EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 4, 2019, 1602-1611

ISSN  1307-5543 — www.ejpam.com
Published by New York Business Global

On Embedding Theorems in Grand Grand
Nikolskii-Morrey Spaces

Alik M. Najafov!:*, Azizgul M. Gasimova?®

L Azerbaijan University of Architecture and Construction, Baku, Azerbaijan
2 Sumgait State University, Sumgait, Azerbaijan

Abstract. In the paper we introduced a grand grand Nikolskii-Morrey spaces. Some differential
and differential-difference properties of functions from this spaces are proved by means of the
integral representation.
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1. Introduction and preliminary notes

It is known that in the middle of the last century, in connection with the study of
the regularity properties of differential equations with partial derivatives of a high (inte-
ger and non-integer) order, it became necessary with the introduction of Sobolev WZZ)(G)
(I € N™) [20] and Nikolskii H;)(G) (I € (0,00)™) [15] spaces, etc. These spaces were
further developed and generalized by many mathematicians. Considering that the grand
grand Nikolskii Morrey H le )%M’a(G, A) spaces introduced in this paper is wider than all
previously considered spaces of this type, it will be interesting to readers.

In this paper we construct a grand grand Nikolskii-Morrey spaces H' )5)sa a(G, A) and
we study some differential properties with help of the method of integral representation of
functions in view of embedding theory. Let G C R"™ be a bounded domain, [ € (0,00)",

€ (1,00),a € [0,1],5c € (0,00)" and a > 0.

Note that the grand Lebesgue spaces L) (G) (|G| < 0o) introduced in [5] by T.Iwaniec
and C.Sbordone. After a vast amount of research about grand Lebesgue, grand Lebesgue-
Morrey, grand-grand Lebesgue-Morrey, grand-grand Sobolev-Morrey spaces (with different
norms) has been studied by many mathematicians, (see, e.g. [3, 4, 6-11, 13, 16, 18, 19, 21])
e.t.c.
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Definition 1. By grand grand Nikolskii-Morrey spaces H' (G, \) we denote the
P),%) a0
spaces of all functions f € LY°(G) (m; > l; — k; >0, i =1,2,...,n) with the finite norm
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where, do—diam G, m; € N, k; € No,|»| = >"_ 5, sm = min{p — 1, ‘”l “} and x € R™.

Gt%(l') =GN It%(.ilf) =

1
zGﬁ{y:|yj—xj|<2t”j;j:1,2,...,n}.

The Nikolskii-Morrey space H. le ) (R"™) and Nikolskii-Morrey type space H zlv 0. (G) stud-
ied in [1, 17]. Also note that in this paper, in theorem 2.2 it was proved that the Holder
"index” is larger than in [1, 12, 14] .

Note that some properties of spaces L) ., .o(G) and Hé)%)’a’a (G, A) .

1) Ly oy.aa(G) = Ly(G), HE , (GA) = HY (GN), Le

Hf||p), CHfH ),a,05G ||f||Hl (GX) <CHfHHl

where H) (G, \) is grand Nikolskii space with finite norm
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2) Lp) s),0,0(G) and Hé) ) s (G, \) are complete.

3) Hpr),%),0,0;G = HfH ),G and £l g

P),>) ,0,0(

Let M;(-,y) € C5° (R™) be such that

G\ — HfHHlp)(G,)\) :

S(Mi)cllz{ | < ,f—12 },
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Assume 0 < T <1, A= (A1,...,\n), Aj >0(j=1,2,...,n), and put
Y
v=U {v: () esom}.
0<t<T

Clearly, V. C Irx and let U be an open set contained in the domain G; henceforth
we always assume that U +V C G. Put Gp=(U) = (U + Ir=(x))[)G. Obviously, if
0<s;<Xj(j=1,2,...,n), then Ipx C Ip» and thereby U +V C Gr=(U) = Q.

Lemma 1. Let 1 <p < g <r < o000 < | < |’\1‘IZ“E,O<t,77§T§do;0<’y<70;
v=(vi,...,vn),v; are integers (j =1,2,...,n); A" (t>‘ ) [ € Lp) s0).0,0(G) and let
i = M — [ M| = (A] = [oela — [ + ae) (1 — (4)
i = Aiby T Vs AL — e — o - )
. p—¢ gqg—¢
: (TR VRSP PRY
Bifa) = [N o (5)
' LTINS WY
Byrla) = [ 71N, ©)
n
y p(2)\ g (2 ()
E(z) = . fz+y+2)9Q (tA 5 Q) p el dydz, (7)
where

v, Al = ZVJ vE

i@?) /n/ (t” t;,:v))x
(” i (10) ) o 4)

X f (x4 v+ ue;) dudy. (8)

Then for any & € U the following inequalities

?ug HE7Z7HI1*5’U'Y"(E) =

|>¢|(a+1) _
< Hf&mg’“ (t’\i,GtA> fH ) Qs*piw T (> 0) 9)
p % 7a7a;

sup [F2AE Y .
1 Pel(atl)

S 02 Ht—Azleznz <t>\z’ Gt)‘> f” ) ) Qg_p—sfy q—e X
p e 7a7a;
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TH:,  for f; >0,
X ln%, for p; =0, (10)
77’_”, fOT lal < 07

sup 1B = (z) <

A= (A== lodla) (e =322 ) L~ 5 1letD)

< G fll ) a0 t pee ame)e by e (11)

is hold, where and U,=(z) = {:c g — 7] < %'y”j,j =1,2,... ,n}, C1 and Csy are con-
stants independent of f,v,n and T.

Proof. Applying sequentially the generalized the Minkowskii inequality for any z € U

n
i e e PYEONEDY .
HEanfs’U,Y%(j) S /0 t ||SO’L ( 7t)||q—a‘7UW;¢(j;) dt? (12)

and from the Holder inequality (¢ < r) we obtain
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P 1
19 GOl ooy < 195 Gl oy 71 (T 7). (13)

Now estimate the norm ||¢; (-, 1) ) - Let X be a characteristic function of the
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400 .
= / SiA fdu

p—¢€ r—e
|Mi|s) X
1 1

+o00 p—€ p—¢ T r—e 1 1
X‘/ SAV fdu| @ (Iag) =7

and apply to |¢;| the Holder inequality (r—is (L - L) + (% - i) = 1) ,
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suppose that |M; (z, y, z)| < Ct |M11(x)’
Obviously, if [»| < L0 <t <1, then Qu(x) C Qu=(x). For every x € U we have

1+a’
/TL

/m S; (;j pl(zix) %p’i (th)> A (t)”') f(x 4y + uesdu)
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—00
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p), ")aaQ
foryeV
+o0 () 1 "
/ / Si (7:;, w, ip; (t)‘i,:z)> A" (t)‘i) f(x 4y + ue;du) dx <
UW%(E) —00 ¢ ¢
oo u P (t)‘i :U) 1 L
S/ / Si | =, ———=, =p} o AV e f(x 4 ue;)du dx <
45 (Z4y) |/ —o0 (t)\’ tAi 2 ( > ( )
< ili(p—2) ‘t AzAm, (t,\>fH <
p— EaQ'y ( )
< Ht—)\iliA;ni (tAi) pr—a t)\ili(p—a),7\%|+|%\a—a58—1' (16)
»),a,0;Q
||t (B)[ y =2 s a7)
From inequalities (13)-(17) for r = ¢ that
Nili AT () -, [rlatlxlzae
e el P
1 1
Xt|A|f<|A\f|z|f\%|a+as>(p,;q,g) (18)
Unseating this inequality in (12), for all € U, we see that
: T 1 (4
HE%H‘I*&UW"@) =G Ht A Z(tAl)fH amo T ' (i > 0)

Similarly, we can prove (10) and (11).
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2. Main results

We proved two theorems on the properties of the functions from spaces H ]l) ),5) .00 (G, N).

Theorem 1. Let G C R"be an open bounded set satisfy the flexible A— horn condition

(see [2]); 1 < p < q < o0; |3 < ’\liof;u = (v1,...,vp), vj > 0 are integers (j =1,...,n);
i >00i=1,2,...,n) and let f € Hlp),;{),a,a (G, N).

Then DV : Hi)) s (G,\) = L¢—<(G) hold for any € € (0,sp), and moreover, the
following inequality is valid

1D e < CE) (T 151y e+

Aznl (t)\l, Gt)\) f
t)‘ili

+ZT’“ sup

0<t<dop

p),%),a,

In particular, if o = Nili — [V, A| — (|A| = |22 — || a + ag) zﬁ >0((=12,...,n)if
DY f is continuous on G and

sup D f(@)] < C) (77 1/l s ncs
xe

Aznl (t/\z’ Gt)‘) f
t/\ili

+ THi0 sup
Z 0<t<dp

(20)

p)%),a,0
1
moreover 0 < T < dy, C(e) = Ce »== and C is a constant independent of f,T and €.

Proof. At first note that in the conditions of our theorem there exists a generalized
derivatives D” f on G Indeed, from the condition f; > 0 (i = 1,2,...,n) it follows that for
feH) oG X) = H)(G X — H, (G,\) (p—e>1). Then D"f exists on G and
belongs to L, .(G) and for almost each point x € G the integral representation in [2].

D f(z) = fT/\ |V|/ Z/ / R S

W (Y p(t 713) U ,O(t 71:) 1 Ai
i <tA p ) S\ T gt e)) X
XA (5)‘Zu)f(a: + vy + ue;)dudydt, (21)

FRa) = ()TN [y
n Rn
p th x ANl z P t x
%) (tyA (t/\)> ) (t/\ (tA)> dydz, (22)
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0<T < dO and (2 (7y) ) \Ijz(ay) € Cgo (Rn) ) Sl ('ayv Z) € CSO(R)
Recall that the flexible A— horn and = + V' is the support of the representation (21) and
(22). Applying the Minkowski inequality, from identities (21) and (22) we get

10" fllyec < |12, o+ 2 IRl (23)
’ =1
By (11) for U =G, M; = Q, t =T we get
[£2]. . < @A 0 T, (24)

by (11) for U =G, M; =¥, , n =T we get

|||, . o < Cale) Ht‘AiliA?“ (tAi, Gtx> Th (25)

-
Substituting (25) and (24) in (23), we get inequality (19).
Now let conditions fi;0 > 0(i = 1,2,...,n). Show that D" f is continuous on G. By
(21) and (22), using (23) for ¢ = oo and fi;(¢ = 00) = f1;0 > 0 (1 =1,2,...,n) we obtain

A;ni (t>‘i, Gt/\) f
tAili

(R

n
< C(e) Z T’”’O0 supd
i=1 <t<dp

00,G
p)7%)7a/7a

As T — 0, the left side of this inequality tends to zero, since f;,l;) (x) is continuous on
G and the convergence in Lo, (G) coincides with the uniform convergence. Then the limit
function DY f is continuous on G. Theorem 2.1 is proved.

Let £ be an n— dimensional vector.

Theorem 2. Suppose that the domain G the parameters p,q and vector v satisfy the
condition of theorem 2.1. If p; > 0(i = 1,...,n) then D" f satisfies the Holder condition
with exponent o on G in the metric of Lq—.; more exactly

1A G) D" Flyec < CENM it (o EI7 (26)
o is an arbitrary number satisfying the inequalities:
ii°
0<o<1, if —>1;
Ao
ii°
0<o<l1, if —=1; (27)
Ao

=0 =0

g
0<o<t| B o<,

<o < " if "
max
j=1,..

A

)

where i° = min (fi1, fig, - - -, fin) ; A

[e=]
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If iip >0 (i=1,...,n), then

sup |A(&, G)D” f(x)| < C(e) ||f||H;l;),%),a,o<(G’)\) 1€17°, (28)

zeG

1
where oy satisfy the some conditions as o with fi; o instead of fi; and C(e) = Ce == and
C is a constant independent of f and .

Proof. By Lemma 8.6 of [2] there is a domain G,, C G(w = kry(x), k > 0,r\(x) =
pa(z,0G), x € G). Suppose that ||, < w, then segment joining the points of the segment
with the some kernels. Making simple transformations, we obtain

IA(E,G)DY f(z)| < CyT~2AI=ImAlx

_ A
X//|f(x—|—y+z)|’(2(”) (ytkg’p(ttk’gc))_g()<t1{\’p(t )>‘ddz+

R™ R™
t)\i,l') 1 A
<t>‘ ’ thi 7§P2(t L>$)>

1
| Yo

™~

n

Cy>

i=1

1A=

X

o

R™ —o0

x [[o ) (tli,p )H (Amz (V )f(x—i—y—i—uei) dudydt+
p(th,z) 1 :
—|A|=Xi— ) (4N
/ (W i)
€%
X \IIEV) (t)" )H/‘Aml 5>‘ x+y+uei+w§)’dudydtdw =
Az, )+ C2 Y (B(x,€) + F(,6)), (29)
=1

where 0 < T < tg. We also assume that |¢| < 7%, and consequently |¢| < min(w?0, T20).
If x € G\G,, then by definition A (§,G) D¥ f(z) =
By (29)

JA €)D" fllyec = IAEG) D flly e, < CLIAC O, +
+C2 3 (1B (Olye + IF ) c,) (30)

. €
Afw.g) < ST [
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T/\, T)‘,
X//‘f($+y+z+§ey)]‘DjQ(”) (%7}“)9(;’“)

R™ R™

dydz.

taking into account {e, 4+ G, C G and applying the generalized Minkowski inequality and
by (11) for U = G we have

IAC O g—cc, < Cre) €N 50,00 (31)
By means of inequality (10) for U = G, M; = ¥;,n = |§]% we obtain

IBGON,e ., < Ca(e) AT @ G| el (32)

p),%),a,0

1
and by means inequality (10) for U = G, M; = ¥;,n = |{|* we obtain

IECONlg-eq., < Ca () €7

AL AT (N G ) pr) e (33)

From inequalities (30)-(33) we get the required inequality.
Now suppose that |£| > min(w??, T29), then

HA (‘57 G) Dyf”qfs,G <2 HDVf”qfa,G <C (w7T) HDVf”qfa,G ’5‘0 :

Estimating |[D"” f||,_. ¢ by means of (19) we obtain the sought inequality in this case
as well. The theorem is proved.
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