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Abstract. In this paper, it is a question of identification of the parameters in the equation of
Richards modelling the flow in unsaturated porous medium. The mixed formulation pressure
head-moisture content has been used. The direct problem was solved using Multiquadratic Radial
Basis Function ( RBF-MQ ) method which is a meshless method. The Newton-Raphson’s method
was used to linearize the equation. The function cost used is built by using the infiltration.
The optimization method used is a meta-heuristic called Modified hybrid Grey Wolf Optimizer
-Genetic Algorithm (HmGWOGA). A test on experimental data has been carried. We compared
the results with genetic algorithms. The results showed that this new method was better than
genetic algorithms.
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1. Introduction

The fluid movement in unsaturated porous medium is governed by the Richards equa-
tion [2, 24] which contains parameters that take into account type of the considered soil.
The calculation of the water balance on a soil-scale requires knowledge of infiltration that
is obtained by solving the unsaturated flow equation. However The hydrodynamic param-
eters of the soils involved in the equation are, in most cases, badly known. The values
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given in the literature are not precise values but intervals, hence the importance of the
inverse modeling.
Estimating parameters in unsaturated porous environments is not trivial. Indeed, it re-
quires numerical resolution of the Richards equation. The numerical methods used must
allow a good estimate of hydraulic pressure and water content. Several methods have
been proposed for solving the Richards equation: the finite difference method [2], the fi-
nite volume method [1], the finite element method, the mixed finite element method [6])
and the discontinuous finite element [22]. Theses methods are based on the mesh of the
domain in which the problem must be discretized. The mesh must obey certain rules. For
example, the elements should not be overwritten to prevent the associated Jacobian from
degenerating. This makes their implementation difficult and expensive ins some cases.
To overcome these shortcomings, meshless methods called Radial basis function (RBF)
have been developed since the 1970s. The idea is to reconstruct a function defined on a
continuous space from the set of discrete values taken by this function on a not connected
point cloud of the physical domain. Stevens and Power [23] used a implicit RBF method
to solve the pressure h formulation of Richards equation. More recently, F. Motaman and
al. [16] used the RBF-DQ method to solve the moisture content θ formulation. These two
formulations have limits. In this work, we use the RBF-MQ method to solve the mixed
formulation of Richards equation.
There exist many methods to solve the inverse problems [4, 12, 13, 19]. Most computing
software in hydrogeology use deterministic methods. However most of these methods re-
quire a good knowledge of the solution. Indeed, these algorithms can not detect a global
optimum and can stop with a local optimum. Moreover, these algorithms require a certain
regularity of the functions to be optimized. However, this regularity is not always checked.
Meta-heuristic optimization techniques are adapted better to the problems of optimization
in which the size of the space of research is important, where the parameters interact in a
complex way and where very little information on the function to be optimized is available
[7, 15]. The function to be optimized can thus be the result of a simulation. These algo-
rithms are often much more robust in their capacity to identify the total optimum with
less sensitivity to the initial condition.
Modified hybrid Grey Wolf Optimizer-Genetic Algorithm (HmGWOGA) proposed by
Sawadogo et al. [20] is a combination of Grey Wolf Optimizer algorithm (GWO) pro-
posed by S. Mirjalili et al [15] and a version of genetic algorithm proposed in [21]. Tests
were successfully performed on test functions [20]. In this work we use it for identifying
parameters of the Richards equation. The rest of the paper is organized as follows:
the second part is devoted to the equation of Richards in one dimension and his resolu-
tion by RBF-MQ method; in the third part, we present the inverse problem to solve; the
fourth part is devoted to the identification of the parameters of the equation of Richards
by HmGWOGA; the fifth section present the results and discussions.
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2. Direct problem

2.1. Mathematical model

There exist several formulations of the equation of Richards which models the flow in
unsaturated porous medium but in this work, we use the mixed formulation pressure head-
moisture content because the numerical solutions obtained with his mixed formulation are
more precise [2, 14].
In one dimension, the mixed formulation is given by :

∂θ(h)
∂t + ∂

∂z q(h) = f in Ω× [0, T ]

q(h) = −K(h)∂h∂z −K(h) in Ω× [0, T ]

h = hinit in Ω

h = gD on ∂ΩD × [0, T ]

q(h) = gN on ∂ΩN × [0, T ]

(1)

with :

• Ω = [a, b] ⊂ R represents a column of water infiltration;

• z denotes the vertical dimension:

• h[L] the pressure head;

• gD and gN are respectively imposed pressure and flow on the boundaries ∂ΩD and
∂ΩN ;

• q(h) the flow velocity;

• hinit is the initial pressure head and f is a source function;

• θ[L3/L3] the moisture content given by:

θ(h) =
θs − θr

(1 + (α|h|)n)m
+ θr (2)

where θr the moisture content to saturation (L3.L−3), θs the residual moisture con-
tent (L3.L−3), α a parameter of form related to the mean size of the pores (L−1),
n a parameter related to the distribution of the sizes of pores (−). According to
Mualem [17], we have m = 1− 1/n.

• K(h) is the insaturated hydraulic conductivity [L/T ]. We use the relation of Van
Genuchten [24] given by

K(Se) = KsS
1/2
e (1− (1− S1/m

e )m)2 (3)

with KS the effective saturated hydraulic conductivity [L/T ].
Se the effective saturation given by:

Se =

{
θ−θr
θs−θr si h < 0

1 si h ≥ 0
(4)
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h and θ are related by the moisture capacity function C(h)[1/L] defined by

C(h) =
∂θ

∂h
(5)

Whats gives

C(h) = −αn(θr − θs)sign(h)(
1

n
− 1)(α|h|)n−1(1 + (α|h|)n)1/n−2 (6)

To solve the problem (1), you need to know the parameters α, θS , θr, n and KS .

2.2. Numerical resolution of direct problem

2.2.1. Description of RBF-MQ method

Appeared in the 1970s [3], it was Kansa who introduced the PDE resolution using the
Radial Basis Funtions (RBF) method [10, 11].
We consider a numerical function u(x), x ∈ Rd where d is the space dimension. The
MQ-RBF method consist to approximate u by

û(x) =
M∑
j=1

λjφ(‖x− xj‖, c), x ∈ Rd (7)

where
xj , j = 1, . . . ,M are the centers of the RBF approximation
φ the basic radial function of Hardy [8] given by φ(r, c) =

√
r2 + c2

c the precision parameter.
Expansion coefficients λj , j = 1, . . . ,M are determined by setting:

M∑
j=1

λjφ(‖xi − xj‖, c) = u(xi), i = 1, . . . ,M

Which is expressed in the following matrix form:

Aλ = U (8)

where
λ = (λ1, λ2, . . . , λM )>, U = (u(x1), u(x2), . . . , u(xM ))>

and

A =


φ(‖x1 − x1‖, c) φ(‖x1 − x2‖, c) . . . . . . φ(‖x1 − xM‖, c)
φ(‖x2 − x1‖, c) φ(‖x2 − x2‖, c) . . . . . . φ(‖x2 − xM‖, c)

...
...

. . .
...

...
...

. . .
...

φ(‖xM − x1‖, c) φ(‖xM − x2‖, c) . . . . . . φ(‖xM − xM‖, c)
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According to [9] λ is given by
λ = A−1U (9)

The k order derivative of û at the center xi is:

∂kû(xi)

∂xk
=

M∑
j=1

λj
∂k

∂xk
φ(‖xi − xj‖, c), i = 1, 2, . . . ,M (10)

In matrix form , the derivative (10) is written as :

U (k) = A(k)λ (11)

with

U (k) =

(
∂kû(x1)

∂xk
,
∂kû(x2)

∂xk
, . . . ,

∂kû(xM )

∂xk

)
and

A(k) =


∂k

∂xk φ(‖x1 − x1‖, c) ∂k

∂xk φ(‖x1 − x2‖, c) . . . . . . ∂k

∂xk φ(‖x1 − xM‖, c)
∂k

∂xk φ(‖x2 − x1‖, c) ∂k

∂xk φ(‖x2 − x2‖, c) . . . . . . ∂k

∂xk φ(‖x2 − xM‖, c)
...

...
. . .

...
...

...
. . .

...
∂k

∂xk φ(‖xM − x1‖, c) ∂k

∂xk φ(‖xM − x2‖, c) . . . . . . ∂k

∂xk φ(‖xM − xM‖, c)

 (12)

Using the expression of λ , we get:

U (k) = D(k)U (13)

where
D(k) = A(k)A−1 (14)

2.2.2. Space approximation of the Richards equation by the RBF-MQ method

In this section, we present the numerical resolution of problem (1). This approach was
proposed by Ouédraogo et al. [18].
Let {zi}16i6M a set of points of Ω considered as centers. At each center zi the approxi-
mation value ĥ of the pressure head h by the RBF-MQ is given by:

ĥ(zi, t) =
M∑
j=1

λj(t)φ(‖zi − zj‖, c), t ∈]0, T ] (15)

where φ the basic radial function of Hardy.
that can be rewritten in matrix form

h = A λ(t), t ∈]0, T ] (16)
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where h = (h(z1, t), h(z2, t), . . . , h(zM , t))
> and λ(t) = (λ1(t), λ2(t), . . . , λM (t))>.

the flow velocity q(h) is given by

q ◦ ĥ(zi, t) =

M∑
j=1

γj(t)φ(‖zi − zj‖, c), t ∈]0, T ], zi, i = 1, 2, . . . ,M

Where γj(t), j = 1, 2, . . . ,M the expansion coefficients of q(h).
In matrix form, we have

q(h) = A Γ(t), t ∈]0, T ] (17)

where Γ(t) = (γ1(t), γ2(t), . . . , γM (t))>.

Using expression of ĥ we have

q(h, t) = −KD(h, t)D(1)h(t)−K(h, t), t ∈]0, T ] (18)

where
K(h) = (K ◦ h1,K ◦ h2, , . . . ,K ◦ hM , )

>

et

KD(h) =


K ◦ h1

K ◦ h2 0

0
. . .

K ◦ hM


with hi = h(zi, t), i = 1, . . . ,M, t ∈]0, T ] the ith value of the vector h (16).
using 11, we have

∂

∂z
q(h) ' q(1)(h) = −D(1)KD(h)D(1)h−D(1)K(h) (19)

Let Θ(h) = (θ ◦h1, θ ◦h2, , . . . , θ ◦hM )> and f = (f(z1, t), f(z2, t), . . . , f(zM , t) be the
values respectively of the moisture content θ(h) and the source function f at the centers
zi, i = 1, 2, . . . ,M .
The numerical resolution of Richards’ equation (1) can then resume to the resolution of
the following problem in time: {

dΘ(h)
dt = F(h), t ∈]0, T ]

h(0) = h0

(20)

with
F(h) = q(1)(h) + f (21)

and
h0 = (hinit(z1), hinit(z2), . . . , hinit(zM ))>
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2.2.3. Resolution by Newton-Raphon’s method

Let tn = nδt, n = 0, 1, . . . , N a discretization of [0, T ], δt = T/(N − 1) the time-step
size and Θn, Fn the approximations of Θ(hn, tn) and F(hn, tn) with hn = h(tn), n =
0, 1, . . . , N .
The approximation of the equation (20) by a implicit Euler scheme gives

Θn+1 −Θn

δt
= Fn+1, n = 0, 1, . . . , N − 1 (22)

The terms Θn+1 and Fn+1 cause equation (22) to be highly nonlinear, we use Newton-
Raphson’s method to solve it.
Let’s denote Θn+1,m+1,Kn+1,m+1

D and Kn+1,m+1 the approximated values Θ(hn+1,m+1),KD(hn+1,m+1)
and K(hn+1,m+1) in which hn+1,m+1 is the searched value of hn+1 in the step m + 1 of
Newton’s iterative process. Let’s also denote hn+1,m the value of hn+1 at the previous
step m,

F(hn+1,m,hn+1,m+1) = −D(1)Kn+1,m
D D(1)hn+1,m+1 −D(1)Kn+1,m + fn+1 (23)

and

R(hn+1,m,hn+1,m+1) =
Θn+1,m+1 −Θn

δt
−F(hn+1,m,hn+1,m+1) (24)

Using a one-order Taylor’s series development of Θn+1,m+1, we obtain the following ap-
proximation

Θn+1,m+1 ' Θn+1,m +
dΘn+1,m

dh
δhn+1 (25)

where
δhn+1 = hn+1,m+1 − hn+1,m (26)

We denote Cn+1,m the value of C in the approximated vector hn+1,m then the approx-
imation (25) can be rewritten as following:

Θn+1,m+1 ' Θn+1,m + Cn+1,mδhn+1 (27)

We then replace Θn+1,m+1 in equation (25) by its expression given by (27) and therefore
we obtain the new expression of R(hn+1,m,hn+1,m+1) as following:

R(hn+1,m,hn+1,m+1) =
1

δt
Cn+1,mδhn+1 +

Θn+1,m −Θn

δt
−F(hn+1,m,hn+1,m+1) (28)

The resolution of nonlinear problem (22) with the Newton-Raphson’s iterative method
consists in solving at each time-step n+ 1 and at each stage m+ 1, the equation

J δh = −R(hn+1,m,hn+1,m) (29)
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where J is Jacobian matrix of R in hn+1,m expressed as

J =
dR
dh

(hn+1,m,hn+1,m) =
1

δt
Cn+1,m −D(1)KD(hn+1,m)D(1) (30)

until ‖δhn+1‖ is below a certain tolerance tol or that m exceeds a maximum value
maxiter. Algorithm 1 describes how the Richards equation is solved at each time-step
n+ 1 by Newton’s iterative method.

Algorithm 1 Newton-Raphson’s iterative method

Require: hn,maxiter, tol
hn+1,0 = hn

while m 6 maxiter and ‖δhn+1‖ > tol do
Solve the system (29) to obtain δhn+1

hn+1,m+1 = hn+1,m + δhn+1

m = m+ 1
end while
hn+1 = hn+1,m+1

Ensure: hn+1

3. Inverse problem

3.1. Calculation of infiltration

One of the objectives of the modeling of the flow in unsaturated porous medium is
the estimate of the quantity of water which infiltrates to reach the saturated zone. The
infiltration describes the process of water penetrating in the ground starting from its
surface. In a general way, for a variable initial condition θ(0, z), the cumulative infiltration
Icum is defined by:

Icum(t) =

∫ Z

0
q(t, z)dz

q(z, t) is the rate of infiltration and Z is the depth of the ground considered. If the initial
condition θinit is constant, we have:

Icum(t) =

∫ Z

0
(θ(t, z)− θini)dz (31)

θ(t, z) is the moisture content. In discrete form Icum(tj) is obtained by making an approx-
imation of (31) by the formula of the trapezoids:

Icum(tj) = ∆z

[
1

2
(θsup − 2θini + θinf ) +

Nz∑
i=1

(
θji − θini

)]
(32)

θinf is the moisture content at the bottom and θsup is the moisture content at the top.



W. O. Sawadogo et al. / Eur. J. Pure Appl. Math, 12 (4) (2019), 1567-1583 1575

3.2. Function cost

Let thus M observations of values of infiltration Iobs(tj) at the moments tj , j =
1, . . . ,M . Let thus J the functional defined by

J(U) =
∆t

2

M∑
j=1

(Icum(tj)− Iobs(tj))2

=
∆t

2

2∑
j=1

(∆z

[
1

2
(θsup − 2θini + θinf ) +

Nz∑
i=1

(θji − θini)

]
− Iobs(tj))2 (33)

U is the vector of parameters to determinate (α, n, θr, θs,Ks).
The inverse problem consists in solving

min
U⊂D

J(U) (34)

where D a bounded subset of R5.

4. Problem solving by Modified hybrid Grey Wolf Optimizer-Genetic
Algorithm (HmGWOGA)

In this section we present the HmGWOGA algorithm proposed by Sawadogo et al.
[20]. This algorithm is a hybridization of two meta heuristics. Grey Wolf Optimizer
algorithm proposed by S. Mirjalili et al. [15], and a version of genetic algorithm proposed
by Sawadogo et al. [21].
We consider the following problem:

min
x∈D

f(x) (35)

where x = (x1, · · · , xn) ∈ Rn, f a positive numeric function of Rn, D =
∏n
i=1[ai, bi], ai

and bi are reals.

4.1. Presentation of the genetic algorithm used

The genetic algorithm used is an adaptation of Non-Dominated Sorting Genetic Algorithm-
II (NSGA-II) proposed by Deb et al. [5].
This algorithm consist to create at each iteration t a population of children (Qt) of size
(N) by using selection, crossing, and mutation operators. This population is add to a
population of parents (Pt) of size (N) to form a population (Rt = Pt ∪Qt). This process
ensures elitism. The size population (2N) is then sorted according to a non-dominance
criterion. A new parent population (Pt+1) is formed keeping the N best individuals. The
real-type coding used consists in directly representing the actual values of the variable.
We used the selection by caster of Goldberg [7]. The parents are selected according to
their score. In this method the probability p with which an individual i represented by a
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variable xi of fitness fi (evaluation of the function in xi) reintroduced in a new population
of size N is:

p =
fi∑N
j=1 fj

The barycentric crossing is used but we did not use a probability of crossing. Mutation
of a Gaussian type is applied to the population. One selects an individual x under a
probability p. If p is lower than the probability of mutation pm, one adds a Gaussian noise
to x.

4.2. Grey Wolf Optimizer algorithm description

The GWO algorithm is a meta-heuristic which mimics the leadership hierarchy and
hunting mechanism of grey wolves in nature. This algorithm has been proposed by S.
Mirjalili et al [15]. Four types of grey wolves are employed for the simulating the leadership
hierarchy: alpha (α), beta (β), (δ) and omega (ω).
Alpha is the leader of the group. Beta is the second. They help the alpha make decision.
Delta are is the third category. Its members are scouts, sentinels and hunters. Last
category omega wolves always have to submit to all the other dominant wolves.
Prey encircling is modeled by:{

~D = |~C. ~Xp(t)− ~X(t)|
~X(t+ 1) = ~Xp(t)− ~A. ~D

(36)

where t indicates the current iteration, ~A = 2a.~r1, ~C = 2.~r1; ~a are decreased from 2 to
0 over the course of iterations and ~r1, ~r2 are random vectors in [0, 1]. ~Xp is the position

vector of the prey, and ~X indicates the position vector of a grey wolf.
For better exploration of candidate solutions which tend to diverge when | ~A| > 1 and to
converge when | ~A| < 1.
Grey wolves have the ability to recognize the location of prey and encircle them. Over the
course of iterations, the first three fittest solutions we obtain so far are considered as α, β
and δ respectively, which guide the optimization processes (the hunting) and are assumed
to take the position of the optimum (the prey). The approximate distance between the
current solution and alpha, beta and delta is given by the following formula:

~Dα = | ~C1. ~Xα − ~X|
~Dβ = | ~C2. ~Xβ − ~X|
~Dδ = | ~C3. ~Xδ − ~X|

(37)

where:

• ~C1,~C2 and ~C3 are random vectors.

• ~Xα, ~Xα and ~Xδ, the positions of alpha, beta and delta respectively.

• ~X the position of prey( current solution).
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Finally the next position of the solution is given by:

~X(t+ 1) = 0.7× ~X1 + 0.2× ~X2 + 0.1× ~X3 (38)

where 
~X1 = ~Xα − ~A1. ~Dα

~X2 = ~Xβ − ~A2. ~Dβ

~X3 = ~Xδ − ~A3. ~Dδ

(39)

~A1, ~A2 and ~A3 are random vectors.

4.3. Problem solving algorithm

The hybridization consist to apply the operators of the genetic algorithm before apply-
ing the GWO steps. In summary the resolution of our problem by HmGWOGA algorithm
is given by the algorithm below:
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Algorithm 2 Problem solving algorithm

Initialize the input parameters for HmGWOGA (N, d, lb, ub,Maxiter, pm, sigma)
Initialize Alpha, Beta and Delta Position and Score.
Initialize the random position of search agents.
k ← 0
while k < Maxiter do

solving direct problem (1)
evaluate the score of each search agent (Pk) using objective function (33)
Apply a selection operator
Apply a crossover operator to generate a new population of child Qk (The criterion
used at this step is 1/(fitness+ ε) with (ε ∈ R∗+)
Rk = Pk ∪Qk (add Qk to Pk) to obtain 2N search agents
for each agent in Rk do

choose a random number u in [0, 1]
if u ≤ pm then

Apply a mutation operator
end if

end for
Classify search agents of Rk from increasing order according to the score of each agent
Keep N best individuals of Rk to form a new search agent.
for i i=1 to N do
fitness←− Score agent i
if fitness < AlphaScore then

Update alpha
end if
if fitness > AlphaScore and fitness < BetaScore then

Update beta
end if
if fitness > AlphaScore and fitness > BetaScore and fitness < DeltaScore
then

Update delta
end if

end for
for i=1 to N do

Update the Position of search agents including omegas using equation (37-39)
Update the position of prey using equation(38)

end for
k ← k + 1

end while
Return the position of α as the fittest optimum
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5. Results and discussions

5.1. Application 1

Either an unsaturated medium represented by a domain Ω = [0, 20] and a simulation
time interval [0, 600]. Dirichlet conditions were imposed. According to [22], an analytical
solution of the problem (1) is given by:

h(z, t) = 20.4 tanh(0.5(z + t/12− 15))− 41.5 (40)

The source term f is chosen using the analytical solution.

To verify the efficiency of our algorithm data was generated using the analytical solu-
tion.
The simulation conditions and the results are given below:

Parameters Range used values identified values

θs [0; 4] 0.357 0.364

θr [0; 4] 0.108 0.106

α [0; 1] 0.0335 0.032

n [0; 10] 1.8 1.87

Ks [0; 15]× 10−3 8.13× 10−3 8.25× 10−3

Value of objective function: 7.5× 10−5.
Figure 1 shows the infiltration curve. In this figure we see that the identified infiltration
is very close to the infiltration obtained with the analytical solution.

time

0 100 200 300 400 500 600
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fi
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0.5

1

1.5

2

2.5

3

Simulated

Observed

Figure 1: Application 1: Curves of infiltration observed and simulated
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5.2. Application 2

In this second application, we use data used in [21]. These were measured on a clay soil
on a column of 1m long. The values of the infiltration were recorded all the 5 mn during 2
hours. [21] In the direct problem was resolution using the finite difference method and the
genetic algorithm was used to identify the parameters. The results of the identification
are given in the table below

Parameters Interval Genetic algorithm HmGWOGA algorithm

θs [0; 1] 0.0238 0.0255

θr [0; 2] 0.379 0.373

α [0; 1] 0.0879 0.0869

n [0; 3] 1.1359 1.1395

Ks [0; 3]× 10−5 1.75× 10−5 1.84× 10−5

Figure 2 is a comparative representation of the simulated and observed infiltration curves.
In these figures, we can see the quality of the estimation of the parameters. We also see
that the curve obtained by HmGWOGA method is closer to the observed data than that
obtained by GA. Which is confirmed by the values of the function cost:
Genetic algorithm: 0.0027 [21].
HmGWOGA algorithm:0.00012.
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Figure 2: Application2: Curves of infiltration observed and simulated

As in [21], the values of the infiltrations observed at the moments t = 30mn, t = 1h
and t = 1h30mn were not used in the process of identifications. They were used like
values test. The table 1 presents the results. This table shows also that the HmGWOGA
algorithm is better than the genetic algorithm which is confirmed by the convergence curve
in figure 3.
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Times Observed Genetic algorithm Error HmGWOGA algo-
rithm

Error

30mn 1.5943 1.5732 0.0211 1.5927 0.0016

1h 2.322 2.2901 0.0319 2.3262 0.0042

1h30mn 2.8143 2.7939 0.0204 2.8216 0.0073

Table 1: Comparison to test points

Figure 3: Application 2:Curves of convergence

To measure the performance of both methods in terms of computation time, we ran
the simulation 30 times for each example. The characteristics of the computer used are:
Processor: Intel(R)Xeon (R) CPU E5-2603 v4@1.7 GHz 1.7GHz, RAM: 24 GB, Operating
System: windows 10, 64-bit.
The statistical results in second are given in the table 2.

HmGWOGA GA
Min Max Mean Std Min Max Mean Std

Application
2

608.125 609.468 608.757 1.481 421.23 422.39 426.787 1.67

Table 2: Computation time

These results show that although HmGWOGA is more accurate, it is slower than GA.

6. Conclusion

In this work it was about identification of the parameters in Richard’s equation. The di-
rect problem was solved using Multiquadratic Radial Basis Function ( RBF-MQ ) method
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which is a meshless method. We used Modified Grey Wolf Optimizer-Genetic Algorithm
(HmGWOGA) to determine parameters of Richards equation using synthetic data and
real data. Comparison with the genetic algorithm showed that the HmGWOGA algo-
rithm was more effective in identifying parameters involved in the Richards equation.
A comparison of the execution times of the two algorithms shows the HmGWOGA algo-
rithm despite its effectiveness remains slower than GA. In order to reduce execution time,
we intend in the future to propose a parallel version of this algorithm.
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