with the standard
order ≤, addition +, multiplication ·, division ÷ and introduce the following operations:

a� b = a + b

a> b = a÷ b

Then the system B = (R++;�,>,≤) is an abstract prearithmetic with addition � and
multiplication >.
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Example 6. Semirings in general and idempotent semirings, in particular, are abstract
prearithmetics with a trivial order ([47] Golan, 1999). Many researchers utilized idempo-
tent semirings and matrices over such semirings for solving various applied problems in
computer science and discrete mathematics (cf., for example, [14, 16, 32, 39, 63, 74, 75]).
Idempotent semi-rings also have many other applications, in particular, as the basic struc-
ture of idempotent analysis [44, 59, 60] and of its special case tropical analysis [51, 70].

Example 7. Let Rmax be the set A = R∪{−∞} with the operations ⊕ = max and � = +,
which is the usual addition in R and defining 0 = −∞ and 1 = 0. By construction, Rmax

is a commutative idempotent semi-ring and thus, a prearithmetic. It is very useful in
idempotent analysis [44, 59, 60].

Example 8. Let Rmin be the set A = R∪{+∞} with the operations ⊕ = min and � = +,
which is the usual addition in R and defining 0 = +∞ and 1 = 0. By construction, Rmin

is a commutative idempotent semi-ring and thus, a prearithmetic. It is also very useful in
idempotent analysis [44, 59, 60].

Example 9. Tropical semirings [65] and subtropical algebras with max or min as multi-
plication (Shiozawa, 1998) are prearithmetics.

There is a possibility to assemble different algebraic constructions similar to modules
and vector spaces using abstract prearithmetics instead of rings or fields. For instance,
taking an abstract prearithmetic A = (A; +, ◦,≤) and a natural number n, it is possi-
ble to build the abstract prearithmetic of n-dimensional A-vectors V nA = (V nA; +, ◦,≤
), elements of which are vectors in A. Namely, elements of n-dimensional A-vector
prearithmetic V nA = (V nA; +, ◦,≤), i.e., A-vectors, have the form (a1, a2, . . . , an) where
a1, a2, . . . , an are elements from the abstract prearithmetic A. The prearithmetic V nA is
called a vector expansion of the abstract prearithmetic A.

In a similar way, taking an abstract prearithmetic A = (A; +, ◦,≤) and a pair of
natural numbers n and m, it is also possible to build the abstract prearithmetic of
n ×m-dimensional A-matrices Mn×mA = (Mn×mA; +, ◦,≤), elements of which are ma-
trices in A. Namely, elements of n ×m-dimensional A-matrix prearithmetic Mn×mA =
(Mn×mA; +, ◦,≤) , i.e., A-matrices, have the form

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
. . . . . . . . . . . . . . .
am1 am2 am3 . . . amn


where all aij(i = 1, 2, 3, . . . ,m; j = 1, 2, 3, . . . , n) are elements from the abstract prearith-
metic A. The prearithmetic Mn×mA is called a matrix expansion of the abstract prearith-
metic A.

Addition and multiplication in these prearithmetics are defined coordinate-wise. For
instance, taking the arithmetic Z of integer numbers and two two-dimensional Z-vectors
(2, 3) and (4, 5) from the prearithmetic V 2Z of Z-vectors, we define their sum as (2, 3) +
(4, 5) = (2 + 4, 3 + 5) = (6, 8) and their product as (2, 3) ◦ (4, 5) = (2 · 4, 3 · 5) = (8, 15).
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Order in V nA is defined by the following condition:
If ( a1, a2, . . . , an) and (b1, b2, . . . , bn) are vectors from V nA, then
( a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) if and only if aj ≤ bj for all j = 1, 2, 3, . . . , n
For matrices, addition, multiplication and order are defined in a similar way.
Note that the defined multiplication is scalar multiplication of vectors and matrices,

which is different from vector and matrix multiplication.
Prearithmetics V nA and Mn×mA preserve many properties of the abstract prearith-

metic A. For instance, we have the following results.
Proposition 2.1. If addition is commutative in an abstract prearithmetic A, then

addition is commutative in the vector prearithmetic V nA and in the matrix prearithmetic
Mn×mA.

Indeed, if the identity a + b = b + a is true in the abstract prearithmetic A, then in
the vector prearithmetic V nA, we have

(a1, a2, . . . , an)+(b1, b2, . . . , bn) = (a1+b1, a2+b2, . . . , an+bn) = (b1+a1, b2+a2, . . . , bn+
an) = (b1, b2, . . . , bn) + (a1, a2, . . . , an)

It means that addition is commutative in the vector prearithmetic V nA.
Commutativity of addition in the matrix prearithmetic Mn×mA is proved in a similar

way.
The same is true for multiplication.
Proposition 2.2. If multiplication is commutative in an abstract prearithmetic A,

then multiplication is commutative in the vector prearithmetic V nA and in the matrix
prearithmetic Mn×mA.

Proof is similar to the proof of Proposition 2.1.
Proposition 2.3. If addition is associative in an abstract prearithmetic A, then

addition is associative in the vector prearithmetic V nA and in the matrix prearithmetic
Mn×mA.

Proof is similar to the proof of Proposition 2.1.
The same is true for multiplication.
Proposition 2.4. If multiplication is associative in an abstract prearithmetic A,

then multiplication is associative in the vector prearithmetic V nA and in the matrix
prearithmetic Mn×mA.

Proof is similar to the proof of Proposition 2.1.
In the Diophantine arithmetic N , multiplication is distributive with respect to addi-

tion, i.e., the following identities hold

x · (y + z) = x · y + x · z

(y + z) · x = y · x + z · x

However, in abstract prearithmetics, multiplication is not always commutative and we
need to discern three kinds of distributivity. Namely, distributivity from the left

x · (y + z) = x · y + x · z

and distributivity from the right
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(y + z) · x = y · x + z · x

Besides, multiplication is distributive with respect to addition when both identities
hold.

Proposition 2.5. If multiplication is distributive (distributive from the left or dis-
tributive from the right) with respect to addition in an abstract prearithmetic A, then
multiplication is distributive (distributive from the left or distributive from the right)
with respect to addition in the vector prearithmetic V nA and in the matrix prearithmetic
Mn×mA.

Proof is similar to the proof of Proposition 2.1.

Remark 1. Having an abstract prearithmetic A = (A; +, ◦,≤), it is possible to build not
only abstract prearithmetics of A-vectors and A-matrices but also abstract prearithmetics
of multidimensional matrices or arrays in A of arbitrary dimensions, i.e., multidimen-
sional A-matrices or A-arrays, and form their prearithmetics exploring what properties
they inherit from the initial abstract prearithmetic A.

Another way to build new prearithmetics from the existing ones utilizes projectivity
relations, different kinds of which are studied in the next section.

3. Weak projectivity in abstract prearithmetics

Let us take two abstract prearithmetics A1 = (A1; +1, ◦1,≤1) and A2 = (A2; +2, ◦2,≤2).

Definition 1. a) Addition +1 in the abstract prearithmetic A1 = (A1; +1, ◦1, · ≤1) is
called weakly projective with respect to addition +2 in the abstract prearithmetic A2 =
(A2; +2, ◦2,≤2) if there are three mappings g1 : A1 → A2, g2 : A1 → A2 and h : A2 → A1

and the following equality is valid for all elements a and b from A1:

a +1 b = h(g1(a) +2 g2(b))

b) The mappings g1 and g2 are called the projectors and the mapping h is called the
coprojector for the pair (+1,+2).

c) In this case, we say that addition in A2 is weakly projected onto addition in A1 ,
while addition in A1 is a weak projection of addition in A2.

We also say that there is a weak projectivity between addition in the prearithmetic
A1 and addition in the prearithmetic A2 and there is a weak inverse projectivity between
addition in the prearithmetic A2 and addition in the prearithmetic A1.

This means that there is partial weak projectivity between the prearithmetics A1 and
A2 . This type of partial weak projectivity is calledadditive weak projectivity.

Note that studied in [5, 7, 11] weak projectivity connects both operations in prearith-
metics while partial weak projectivity connects only one operation in prearithmetics.
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Example 10. It is possible to treat numerical average as a projection of the conventional
addition of numbers. Indeed, taking g1(a) = g2(a) = g(a) = a and h(x) = (12)x, the
average of numbers a and b is

1

2
(a + b) = h(g(a) + g(b)) = a⊕ b

It is possible to extend these projections to averages of any quantity of numbers, i.e.,

(1/n)(a1 + · · ·+ an) = h(g(a1) + · · ·+ g(an)) = a1 ⊕ · · · ⊕ an

A special case of this projection, i.e., when g is a bijection,h(x) = g−1(1/2x) in the
binary case and h(x) = g−1((1/n)x), in a general case, was introduced and studied by
Kolmogorov, Nagumo and de Finetti [23, 43, 61]. It is also used in the book [35].

Example 11. Weighted sum of numbers is a projection of the conventional addition of
numbers. Indeed, with the functions g1(a) = w1a, g2(a) = w2a as projectors and h(x) = x
as the coprojector, the weighted sum of numbers a and b is presented as

a⊕ b = w1a + w2b

Example 12. Weighted normalized sum of numbers is a projection of the conventional
addition of numbers. Indeed, with the functions g1(a) = w1a, g2(a) = w1a as projectors
and h(x) = x/(w1 + w2) as the coprojector, the weighted sum of numbers a and b is
presented as

a⊕ b = (w1a + w2b)/(w1 + w2)

It is necessary to remark that weak projectivity is intrinsically related to such mathe-
matical constructions as fiber bundles [37] and bidirectional named sets [8] as well as to
information processes of coding and decoding [68].

Let us consider two abstract prearithmetics A1 = (A1; +1, ◦1,≤1) and A2 = (A2; +2, ◦2,≤2

).
Proposition 3.1. If the operation +1 is commutative and weakly projective with

respect to the commutative operation +2 with the projectors g1 and g2, then the opera-
tion +1 is commutative and weakly projective with respect to the operation +2 with the
projectors g2 and g1.

Indeed, for any elements a and b from A1 , we have

a +1 b = h(g1(a) +2 g2(b)) = h(g2(b) +2 g1(a)) = b +1 a

This implies

b +1 a = h(g2(b) +2 g1(a))

i.e., the operation +1 is weakly projective with respect to the operation +2 with the
projectors g2 and g1.
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Proposition 3.1 allows to show when addition in one abstract prearithmetic is not
weakly projective with respect to addition in another abstract prearithmetic.

Example 13. Let us consider the conventional Diophantine arithmetic N of all natural
numbers and the abstract prearithmetic A = (N ;⊕,⊗,≤) where N is the set of all natural
numbers,≤ is the natural order on the set of all natural numbers, multiplication ⊗ is the
same as in N , while addition is defined by the following formula

a⊕ b = a

Addition ⊕ in the abstract prearithmetic A is not weakly projective with respect to
addition in N because otherwise by Proposition 3.1, it would be commutative and it is
not commutative.

At the same time, as we will see later, multiplication ⊗ in the abstract prearithmetic
A is weakly projective with respect to multiplication in N .

If we investigate properties of weak projectivity in the class of abstract prearithmetics,
we find that it is a transitive relation. Let us consider three abstract prearithmetics
A1 = (A1; +1, ◦1,≤1),A2 = (A2; +2, ◦2,≤2) and A3 = (A3; +3, ◦3,≤3).

Proposition 3.2. If the operation +1 is weakly projective with respect to the opera-
tion +2 and the operation +2 is weakly projective with respect to the operation +3 , then
the operation +1 is weakly projective with respect to the operation +3.

Proof. Let us assume that the operation +1 in an abstract prearithmetic A1 =
(A1; +1, ◦1,≤1) is weakly projective with respect to the operation +2 an abstract prearith-
metic A2 = (A2; +2, ◦2,≤2) with the projectors g11 : A1 → A2, g12 : A1 → A2 , and the
coprojector h : A2 → A1 for the pair (A1,A2) and the operation +2 is weakly projective
with respect to the operation +3 in an abstract prearithmetic A3 = (A3; +3, ◦3,≤3) with
the projectors g21 : A2 → A3, g22 : A2 → A3 , and the coprojector l : A3 → A2 for
the pair (A2,A3). Then we can define mappings qi = g1ig2i : A1 → A3(i = 1, 2) and
p = hl : A3 → A1 . Let us consider relations between operations +1 and +3 .

a +1 b = h(g11(a) +2 g12(b)) = h(l(g21(g11(a)) +3 g22(g12(b))))

= hl(g21g11(a) +3 g22g12(b)) = p(q1(a) +3 q2(b))

Consequently,

a +1 b = p(q1(a) +3 q2(b))

for any elements a and b from A1. It means the operation +1 is weakly projective with
respect to the operation +3.

Proposition is proved.

Proposition 3.2 allows proving the following result.

Theorem 1. Abstract prearithmetics with weak projectivity relations for addition form
the category AAWP where objects are abstract prearithmetics and morphisms are weak
projectivity relations between additions.
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Indeed, the identity function defines weak projectivity relations for addition of an
abstract prearithmetic with itself and by Proposition 3.2, the sequential composition of
weak projectivity relations is a weak projectivity relation.

In this category, the identity morphism of an abstract prearithmetic A is the weak
projectivity in which both projectors and the coprojector are identity mappings of this
prearithmetic.

An important special case of weak projectivity is obtained when both projections
coincide.

Definition 2. a) Addition +1 in the abstract prearithmetic A1 = (A1; +1, ◦1,≤1) is called
weakly monoprojective with respect to addition +2 in the abstract prearithmetic A2 =
(A2; +2, ◦2,≤2) if +1 is weakly projective with respect to addition +2 and g1 = g2 , i.e.,
there is only one projector.

b) In this case, we say that addition in A2 is weakly monoprojected onto addition in
A1 while addition in A1 is a weak monoprojection of addition in A2.

We also say that there is a weak monoprojectivity between addition in the prearithmetic
A1 and addition in the prearithmetic A2 and there is an inverse weak monoprojectivity
between addition in the prearithmetic A2 and addition in the prearithmetic A1. This
relation is also calledadditive weak monoprojectivity between prearithmetics A1 and A2.

Example 14. Weak projectivity in non-Diophantine arithmetics is an example of weak
monoprojectivity between addition in one prearithmetic and addition in another prearith-
metic [5, 11].

Let us consider two abstract prearithmeticsA1 = (A1; +1, ◦1,≤1) and
A2 = (A2; +2, ◦2,≤2).

Proposition 3.3. If the operation +1 is weakly monoprojective with respect to the op-
eration +2 with the projector g and the operation +2 is commutative in the prearithmetic
A2 , then the operation +1 is commutative in the prearithmetic A1.

Indeed, for any elements a and b from A1, we have

a +1 b = h(g(a) +2 g(b)) = h(g(b) +2 g(a)) = b +1 a

This shows that inverse weak projectivity preserves commutativity of addition.
To preserve associativity of addition in inverse weak projectivity, we need stronger

conditions.
Proposition 3.4. If the operation +1 is weakly monoprojective with respect to the

operation +2 with the coprojector h and the projector g, which is a homomorphism with
respect to addition +1 , i.e., g(a +1 b) = g(a) +2 g(b) for arbitrary elements a and b from
A1, and the operation +2 is associative in the prearithmetic A2 , then the operation +1

is associative in the prearithmetic A1.
Proof. Assuming that g is a homomorphism with respect to addition and the operation

+2 is associative in the prearithmetic A2, let us take arbitrary elements a and b from A1.
Then by definition, we have
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g(a +1 b) = g(h(g(a) +2 g(b))) = g(a) +2 g(b) (1)

Equality (1) implies the following equalities for arbitrary elements a , b and c from A1

(a +1 b) +1 c = h(g(h(g(a) +2 g(b))) +2 g(c)) = h((g(a) +2 g(b))) +2 g(c))

a +1 (b +1 c) = h(g(a) +2 g(h(g(b) +2 g(c)))) = h(g(a) +2 (g(b) +2 g(c))))

As the operation +2 is associative in the prearithmetic A2 , we have

(a +1 b) +1 c = h((g(a) +2 g(b)) +2 g(c)) =

h(g(a) +2 (g(b)) +2 g(c))) = a +1 (b +1 c)

Proposition is proved.

Proposition 3.4 implies the following result.
Let us consider three abstract prearithmetics A1 = (A1; +1, ◦1,≤1),A2 = (A2; +2, ◦2,≤2)
and A3 = (A3; +3, ◦3,≤3).

Proposition 3.5. If the operation +1 is weakly monoprojective with respect to the
operation +2 and the operation +2 is weakly monoprojective with respect to the operation
+3 , then the operation +1 is weakly monoprojective with respect to the operation +3.

Proof is similar to the proof of Proposition 3.2.
Proposition 3.5 allows proving the following result.

Theorem 2. Abstract prearithmetics with weak monoprojectivity relations for addition
form the category AAWMP where objects are abstract prearithmetics and morphisms are
weak monoprojectivity relations between additions.

Proof is similar to the proof of Theorem 1.
Monoprojectivity allows turning a universal algebra with one binary operation into an

abstract prearithmetic.
Let us consider a universal algebra A = (A; •) and with one binary operation •, i.e., a

groupoid, and an abstract prearithmetic A2 = (A2; +2, ◦2,≤2).
Proposition 3.6. For any two mappings g : A → A2 and h : A2 → A , it is possible

to extend the algebra A to an abstract prearithmetic A1 = (A; +, •,≤), in which addition
+ is weakly monoprojective with respect to addition +2 .

Indeed, it is possible to take the trivial partial order on A and define addition + in a
by the following formula

a + b = h(g(a) +2 g(b))

The abstract prearithmetic A1 = (A; +, •,≤) is called the extension of A by the pair
(g, h).

The utilized construction implies the following result.
Let us consider three mappings g : A→ A2, h : A2 → A and f : A2 → A .
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Proposition 3.7. If mappings f and h coincide on the image g(A) of A , then the
extensions of A by the pairs (g, h) and (g, f) coincide.

Proof follows directly from definitions.
Abstract prearithmetics have two operations. This gives three more concepts of weak

projectivity and three more concepts of weak monoprojectivity.

Definition 3. a) Multiplication ◦1 in the abstract prearithmetic A1 = (A1; +1, ◦1,≤1)
is called weakly projective with respect to multiplication ◦2 in the abstract prearithmetic
A2 = (A2; +2, ◦2,≤2) if there are three mappings g1 : A1 → A2, g2 : A1 → A2 and
h : A2 → A1 and the following equality is valid for all elements a and b from A1:

a ◦1 b = h(g1(a) ◦2 g2(b))

b) The mappings g1 and g2 are called the projectors and the mapping h is called the
coprojector for the pair (◦1, ◦2).

c) In this case, we say that multiplication in A2 is weakly projected onto addition in
A1 while multiplication in A1 is a weak projection of addition in A2 .

We also say that there is a weak projectivity between multiplication in the prearithmetic
A1 and multiplication in the prearithmetic A2 and there is a weak inverse projectivity
between multiplication in the prearithmetic A2 and multiplication in the prearithmetic
A1.

This means that there is partial weak projectivity between the prearithmetics A1 and
A2. This type of partial weak projectivity is called multiplicative weak projectivity.

Let us consider two abstract prearithmetics A1 = (A1; +1, ◦1,≤1) and
A2 = (A2; +2, ◦2,≤2).

Proposition 3.8. If multiplication ◦1 is commutative and weakly projective with
respect to the commutative multiplication ◦2 with the projectors g1 and g2, then multi-
plication ◦1 is commutative and weakly projective with respect to multiplication ◦2 with
the projectors g2 and g1.

Proof is similar to the proof of Proposition 3.1.
Proposition 3.8 allows to show when multiplication in one abstract prearithmetic is

not weakly projective with respect to multiplication in another abstract prearithmetic.

Example 15. Let us consider the conventional Diophantine arithmetic N of all natural
numbers and the abstract prearithmetic A = (N ;⊕,⊗,≤) where N is the set of all natural
numbers, ≤ is the natural order on the set of all natural numbers, addition ⊕ is the same
as in N , while multiplication ⊗ is defined by the following formula

a⊗ b = b

Multiplication ⊗ in the abstract prearithmetic A is not weakly projective with respect
to multiplication in N because otherwise by Proposition 3.8, it would be commutative
and it is not commutative. At the same time, addition ⊕ in the abstract prearithmetic A
is weakly projective with respect to addition in N .
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It is also possible that both operations in two abstract prearithmetics are not weakly
projective with respect to one another.

Example 16. Let us consider the conventional Diophantine arithmetic N of all natural
numbers and the abstract prearithmetic A = (N ;⊕,⊗,≤) where N is the set of all natural
numbers and ≤ is the natural order on the set of all natural numbers, while addition ⊕
and multiplication ⊗ are defined by the following formulas

a⊕ b = a

a⊗ b = b

Multiplication ⊗ in the abstract prearithmetic A is not weakly projective with respect
to multiplication in N because otherwise by Proposition 3.8, it would be commutative
and it is not commutative. Addition ⊕ in the abstract prearithmetic A is not weakly
projective with respect to addition in N because otherwise by Proposition 3.1, it would
be commutative and it is not commutative.

Similarly to monoprojectivity of addition, we define weak monoprojectivity of multi-
plication.

Definition 4. a) Multiplication ◦1 in the abstract prearithmetic A1 = (A1; +1, ◦1,≤1) is
called weakly monoprojective with respect to multiplication ◦2 in the abstract prearithmetic
A2 = (A2; +2, ◦2,≤2) if ◦1 is weakly projective with respect to ◦2 and g1 = g2 , i.e., there
is only one projector.

b) In this case, we say that multiplication in A2 is weakly monoprojected onto multi-
plication in A1 while multiplication in A1 is a weak monoprojection of multiplication in
A2.

We also say that there is a weak monoprojectivity between multiplication in the prearith-
metic A1 and multiplication in the prearithmetic A2 and there is an inverse weak mono-
projectivity between multiplication in the prearithmetic A2 and multiplication in the
prearithmetic A1. This relation is also called multiplicative weak monoprojectivity be-
tween prearithmetics A1 and A2.

Example 17. Weak projectivity in non-Diophantine arithmetics is an example of weak
monoprojectivity between multiplication in one prearithmetic and multiplication in another
prearithmetic [5, 11].

Note that in a general case, addition and multiplication in an abstract prearithmetic
are simply names of two operations without any additional properties. That is why it
is possible to directly convert addition to multiplication or multiplication to addition by
renaming. As a result, it is possible to deduce properties of weak projectivity or weak
monoprojectivity between multiplication and multiplication from the properties of weak
projectivity or weak monoprojectivity between addition and addition. For instance, we
have the following results.



M. Burgin / Eur. J. Pure Appl. Math, 12 (4) (2019), 1787-1810 1800

Let us consider three abstract prearithmetics A1 = (A1; +1, ◦1,≤1),A2 = (A2; +2, ◦2,≤2)
and A3 = (A3; +3, ◦3,≤3).

Proposition 3.9. If the operation ◦1 is weakly projective (monoprojective) with
respect to the operation ◦2 and the operation ◦2 is weakly projective (monoprojective) with
respect to the operation ◦3 , then the operation ◦1 is weakly projective (monoprojective)
with respect to the operation ◦3.

Proof is similar to the proof of Proposition 3.2.
Proposition 3.9 allows proving the following result.

Theorem 3. Abstract prearithmetics with weak projectivity relations for multiplication
form the category AMWP (category AMWMP) where objects are abstract prearithmetics
and morphisms are weak projectivity (monoprojectivity) relations between multiplications.

Proof is similar to the proof of Theorem 1.
Taking addition and multiplication, we obtain two new concepts.

Definition 5. Addition +1 in the abstract prearithmetic A1 = (A1; +1, ◦1,≤1) is called
weakly projective with respect to multiplication ◦2 in the abstract prearithmetic A2 =
(A2; +2, ◦2,≤2) if there are three mappings g1 : A1 → A2, g2 : A1 → A2 and h : A2 → A1

and the following equality is valid for all elements a and b from A1 :

a +1 b = h(g1(a) ◦2 g2(b))
b) The mappings g1 and g2 are called the projectors and the mapping h is called the

coprojector for the pair (+1, ◦2).
c) In this case, we say that multiplication in A2 is weakly projected onto addition in

A1 while addition in A1 is a weak projection of multiplication in A2 .

We also say that there is a weak projectivity between addition in the prearithmetic
A1 and multiplication in the prearithmetic A2 and there is a weak inverse projectivity
between multiplication in the prearithmetic A2 and addition in the prearithmetic A1.

In a similar way, we define weak monoprojectivity.

Definition 6. a) Addition +1 in the abstract prearithmetic A1 = (A1; +1, ◦1,≤1) is called
weakly monoprojective with respect to multiplication ◦2 in the abstract prearithmetic A2 =
(A2; +2, ◦2,≤2)if +1 is weakly projective with respect to ◦2 and g1 = g2 , i.e., there is only
one projector.

b) In this case, we say that multiplication in A2 is weakly monoprojected onto addition
in A1 while addition in A1 is a weak monoprojection of multiplication in A2.

In this case, we also say that there is a weak monoprojectivity between addition in
the prearithmetic A1 and multiplication in the prearithmetic A2 and there is an inverse
weak monoprojectivity between multiplication in the prearithmetic A2 and addition in the
prearithmetic A1.

Renaming of operations in abstract prearithmetics allows obtaining properties of weak
projectivity or weak monoprojectivity between addition and multiplication from the prop-
erties of weak projectivity or weak monoprojectivity between addition and addition.
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Taking multiplication and addition, we obtain the following concepts.

Definition 7. Multiplication ◦1 in the abstract prearithmetic A1 = (A1; +1, ◦1,≤1) is
called weakly projective with respect to addition +2 in the abstract prearithmetic A2 =
(A2; +2, ◦2,≤2) if there are three mappings g1 : A1 → A2, g2 : A1 → A2 and h : A2 → A1

and the following equality is valid for all elements a and b from A1:

a ◦1 b = h(g1(a) +2 g2(b))

b) The mappings g1 and g2 are called the projectors and the mapping h is called the
coprojector for the pair (◦1,+2).

c) In this case, we say that addition in A2 is weakly projected onto multiplication in
A1 while multiplication in A1 is a weak projection of addition in A2.

We also say that there is a weak projectivity between multiplication in the prearithmetic
A1 and addition in the prearithmetic A2 and there is a weak inverse projectivity between
addition in the prearithmetic A2 and multiplication in the prearithmetic A1.

In a similar way, we define weak monoprojectivity.

Definition 8. a) Multiplication ◦1 in the abstract prearithmetic A1 = (A1; +1, ◦1,≤1)
is called weakly monoprojective with respect to addition +2 in the abstract prearithmetic
A2 = (A2; +2, ◦2,≤2) if ◦1 is weakly projective with respect to +2 and g1 = g2 , i.e., there
is only one projector.

b) In this case, we say that addition in A2 is weakly monoprojected onto multiplication
in A1 while multiplication in A1 is a weak monoprojection of addition in A2.

We also say that there is a weak monoprojectivity between multiplication in the prearith-
metic A1 and addition in the prearithmetic A2 and there is an inverse weak monoprojec-
tivity between addition in the prearithmetic A2 and multiplication in the prearithmetic
A1.

Example 18. Implicitly people started using weak monoprojectivity between multiplication
and addition with the invention (discovery) of logarithms in the early 17th century. Indeed,
the logarithmic weak monoprojectivity is defined by the projector g1(a) = g2(a) = log a and
coprojector h(x) = expx of the arithmetic R of real numbers into itself. Namely, we have

a⊗ b = 2log2 a+log2 b = 2log−2a·b = a · b

or

a⊗ b = 10log10 a+log10 b = 10log10 a·b = a · b

Renaming of operations in abstract prearithmetics allows obtaining properties of weak
projectivity or weak monoprojectivity between multiplication and addition from the prop-
erties of weak projectivity or weak monoprojectivity between addition and addition.

While weak projectivity connects two operations, biprojectivity connects all operations
from two abstract prearithmetics.
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Let us take two abstract prearithmetics A1 = (A1; +1, ◦1,≤1) and A2 = (A2; +2, ◦2,≤2)
and consider six mappings g1 : A1 → A2, g2 : A1 → A2, g3 : A1 → A2, g4 : A1 → A2, h1 :
A2 → A1 and h2 : A2 → A1.

Definition 9. An abstract prearithmetic A1 = (A1; +1, ◦1,≤1) is called weakly bipro-
jective with respect to an abstract prearithmetic A2 = (A2; +2, ◦2,≤2) if addition +1 in
A1 is weakly projective with respect to addition +2 in A2 with the projectors g1 and g2
and the coprojector h1 while multiplication ◦1 in A1 is weakly projective with respect to
multiplication ◦2 in A2 with the projectors g3 and g4 and the coprojector h2 .

We also say that there is a weak biprojectivity between the prearithmetic A1 and the
prearithmetic A2 .

Example 19. Weak projectivity of abstract prearithmetics studied in [5, 7, 11] is a special
case of weak biprojectivity when all projectors coincide, i.e., g1 = g2 = g3 = g4 , and both
coprojectors coincide, i.e., h1 = h2.

Example 20. Let us consider the conventional Diophantine arithmetic N of all natu-
ral numbers and the abstract prearithmetic A = (N ;⊕,⊗,≤) where N is the set of all
natural numbers and ≤ is the natural order on the set of all natural numbers. To define
multiplication ⊗ and addition ⊕, we take the following functions

g1(n) = g2(n) = n + 5

g3(n) = g4(n) = 3n

h1(n) = h2(n) = 1N

Then for arbitrary natural numbers m and n, we have

m⊕ n = (m + 5) + (n + 5) = (m + n) + 10

m⊗ n = (3m)⊗ (3n) = 9mn

We see that the abstract prearithmetic A is weakly biprojective with respect to the
arithmetic N although projectors for addition and multiplication are different. This shows
that in a general case, weak biprojectivity of abstract prearithmetics does not coincide with
weak projectivity of abstract prearithmetics studied in [5, 7, 11].

Let us consider some properties of weak biprojectivity taking three abstract prearith-
metics A1 = (A1; +1, ◦1,≤1), A2 = (A2; +2, ◦2,≤2) and A3 = (A3; +3, ◦3,≤3).

Proposition 3.10. If the abstract prearithmetic A1 is weakly biprojective with respect
to the abstract prearithmetics A2 and the abstract prearithmetic A2 is weakly biprojec-
tive with respect to the abstract prearithmetic A3 , then the abstract prearithmetic A1 is
weakly biprojective with respect to the abstract prearithmetic A3.



M. Burgin / Eur. J. Pure Appl. Math, 12 (4) (2019), 1787-1810 1803

Proof is similar to the proof of Proposition 3.2.
As weak projectivity studied in [5, 7, 11] is a particular case of weak biprojectivity, we

have the following result.

Corollary 1. If the abstract prearithmetic A1 is weakly projective with respect to the ab-
stract prearithmetic A2 and the abstract prearithmetic A2 is weakly projective with respect
to the abstract prearithmetic A3 , then the abstract prearithmetic A1 is weakly projective
with respect to the abstract prearithmetic A3.

Proposition 3.10 allows proving the following result.

Theorem 4. Abstract prearithmetics with weak biprojectivity relations form the category
AWBP where objects are abstract prearithmetics and morphisms are weak biprojectivity
relations between abstract prearithmetics.

Proof is similar to the proof of Theorem 1.

Corollary 2. Abstract prearithmetics with weak projectivity relations form the category
AWP where objects are abstract prearithmetics and morphisms are weak biprojectivity
relations between abstract prearithmetics.

Corollary 3. The category AWP is a wide subcategory of the category AWBP.

Corollary 4. The categories AAWP and AMWP are wide subcategories of the category
AWBP.

Biprojectivity allows turning an arbitrary set into an abstract prearithmetic.
Let us consider a set A and an abstract prearithmetic A2 = (A2; +2, ◦2,≤2).
Proposition 3.11. For any six mappings g1 : A→ A2, g2 : A→ A2, g3 : A→ A2, g4 :

A→ A2, h1 : A2 → A , and h2 : A2 → A , it is possible to define an abstract prearithmetic
A = (A; +, ◦,≤), in which is weakly biprojective with respect to the abstract prearithmetic
A2 with the projectors g1 and g2 and the coprojector h1 for addition and the projectors
g3 and g4 and the coprojector h2 for multiplication.

Indeed, it is possible to take the trivial partial order on A and define addition + in A
by the formula

a + b = h1(g1(a) +2 g2(b))

multiplication ◦ in a by the formula

a ◦ b = h2(g3(a) ◦2 g4(b))

The obtained abstract prearithmetic A = (a; +, ◦,≤) is called the biprojective exten-
sion of A by the function vector (g1, g2, g3, g4, h1, h2).
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The utilized construction implies the following result.

Let us consider eight mappings g1 : A → A2, g2 :→ A2, g3 :→ A2, g4 :→ A2, h1 : A2 →
A, and h2 : A2 → A, f1 : A2 → A , and f2 : A2 → A.

Proposition 3.12. If g1 = g2, g3 = g4 , mappings f1 and h1 coincide on the abstract
prearithmetic PA(g1(A)) generated by image g1(A) of A in A2 and mappings f2 and h2
coincide on the abstract prearithmetic PA(g3(A)) generated by image g3(A) of A in A2,
then the biprojective extensions of A by the function vectors (g1, g2, g3, g4, h1, h2) and
(g1, g2, g3, g4, f1, f2) coincide.

Proof follows directly from definitions.

4. Conclusion

We have explained that abstract prearithmetics encompass a wide range of various
mathematical systems, which are used in traditional and novel mathematical domains and
applications. We also demonstrated how projectivity relations between abstract prearith-
metics allow one to deduce properties of one abstract prearithmetic from properties of
another one. Techniques for building new abstract prearithmetics from given ones were
elaborated and studied.

It is necessary to remark that traditionally the main relation between algebraic systems is
homomorphism with its special types such as monomorphism, epimorphism and isomor-
phism. The basic property of homomorphisms is that they preserve operations. Systems
of algebraic systems such as groups, vector spaces or rings with their homomorphisms
form categories.

In the theory of non-Diophantine arithmetics, another basic relation between algebraic
systems is introduced. It is called projectivity and has three basic types: weak projectiv-
ity, projectivity per se and exact projectivity. In this work, we show that there also partial
and total weak projectivity while partial weak projectivity has three types: additive weak
projectivity, multiplicative weak projectivity and weak biprojectivity. The key property of
projectivity relations is that they transfer operations from one prearithmetic to another.
Similar to homomorphisms, systems of prearithmetics with their projectivity relations of
a fixed type form categories as it is demonstrated in this paper.

The obtained results open potential directions for future research. For instance, it would
be interesting to study properties of categories of abstract prearithmetics with different
types of partial weak projectivity or monoprojectivity relations as morphisms. In particu-
lar, we can explore relations between these categories and traditionally studied categories,
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such as categories of sets or categories of groups.

In this paper, we study abstract prearithmetics and partial weak projectivity between
them. That is why another appealing direction for future research is exploration of par-
tial weak projectivity and monoprojectivity relations between operations in numerical
prearithmetics and arithmetics, which form an important class of prearithmetics contain-
ing non-Diophantine arithmetics.

One more attractive direction of research in this area is introduction and study of stronger
relations of partial projectivity, biprojectivity and monoprojectivity between operations
in prearithmetics. These relations can disclose closer ties between operations in related
prearithmetics.
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[35] GH Hardy, JE Littlewood, and G Pólya. Inequalities. Cambridge University Press,
Cambridge, 1934.

[36] H Herrlich and G.E. Strecker. Category theory. Allyn and Bacon Inc., Boston, 1973.

[37] Dale Husemoller. Fibre bundles. Springer Verlag, Berlin/New York, 1994.

[38] B Jude. Synergy - 1 + 1 = 3. https://www.linkedin.com/pulse/

20140820054514-115081853-synergy-1-1-3, Aug 20, 2014,.

[39] Stephen Cole Kleene. Representation of events in nerve sets and finite automata.
Automata Studies, pages 3–40, 1956.

[40] Emerson Klees. One Plus One Equals Three - pairing Man/Woman Strengths: Role
Models of Teamwork (The Role Models of Human Values Series, Vol. 1). Cameo
Press, New York, 2006.

[41] Morris Kline. Mathematics for the Nonmathematician. Dover Publications, New
York, 1967.



REFERENCES 1808

[42] Morris Kline. Mathematics: The loss of certainty. Oxford University Press, New
York, 1980.

[43] Andrey Nikolaevich Kolmogorov. Sur la notion de la moyenne. Atti Accad. Naz.Lincei,
12:388–391, 1930.

[44] Vasily Kolokoltsov and Victor P Maslov. Idempotent analysis and its applications,
volume 401. Springer Science & Business Media, 1997.

[45] S Kress. Synergy: When one plus one equals three. http://www.

summitteambuilding.com/synergy-when-one-plus-one-equals-three, 2015.

[46] Matthias Kroiss, Utz Fischer, and Jörg Schultz. When one plus one equals three:
Biochemistry and bioinformatics combine to answer complex questions. Fly, 3(3):212–
214, 2009.

[47] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. EATCS Mono-
graphs on Theoretical Computer Science, 5, 1986.

[48] AG Kurosh. Lectures on General Algebra. Chelsea P. C., New York, 1963.

[49] Marion Lang. One plus one equals three: Multi-line fiber lasers for nonlinear mi-
croscopy. Optik & Photonik, 9(4):53–56, 2014.

[50] R Lea. Why One Plus One Equals Three In Big Analytics. Forbes, May 27, 2016.

[51] Grigori L Litvinov. Maslov dequantization, idempotent and tropical mathematics: A
brief introduction. Journal of Mathematical Sciences, 140(3):426–444, 2007.

[52] R Duncan Luce. The mathematics used in mathematical psychology. The American
Mathematical Monthly, 71(4):364–378, 1964.

[53] R Duncan Luce. A psychophysical theory of intensity proportions, joint presentations,
and matches. Psychological Review, 109(3):520, 2002.

[54] RD Luce, Robert R Bush, and Eugene Ed Galanter. Handbook of mathematical
psychology: I. 1963.

[55] R Mane. Evolution of mutuality: one plus one equals three; formula characterizing
mutuality. La Revue du praticien, 2(5):302, 1952.

[56] Jean-Luc Marichal. Aggregation functions for decision making. Decision-making
Process: Concepts and Methods, pages 673–721, 2009.

[57] Kirsten L Marie. One plus one equals three: Joint-use libraries in urban areas—the
ultimate form of library cooperation. Library Leadership & Management, 21(1):23–28,
2007.



REFERENCES 1809

[58] Mitchell Lee Marks and Philip H Mirvis. Joining forces: Making one plus one equal
three in mergers, acquisitions, and alliances. Jossey-Bass, San Francisco, 2010.

[59] VP Maslov. Asymptotic methods for solving pseudodifferential equations. Nauka,
Moscow, 1987, (in Russian).

[60] VP Maslov and SN Samborskii (Eds.). Idempotent analysis. Amer. Math. Soc., New
York, 1992.
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