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Abstract. Jordan canonical forms of a rank-k perturbation of symplectic matrices and the fun-
damental solutions of Hamiltonian systems are presented on the basis of work done by C. Mehl et,
al.. Small rank-k perturbations of Mathieu systems are analyzed. More precisely, it is shown that
the rank-k perturbations of coupled or non-coupled double pendulums and the motion of an ion
through a quadrupole analyzer slightly perturb the behavior of their spectra and their stabilities.
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1. Introduction

Let J, W € R2V*2N guch that J is a skew-symmetric matrix. We say that the matrix
W is J-symplectic or J-orthogonal if and only if WTJW = J [4, 18]. These types of
matrices generally appear in control theory [3, 11, 15, 18], especially in optimal control
[11] and in parametric resonance theory [15]. The spectra of the symplectic matrices is
generally composed of three groups with respect to the unit circle (see e.g. [7, 8, 18]) :
Ny eigenvalues outside the unit circle, Ny = N, eigenvalues inside the unit circle and
2N = 2(N — Ny) eigenvalues on the unit circle. A symplectic matrix W is stable if all its
powers are bounded. In other words, if the eigenvalues of W lie on the unit circle and are
semi-simple. Some classifications of eigenvalues of W are given by the following definitions
[4, 7, 10, 18]

Definition 1. Let )\ be a semi-simple eigenvalue of W lying on the unit circle.

(i) Then X is called an eigenvalue of the first (second) kind if the quadratic form (iJz,x)
is positive (negative) on the eigenspace associated with X\. When (Jx,x) = 0, then A
is of mized kind.
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(ii) Then X is an eigenvalue of a red (green) color or in short r-eigenvalue (g-eigenvalue)
if (SO, x) is positive (negative) on the eigenspace associated with X where S©) =

1
3 (JW + (JW)T).

This leads us to the characterization of the strong stability by the following theorem
(see [6, 7])

Theorem 1. A symplectic matriz W is strongly stable if all the eigenvalues are on the
unit circle and verifies one of the following assertion :

(i) the eigenvalues are either of the first or second kind and there is a sufficient gap
between the eigenvalues of first and second kind. In other words, the quantity

Sxar (W) = min {|ei9’“ — €| such that €% e are eigenvalues of W of different k’inds}

should not be close to zero.

(ii) the eigenvalues are either of red color or green color and there is a sufficient gap
between the eigenvalues of red and green color. In other words, the quantity

ds(W) = min {|ei€’c — eial] such that ¢ ¢ are r- and g-eigenvalues of W}

should not be close to zero.

These symplectic matrices are often obtained as solutions of Hamiltonian systems with
periodic coefficients i.e. the differential systems of the form

dx(t)

J
dt

= H(t)z(t), teR (1)

where H(t) € R*V*2N is symmetric and P-periodic (i.e. H(t+ P) = H(t) = (H(t))T).
We know that the fundamental solution X (¢) of (1), in other words, the solution of the
system

7O gxe), ter
X(0) = I

satisfies the relationship X (¢t +nP) = X (t)X"(P)(# X" (P)X(t)), V (t,n) € R x N and
is J-symplectic [18, Vol. 1, chap. 2]. Regarding stability (strong stability), we have the
following definitions [6, 18]

Definition 2. (i) System (1) is stable if each of its solutions x(t) remains bounded for
teR.

(ii) System (1) is strongly stable if any Hamiltonian system with P-periodic coefficients
to sufficiently close to (1), is stable.
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Specifically, system (1) (or system (2)) is strongly stable if there exists £ > 0 such
dx(t ~
that any Hamiltonian system with P-periodic coefficients of the form J Zi) = H(t)x(t)

~ T ~
and satisfying ||H — H|| = / |H(t) — H(t)||dt < ¢, is stable. We also have the following
0
theorem [18, p. 196]

Theorem 2. System 1 is strongly stable if and only if the J-symplectic matriz X (P) is
strongly stable.

Since the strong stability analysis of the Hamiltonian systems with P-periodic coef-
ficients is related to the study of their perturbation, we will dwell on a type of the per-
turbation which we call rank-k perturbation. Thus, we present in section 2, preliminaries
necessary to the study of the isotropic subspaces, on the rank-k perturbation of a symplec-
tic matrix and rank-k perturbation of a Hamiltonian system with P-periodic coefficients.
In sections 3 and 4, we give respectively the Jordan canonical forms of a rank-k perturba-
tion of a symplectic matrix and of a rang-k perturbation of the fundamental solution of (1).
Finally in section 5, we present some applications for some systems of Mathieu: Namely
systems that describe the movement of a double pendulum with oscillating support and
those that describe the motion of an ion through a quadrupole analyzer.

2. Preliminaries

2.1. Isotropic subspaces

Definition 3. A subspace X C R*N is called isotropic if X 1 JX. A mazimal isotropic
subspace is called Lagrangian.

The maximum isotropic subspaces containing X are of dimension N. Hence the fol-
lowing definition (see [9])

Definition 4. A subspace £ of RY is called a Lagrangian subspace if it has the dimension
N and
2l Jy =0, Ve, y € L.

In other words, we say that a subspace £ is Lagrangian if and only if every matrix L
whose columns span £ satisfies rankL = N and LTJL = 0.
We list a set of properties on the isotropic subspaces in the following proposition

Proposition 1. (i) Let X be an isotropic subspace. Then the dimension of X is less
than or equal to N.

(ii) Every isotropic subspace is contained in a Lagrangian subspaces.

(i4i) Let S = [S1 Sa] € R2N>X2N be o symplectic matriz with S; € R2V*N i = 1,2 ; then
the columns of S1 and Sy span isotropic subspaces.
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Recall the two lemmas below (see [13])

Lemma 1. Let Xg C R?YN be a subspace that is invariant under a Hamiltonian matriz S
which has all its eigenvalues associated with Xs having their real part negative. Then Xg
18 1sotropic.

Lemma 2. Let S € R2V*2N pe g skew-Hamiltonian matriz and X € R2V*F(k < N) with
orthogonal columns. Then the columns of X span an isotropic invariant subspace of S if

and only if there exists an orthogonal symplectic matriz U = (X, Z, JT X, JT Z] with some
Z € RENX(N=FK) 5o that

ke N—-k k N-k

k An A G G
T _ 11 12 11 12
k o o0 AL o
T T

On the other hand, if we consider the Krylov subspace defined below
K = Kin(A,v) = span {v, Av, A%, . .. ,Amflv} ,

where A € R™™ (with n > 1) and v € R™. Then we have the following proposition which

shows that we can construct isotropic invariant subspaces from Krylov process (see [17, p.
399))

Proposition 2. Let S € R2V*2N pe o skew-Hamiltonian matriz and v € R?N be an
arbitrary nonzero vector. Then the Krylov subspace K;(S,w) is isotropic for all j.

2.2. Rank-k perturbation of symplectic matrices

Let W € R?2V*2N and £ be respectively a symplectic matrix and a J-Lagrangian
subspace. Consider k vectors uy,--- ,u, of £, where k < N. Setting

U=lup;...;ug], and W= (I+ UUTJ) W,
we have the following proposition
Proposition 3. The matrix W is J-symplectic.

Proof. For the proof, see [2].

Definition 5. We call rank-k perturbation of W, any matrix of the form
W =I+U0Ur )W, (3)

where U is a matriz of rank k whose columns belong to a J-Lagrangian subspace.
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The matrix W can be put in the form
- k
W= (I+Y ] J)W.
j=1

More specially, this shows that any rank-k perturbation of W is k rank-one perturbations
of the symplectic matrix W. We have

k k
[T +uulg) | W= {1+ uuls|w
j=1 j=1

Consider a symplectic matrix of function (X (¢));er ; we can consider for example the
solution of system (2) which is J-symplectic. We have the following definition

Definition 6. We call rank-k perturbation of X (t) any matriz function of the form
X(t)=(I+UUTD)X(t), (4)
where rank(U) = k and the columns of U belong in a J-Lagrangian subspace.

Remark 1. Since the matriz function (X (t))ier is J-symplectic, its rank-k perturbation
will be J—symplectic.

2.3. Rank-k perturbation of Hamiltonian system with periodic coeffi-
cients

Let U € R*VXF (with k < N) be a constant matrix of rank k such that its columns
belong to a J-Lagrangian subspace and (X (¢)):>0 be the fundamental solution of (2). We
have the following proposition

Proposition 4. a Consider the following perturbed Hamiltonian system

720 )+ m) R, 6

where
E(@t) = (JUUTH®) + JUUTH(t) + (UUT )T H@#)(UUTT).

(i) Then X(t) = (I + UUTJ)X(t) is a solution of system (5).
(ii) Equation (5) can be put in the form
dX(t -
Jdt() — (I-vUT))"H(t) (I-UUTJ)X(t), t € Ry,
(6)
X0) = 1+uUtJ
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(iii) Any solution (X (t))i>0 of perturbed system (5) of system (2), is of the form
X(t)=T+UUTD)X(t),
where (X (t))e>0 is the fundamental solution of system (2).

Proof. For the proof, see [2].

System (6) can be written as below

deip = (1= 7)) H@ (1= Sl ) £ (7)

X(0) = (I+X5 wufJ)

where each vector (u;), <j<k C R2V belongs to a same J-Lagrangian subspace. We can
immediately see that the rank-k perturbation of (2) can be interpreted as k rank-one
perturbations of (2). In fact, since

I-vUTj=1- ZuJuJ H —u]uJ

we easily see that system (7) can be put in the following form

CU?(L‘) T B
J h = (H?ZI (I — uju]TJ>) H(t) (H?Zl ([ _ uju]TJ>> X(t)
(8)
X(0) = H?Zl (I+uju]TJ)
which is the same as the bellow system, for all p € {1,2,...,k — 1} :
dX (t) N T . -
T = (T =l ) HO @) (T, 1 (1 - wyf ) X(0)
;9
X(0) = <H§=p+1(1 + u(k+p_j+1)u%;€+p—j+1)¢])> y(p)(o)
where
p T p
HP)(t) = H — uju; Tn H@) H([_uju;fj) and
j=1 =1

p
Y(p)(O) = H<I+up ]+1)U(p ]+1)J>



M. Dosso, T. G. Y. Arouna, J.-C. Koua Brou / Eur. J. Pure Appl. Math, 12 (4) (2019), 1744-1770 1750

3. Jordan canonical form of rank-%£ perturbation of a symplectic matrix

Let W, J € R2VX2N be two matrices and A € C such that J is skew-symmetric, W is
J-symplectic and A\ an eigenvalue of W. We have the following theorem

Theorem 3. Suppose that W has the following Jordan canonical form :

A l2 Im
DN |e (DTN |e-o|PT.O)| e,
j=1 j=1 j=1

where nqy > +-+ > Ny, m € N* such that the algebraic multiplicity a of X is of the form

m
a= Z lin; and J contains all the forms in Jordan blocks associated with eigenvalues of
j=1
W that are different from \. Moreover let B = UUT JW where U € R2NXE s such that
its columns generate an isotropic subspace.

(1) If X & {—1,1}, then generally with respect to the components of U, the matrix W + B
has the Jordan canonical form

li—k

l2 lm
Prn|e|Prn|e-e|PIN|ed i k<i
j=1 j=1 j=1

i—1
li—k; liv1 I N k= Z ls + ki,
D 7N e | PhaV || PTh.|eT, i =1
Jj=1 j=1 j=1 with k; <;
3 and 1> 1

where J contains all the forms in Jordan blocks of W + B associated with eigenvalues

different from .

(2) If X\ € {—1,1}, then

i—1

(2a) if k = le + k; where the ni,na,...,n; are even and k; < l;, then generally
s=1

with respect to the components of U, then matriz W + B has the Jordan canon-
ical form

liv1

li—k; Im
D] D] ee DTN | e,
j=1 j=1

j=1

where J contains all the forms in Jordan blocks of W + B associated with
eigenvalues different from A.
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1—1
(2b) if k = Zl + 2k; — 1 with 2k; < l; and n; is odd, then l; is even and gener-

ally wzth respect to the components of U, then matrix W + B has the Jordan
canonical form

li—2k; Im
TN e [ P | oo B In0)|ed,
=1 =1

where J contains all the forms in Jordan blocks of W + B associated with
etgenvalues, different from .

Proof. We know that the rang-k perturbation W = W + B of W can be written in the

form
k

W= I+ w gy 1) | W,
=1

where each vector u; is a column of U. Therefore
1) If A ¢ {—1,1}, then

e For k < Iy;

— Set Wl = (I + ulu{J) W. According to 1) of Theorem 7.1 of [16], Wl has
the Jordan canonical

h—1

l2 lm
P |e | P |eo|PIn)]| e,
j=1 j=1 j=1

where jl contains all the forms in blocks of Jordan of Wl associated with
eigenvalues different from A.

— Set W = (I +ugud J) Wi. According to 1) of Theorem 7.1 of [16], W has
the Jordan canonical form

l1—2

la Im
Pr|e | PN |e e |PInN]| ek
j=1 j=1 j=1

with s containing all the forms in Jordan blocks of W, associated with
eigenvalues different from A.

— On the other hand,

Wi =W + B = (I +ugulJ) (I +up_qul_J) x .. x (I +ugulJ) W,
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by applying (k — 2)-times 1) of Theorem 7.1 of [16] to the matrix Wa, we
get that Wy has the following Jordan canonical form :

Ih—k

lo Im
D r|e | DT |e e BTN |eT,
j=1 j=1 j=1

where j = jk contains all the forms in Jordan blocks of W + B associated
with eigenvalues different from .

i—1

o For k= I+ ki, with k; <1, :

s=1
1 =2, we have k = 1 + ko with ko < [o.
We know that

W, = (I—f—ukugJ) (I+uk_1u£_1<]) X oo X (I+ul1+1ul7;+1=]) X
(I 4wyl J) (I 4wy 1w 1) x oo x (I +ugu J) W

Wi,
= (I+ ukugJ) (I—i—uk,lug_lj) X o X (I+ ull+1ug+1J) AW/ZI
= (I—l—uku;;FJ) (I—}—uk_lug_lJ) X .. X (I+uk_k2+1u;;r_k2+1<]) Wi,

because I = k — ko. As AW/II has the following Jordan canonical form :
lo Im B
@ an ()\> @ e @ @ jnm ()\) @ ‘7117
j=1 j=1

where jll contains all the forms in Jordan blocks of Wll associated with
eigenvalues different from A because Wj, is a rang-ks perturbation of W,
then Wy, has the following Jordan canonical form :

lo—k2

I3 Im
@ ~7n2()‘) @jn:a(/\) ©---D @jnm()‘) @jkzv
j=1 j=1 j=1

where ij contains all the forms in Jordan blocks of Wj, = W+ B associated
with eigenvalues different from .

1—1

P> 2, k:ZZS—H{i, with k; < I;.
s=1

Set
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We have

Wi = (I +upulJ) (I +wpruf_1J) x - x (I + uv(i—l)“ug(i*l)“‘])
x (14 1wyl 1)J> X X (I+Uw(3)+1“3(3)+1<])
(1 w@a ) x - x (T+wenule.n)

(1 +wy@uly) )><--->< (I + wul ) W

~~

W2

= (I +uweufJ) (I +up—quj_,J) x - x (I + uv(i—1)+1“$(i—1)+1j)

R ) R (RSCTOR T/

X (I + U,y(g)u,jyﬂ(S)J> X o+ X <I+ u7(2)+1u§(2)+1<]> WW(Q)

W)

= (I+ ukuzj) (I + uk_luz_lJ) X oo X (I + uv(i,l)ﬂuz(i_l)HJ)

x (T gy ) x o (T gy ) o

W i-1)

= (I—f— ukugJ) (I+ uk_luz_lJ) X oo X (I + u’)/(i—l)-i-luz;(i—l)—i-l‘]) W’y(i—l)
= (I e ) (It oy g J) oo x (1 g g g1 d) Wgoy),

where Wv(i_l) is y(i — 1) rank-one perturbations of the symplectic matrix

W. Then AW/,Y(FD has the following Jordan canonical form :

l;
@jm()‘) SPRRR @jnmo\) @j’y(i—l)a

Jj=1

where j,y(i,l) contains all the forms in Jordan blocks of Wy(i,l) associated

with eigenvalues different from A. Finally, using the fact that Wy, is k; rank
one perturbation of W, ;_1), according to 1) of Theorem 7.1 of [16] and it

follows that the Jordan canonical form of W = Wk is given by

H—l

li—k; Im
P 7.\ @Jnm & PO |ed,
j=1 j=1

where j = jk contains all the form in Jordan blocks of Wk associated with
eigenvalues different from A.



M. Dosso, T. G. Y. Arouna, J.-C. Koua Brou / Eur. J. Pure Appl. Math, 12 (4) (2019), 1744-1770 1754

2) If X € {—1,1}, then :

i—1
2a) if k= le + k;, where the ni,ns,...,n; are even and k; < l;, then
s=1
— ¢=1, we have k = k; and nq is even.
Wi = (I +upuld) (I +uwpruf 1 J) x o x (I +ugud J) (I +uwud )W
N———
=W,

= (I+uku;‘§J) (I+uk_1u£_1<]) X o X (I+u2u2TJ) Wl

J/

=W,
= (T +upud J) (I +up—ruf 1 J) x oo x (I +ugud J) W

As Wl is a rank-one perturbation of W, according to 2a) of Theorem 7.1
of [16], it has the following Jordan canonical form :

I1—1

l2 Im
PN e | PI.|e o |PIn0N| e,
j=1 j=1 j=1

where jl contains all the forms in Jordan blocks of Wl associated with
eigenvalues different from A. Using the fact that W5 is a rank-one pertur-
bation of Wi, 2a) of Theorem 7.1 of [16] implies that the Jordan canonical

form of Wg is given by

1—2 Im

l2
DIV | o [P TN | eo | P In. (N | &R,
j=1 j=1 Jj=1

where jg contains all the forms in Jordan blocks of /V[vfg associated with
eigenvalues different from . Hence, applying (k1 —2)-times 2a) of Theorem
7.1 of [16] to the matrix Wy, we have the following Jordan canonical form
of Wy,

l1—k1

lo Im
P rw|e|Prm|eo PO | e
j=1 j=1 j=1

where jkl contains all the forms in Jordan blocks of Wkl associated with
eigenvalues different from A.
i—1
— For i > 1, we have k = le + k;, with k; < l; and ni,ns, ..., n; are even.

s=1
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)
With v(i) = Y L, Vi > 1, we have :
s=1
— T T T
W, = (I+ UL U, J) (I + uk_luk_lj) X o X (I + u,y(i,l)ﬂuw(i_l)HJ)
T T T
X (I + U,y(i_l)u,y(i_l)ej) X ... X (I —+ U7(3)+1U7(3)+1J> <I+ U,y(g)u,y(g)J)

Xeoo X (T4 )l 1 T) (14 wy@ulig) ) oo x (T wuf ) W

Wy 2)
= (I +wuiJ) (I +up—ruf_1J) x .. (I + “v(i—1)+1“$(i—1)+1‘]>
x (I + uw(i,l)uf(i_l)af) X X (I + Uv(3>+1“§(3)+1‘])
x (1 g syuliayT) % oo x (T4 )15y 40T ) Wa

W)

= (I+ ukuzJ) (I + uk_luz_lj) X e X (I + u,y(i,l)Jrluz(i_l)_HJ)
X (I + %(i—nﬂ(i_lﬂ) X e X (I + uv<3>+1U$(3)+1J) W)

Wi-1)

= (I+ ukufJ) (I+ uk_lug_lj) X o X (I + u'y(i—l)—i-luz(i—l)—f—l‘]) W,i-1

= (I+ ukugJ) (I + uk,luf_lj) X ... X (I+ uk,kiﬂu{_kﬁlt]) Wy(i,l).

Knowing that Wv(i_l) is (i — 1) rank-one perturbations of the symplectic

matrix W, according to 2a) of Theorem 7.1 of [16], W.

+(i—1) has the following
Jordan canonical form

l; Im,
@jni(/\) - @jnm()‘) @jﬂ/(i—l)a
j=1 j=1

where (7;(7;_1) contains all the forms in Jordan blocks of W'y(i—l) associated

with eigenvalues different from A. Finally, as V[N/k is k; rank-one pertur-
bations of W,;_1), according to 2a) of Theorem 7.1 of [16] the Jordan

canonical form of Wy, is given by :

lit1

li—k; Im
P 7. TN | @& [P In. (V) | &7,
j=1 j=1 j=1

where j = jk contains all the form in Jordan blocks from Wk associated
with eigenvalues different from .
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i—1
2b) if k = Z ly + 2k; — 1, with 2k; < I; and n; is even.
s=1

— For 1 =1, we have k = 2k; — 1 with 2k; <l and n; is odd.
According to the property 2b) of Theorem 10 of [5], {1 is even and we have

Wi = (T+uuid) (I +ug—ruf_1J) x oo x (I +ugud J) (I +ugudJ)
x (I+ umlTJ) %%
Wi
= (I—l—uku;‘gJ) (I—}—uk_lu;‘g_lJ) X X (I+U3u3TJ) (I+u2ug<]) W,

v~

Wa
= (I+ ukugJ) (I—i—uk,lug_lJ) X oo X (I+ u4u4TJ) (I+U3u3TJ) Wo

Ws

= (I—l—uku;;FJ) (I—}—uk_lu;‘g_lJ) X oo X (I+U4u4TJ) Wi.

We know that WNfl is a rank-one perturbation of W and its Jordan canonical
form in block of Jordan is given by (see [16, Theorem 7.1,2b)])

1—2

l2 lm
Ini1N) e | B IV | [P TN | @ o | P Tn. (V) | ® 5,
j=1 j=1 j=1

where jl contains all the form n . Jordan blocks of Wl associated with
eigenvalues different from A. So Ws has the following Jordan canonical
form (see [16, 2b) Theorem 7.1]) :

1—2

lo lm
PN [PInN|@ o | P IV | &R,
j=1 j=1 j=1

where ._72 contains all the forms in Jordan blocks of /V[72 associated with
eigenvalues different from A, because it is a rank-one perturbation of Wj.
Similarly the Jordan canonical form of W3 [16, part 2b) du theorem 7.1] is
given by

l172><2 lm

l2
InnNe | @B FN| [P TFn | o P In) | ek
j=1 j=1 j=1

where jg contains all the forms in Jordan blocks of V[Nfg associated with
eigenvalues different from A. Hence, applying (2k; — 4)-times this process
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to matrix Wg, we obtain the canonical form of Jordan below

l1—2ky

lo Im
TnriN e | @B TuN | | BTN |e-o|PTF0|ed,
j=1 j=1 j=1

where j = jk contains all the forms in Jordan blocks of W + B associated
with eigenvalues different from .

— For i = 2, we have k = [; + 2ky — 1 with 2ky < Iy and ns is odd.

Wi

= (I+ ukugJ) (I—i—uk,lug_lJ) X oo X (I+ ullﬂugﬂj)
x (I +uul J) x o x (I +uuf J) W

W,
= (I+ ukugJ) (I+uk_1u;€,1J) X oo X (I+ Ul1+1“£+1*]) V[N/ll
= (T +upul J) (I +upqul_ 1 J) % o x (I + wp—opyott o, 0d) Wiy,

knowing that [y = k — 2ky + 1.

i)

i)

If ny is even, according to the property 2a) of Theorem 7.1 of [16], Wll
has the Jordan canonical form bellow

l2 lm
DIV | &0 | DT, (N | @ T,
j=1 j=1

where jll contains all the forms in Jordan blocks of ml associated with
the eigenvalues different from A. Finally, as Wk is (2k2 — 1) rank-one
perturbations of Wll and ng is odd, according to 2b) of Theorem 7.1 of
[16], I is even and the Jordan canonical form of W), is given by :

lo—2ko

l3 lm
Tt N® | B TV |0 | B Tns(V) | @0 | D Tn (V) | 0T,
j=1 j=1 j=1

where jk contains all the forms in Jordan blocks of Wk associated to
eigenvalues different from A.

If n; is odd, in this case [; is even [16, Theorem 7.1,2b]. Applying ;-
times the 2b) of Theorem 7.1 of [16] to W, we have the Jordan canonical
form of WN/ZI

P TN | &..o [P TN | & T, (10)
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where jll contains all the forms in Jordan blocks of ml associated with
the eigenvalues different from A. Since ny is odd and Wy, is (2ky — 1)
rank-one perturbations of the symplectic matrix Wll, according the
property 2b) of Theorem 7.1 of [16], I3 is even and W), has the following
Jordan canonical form :

lo—2ko Im
t7n2+1()‘)69 @ jnz()‘) D...0 @jnm(A) ®jk’
j=1 =1

where jk contains all the forms in Jordan blocks of Wk associated with
eigenvalues different from A.

i—1
o Fori> 2, wehave k=Y I + 2k — 1, with 2k; < I; and n; is odd.
s=1
Set A
V(i) =) s, Vi>2.
s=1

x (1 gyl T) X (I ugud J) W

Ws-1)
><Ww(i—l)'

from 2a) and 2b) of Theorem 7.1 of [16],we deduce that Wv(i_l) has the
following Jordan canonical form :

lit1 Im

l;
j=1 j=1

where j,y(i,l) contains all the forms in Jordan blocks of /W/V(Z-,l) associated
with the eigenvalues different from A. Thus W} has the following Jordan
canonical form :

liv1

l;—2k lm
TtV & | P Tn,(V) | & TN | & e [P TN |2,
j=1 j=1 j=1

where j = jk contains all the forms in Jordan blocks of Wk associated with
eigenvalues different from A\ because Wy, is (2k; — 1) rank-one perturbation
of W'y(i—l)'
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i—1
Remark 2. In the property (2) of Theorem 3, if k = Z ls + 2k;, with 2k; < l; and the n;
j=1
is odd, then the l; are even and generally with respect to the components of U, the rank-k
perturbation W =W + B of W has the following Jordan canonical form :

l;—2k;

lm
B | o o BTN |oTk
j=1 j=1

where J = jk contains all the forms in Jordan blocks ofW associated with the eigenvalues
different from .
Using (2a) and (2b) of Theorem 3, we have the following corollary :
i—1

Corollary 1. Suppose that X\ € {—1, 1}. If k= le—i—ki, with k; < l; and only n;

s=1
is even, then generally with respect to the components of U, the W + B has the Jordan
canonical form

lit1

li—k; Im
D 7N |e DI |o-o PN ]| ed,
j=1 j=1 j=1

where J contains all the forms in Jordan blocks of W + B associated with the eigen-
values different from X.

Proof.

e If i =1, then k = k1 and n; is even. According to (2a) of Theorem 3, V[N/k has the
following Jordan canonical form

l1—k1 Im

lo
P |e P e-oPB0| e,
j=1 j=1 j=1

where j = jkl contains all the forms in Jordan blocks of Wkl associated with
eigenvalues different from A.

o If i =2, then k =1 + ko, with (k2 < l3) and ngy is even. We know that

W, = (I+ukugJ) (I+uk_1u£_lj) X ... X (I+u11+1ul7;+1<])
X (I—i—ullulfll]) X ... X (I—|—u1uripJ) w

W
= (I +upul J) (I +upquf (J) % o x (14w auf 0 J) Wy

So
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(a)

if ny is even, according to the property 2a) of Theorem 3, Wll has the following
Jordan canonical form

lo Im
@ij()‘) S D @jnm()\) @\%17 (11)
j=1 j=1

where J = jll contains all the forms in Jordan blocks of Wll associated with
all eigenvalues different from A. W} being ko rank-one perturbations of W,
according to 2a) of Theorem 3, the Jordan canonical form of W, is given by

lo—ko

I3 Im
D 7. | | BTN | eo | DTN | e,
j=1 j=1 j=1

where j = jk contains all the forms in Jordan blocks of Wk associated with
eigenvalues different from A.

If ny is odd, according to 2b) of Theorem 3, The Jordan canonical form of Wll
is given by (11). Knowing that ng is even and W, is ko rank-one perturbations
of ﬁ//ll, we obtain from 2a) of Theorem 3 that /V[7k has the following Jordan
canonical form

lo—ko

I3 Im
D 7. | | BT eo | DTN | e,
j=1 j=1 j=1

where j = jk contains all the forms in Jordan blocks of Wk associated with
eigenvalues different from A.

i—1

e For ¢ > 2, we have k = le + k;, with k; < [; and n; is even.

s=1

Let’s put (i) = Zi:l ls. we know that

Wi,

= (I +wpup J) (I +up_ruf_qJ) x ... x (I + uv(i—1)+1ug(i—1)+1=])

X (I—i—u,y(i,l)ug(ifl)tf) X oo x (I +ugui J) W

=Wy (-1

= (I + UkUZJ) (I+ Uk_lugflj) X ... X (I + u’y(i—l)-i-lu*jyﬂ(i—l)—i-l‘]) W’y(i—l)
= (I+uku;‘§J) (I—}—uk_lug_lJ) X ... X (I+Uk—ki+1u;£_ki+1=]) /V[\?W(i_l),

because v(i — 1) = k — k;. So Wy(i,l) has the following Jordan canonical form

liv1

l; Im,
@jnz(/\) ® @jni+1 (A) ©--- D @jnm()\) @jny(@'_l)a
j=1 j=1 j=1
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where j,y(i,l) contains all the forms in Jordan blocks of W,Y(i,l) associated with
eigenvalues different from A. Applying thereafter k; times 2a) of Theorem 3 to the
matrix W,;_1), we obtain the Jordan canonical form of Wy

liv1

li—k; Im
Do |Dr.N oo D] e,
j=1 j=1 j=1

where j = jk contains all the forms in Jordan blocks of W + B associated with
eigenvalues different from A.

4. Jordan canonical form of (X (t));~o

Theorem 4. Lett > 0, J € R2V*2N be g skew-symmiric and invertible matriz, (X (t))i>o
be the fundamental solution of the system (2) and A(t) € C be an eigenvalue of (X (t))r>0-
Suppose that X (t) has the following Jordan canonical form

lm(t)

I l2
@jnl()\(t)) @ @\7”2()‘(75)) ©---D @jnm(t)()\(t)) @j(t)>
j=1 j=1 Jj=1

where ny > -+ > nyqy et m o R — N* us a index function such that the algebraic
m(t)

multiplicity a(t) of A(t) is of the form a(t) = Z linj and J(t) contains all the forms
j=1

in Jordan blocks associated with eigenvalues of X (t) different from A(t). Moreover, Set

B(t) = UUTJX(t) where U € R2N*¥ s such that its columns generate an isotropic

subspace.

(1) If \(t) & {—1,1}, then generally with respect to the components of U, X (t) + B(t)
has the following Jordan canonical form

-k lo lm(t)

P 7.0 | o | D TN®) | &0 | D Tnn AD) | © T (1), ifk<b
; ~ e

li—k; li+1 l"’”“)

P 7. 0W) | & | P T A®) | @& | D Tnpey A®) | ® T (1),
j j=1

j=1 =1

i—1
k=Y lo+k,
s=1
with k; <1
eti>1
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where J(t) contains all the form in Jordan blocks of X(t) + B(t) associated with
eigenvalues different from \(t).

(2) if Ito > 0 such that \(ty) € {—1,1}, then

i1
(2a) if k = le + k; where the ni,na,...,n; are even and k; < l;, then generally

s=1

with respect to the components of U, X(t) + B(t) has the following Jordan
canonical form

li+1 lm(to)

li—k;
B T (Ato) | & | D Tnies At0)) | & --@ | D Ty (A(t0)) | €T (t0),
j=1

J=1 Jj=1

where J (to) contains all the form in Jordan blocks of X (to) + B(ty) associated
with eigenvalues different from A(to).
i—1
(2b) If k = Z ls + 2k; — 1 with 2k; < l; and n; is odd, then l; is even and generally
s=1
with respect to the components of U, X (tg) + B(tg) has the following Jordan
canonical form

li—2k; lm(tg)

TuirMt0) & [ @D FnAt) | & & | @D Fupyy A1) | © T(00),
j=1 j=1

where J (to) contains all the form in Jordan blocks of X (to) + B(to) associated
with eigenvalues different from A(to).

Proof. 1t suffices to adapt the proof of Theorem 3 to the solution (X (¢));5, of (2) and
to its rank-k perturbation ()? (t)) o (which is the fundamental solution of (6)).
2

5. Application to some Mathieu systems

5.1. Double pendulum with oscillating supports

Consider two identical simple pendulums attached to the same support. When the
support of each pendulum is subjected to an oscillatory movement f(¢) of amplitude «
and of a pulsation €, defined by f(t) = acos(Qt) [14], we present two cases:
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Figure 1: Model of the uncoupled double pendulum with oscillating supports.

5.1.1. Uncoupled double pendulums with oscillating supports

According to [14], the differential equation of the movement of the two pendulums will be
the same. Thus, the equation of motion is given by:

o, g (| 1df
a2k} g dt?

)xi:(), i=1,2, (12)

where kg is the radius of gyration of the pendulum around its point of suspension, and ¢
is the distance between the point of suspension and the center of the pendulum.
Since f(t) = acos(§2t), then system (12) becomes:
d’z;  cg

af)?
+ = 1+coth>xi—0,7j—1,2, 13
T (1 2 o (13)

and by the change of variable T = Q¢ [14], equation (13) becomes:

d233i .
5 + (0 +ecos(m))w; =0, i =1,2, (14)
dr
where o cg
€= k—g and ¢ k(Q)Q2

Finally, using the following change of variables

{L‘(T) 02 —IQ P(T, (5, 8) 02
X(T):[Zi(T)],J:[IQ 0 }andH(T,é,s):[ 0 IZ}’ (15)

.%'2(7’)

Now, consider the rank-2 perturbation of the fundamental solution X (7,0, €) of its
corresponding Hamiltonian system by the following matrix of rank 2

with z(7) = [ z1(7) ] and P(7, 6, ) = (0 + e cos(7))I2, we obtain equation (1).

Eu (1,6, ) = UUL JX (1,6, ), (16)

where

Us=a and a € [0, 1]. (17)

0
1
0
0

o O o=

According to [2, 5], its rank-2 perturbation

Xo(7,68, €) = (I + U,ULT) X (7,6, €). (18)
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is the solution of the following rank-k perturbation Hamiltonian system

0Xa(7, 6, €)

o = (I-UU'NTH(T,68, &) I — UULT) Xo(7, 0, €),

fI(T,é,a,a) (19)

X,(0,6,¢) = I4+UUTJ

Figure 2 represents the movement of eigenvalues of X4(,d, ) for (6, ) € {(1,0.8),
(1.93, 1.93)} and a € {0, 0.35}, with 7 € [0, 27]. These figures show that small rank-k

8=1 and £=0.8, with a=0.35 8=1 and £=0.8, with a=0

E i

=0 M &
=0 N &

—1

I (A () -1 R(A(T)) (A () R(A(T))

5=1.93 and £=1.93, with a=0.35 5=1.93 and £=1.93, with a=0
a
- Ca
o
1

1
o o
I (M) -1 —1 RA(D)) I (M) -1 -1 RO

Figure 2: spectral portrait of X, (7,8, ¢) for 7 € [0, 2] and (4, £) € {(1,0.8), (1.93, 1.93)} with a € {0, 0.35}.

perturbations on the movement of pendulums do not change the nature of the spectral
portrait of )Z'a(T, 0, €).

For all (6, €) € [0, 1.98] x [0, 2], Figure 3 shows the stability region of X,(2,3d, ¢).
The first figure (left) shows areas of stability in blue and of instability in red when our
system is subject to a rank-2 perturbation (with a = 0.35). The second figure (right) also
shows the zone of stability in blue and of instability in red of the unperturbed system (i.e.
a = 0). Thus we notice a slight difference between the two figures due to the small rank-k
perturbation of the system described by our two uncoupled pendulums.

5.1.2. Coupled double pendulums with oscillating supports

In this part, the two simple pendulums are coupled by a spring of constant stiffness &
(see Figure 4). According to [14], the motion of the system is governed by the following
differential system :

d’x c d*f
By — ——2T. =0, 20
dt2+<0 K2 dt? 2)”“" (20)
where
cg + kb2 _ kb?
kg mk% mk%
T
T = } and By = )
x2 kb2 cg | kb
mkg k2 mk%
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a—o

o8

0.6

0.4

0.2

o

o 0.5 1 1.5

5

Figure 3: Stability zone of matrix X, (2,6, €), V (6, €) € [0, 1.98] x [0, 2] and a € {0, 0.35}.

Figure 4. Model of the coupled double pendulum with oscillating supports.

with m is the mass of each pendulum and b is the distance between the point of suspension
and the point of attachment of the coupling spring.
Replacing f(t) by its expression in (20), equation (20) becomes:

d*x caf?
Tl + (Bo + i cos(Qt)b) z =0. (21)
Using successively the change of variables
z= ( “1 > = ( o1+ T2 > and 7 = Qt,
Z9 Ir1 — T2
the equation of motion of the system can be reduced as (see [14])
U (6 +ejcos(r)) 2 =0, i =1,2 (22)
i +eicos(T)) z =0, i =
d7_2 (2 7 7 b Y
where )
cg co . kb
61:5:W7 51:e:k—8and52:5+2e, Wlthezm.
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Finally, using the change of variables given in (15) with N = 2, it is easy to see that the
equation of motion of the coupled system can be reduce to form (1) with

H(r, 6 ¢, ¢) = ( P(r, 8,5, ¢€) 0 > .

09 I
0 + ecos(T) 0
P(r, 4, ¢,e) =
0 0 + 2e + e cos(T)

Consider the rank-2 perturbation of the fundamental solution )~(a(7', J, €, e) of its cor-
responding Hamiltonian system

Eu (1,6, ¢, €) = U UL JX (7,6, ¢, €), (23)

where U, is defined in (17). In this case, it is easy to see that the equation of motion is of
the form (19) [1, 2, 5]. B
Figure 5 represents the spectral portrait of the matrix X, (7,0, €, €), V (d,¢,e) € {(1, 0.8, 0.5),
(1.93, 1.93, 0.5)} and a € {0, 0.35}, V7 € [0, 27]. The figures also show that the small

“04NGAD
“04NGAD

EYeNe -1 1 RO

5=1.93, €=1.93 and e=0.5, with a—0

404 NG AQ
404 NBAQ

SO — 1 RO SO — N W)

Figure 5: spectral portrait of )~(a(‘r, d,¢e,e), V1 € [0, 27| and (4,¢,e) € {(1,0.8,0.5), (1.93, 1.93, 0.5)}, with
a € {0, 0.35}.

perturbation of rank-2 on the movement of pendulums do not change the nature of the
spectral portrait of the fundamental solution X (1,0,¢,€).

For all (6,¢) € [0, 1.98]x [0, 2], Figure 6 shows the stability(strong) region of X, (27, , €, €).
The first figure (left) shows the zone of strong stability in white and instability in red when
our system is subject to a rank-2 perturbation with a = 0.35. The second figure (right)
also shows the zone of strong stability in white and instability in red of the unperturbed
system (a = 0). However, we observe some points of stability in blue. Thus we notice
a slight difference between the two figures due to the small rank-2 perturbations of the
system described by our two coupled pendulums.
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a = 0.35and e = 0.5

a = 0ande = 0.5

Figure 6: Stability(strong) of the matrix X, (27,6, ¢, €), V (6,¢) € [0, 1.98] x [0, 2], a € {0, 0.35} and e = 0.5.

5.2. Motion of an ion through a quadrupole analyser

Consider an ion of mass m and of electric charge |Ze| which moves with a velocity v
through a quadrupole analyzer of potential &y = U — V cos(wt). Within the analyzer, the
ion experiences a force f(x, y, t) = —ZeVV(x, y, t), where Z is the number of protons
and e is the charge of a proton. We assume that the component of the electric field along
the axis O, is zero, and the component z of the velocity remains constant.

> 20

oro

Source

B —(U - Vcos wt)
—100 v ov (U- Vcos mt)

Figure 7: Model of a quadrupole analyzer.

According to [12], the motion of the ion through the analyzer is governed by the
following equation

d2
d_fg + (@ —2gcos(28))z = 0
(24)
d2y
d_§2 — (@ —2qcos(2§))y = 0
where
o 8ZelU _ 47eV and € — wt
N rédmw?’ = ramw? 27
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This equation was proposed in 1866 by physicist Mathieu to describe the propagation
of waves in membranes. We apply the rank-k perturbation to this system in view of
comparing the spectral portraits and the stability zones of the perturbed and unperturbed
systems.

Using the change of variable given in (15) with N = 2, we obtain Hamiltonian system
(1) with

a — 2q cos(2€) 0

P(§) 02
H(g) = and P(€) =
< 02 I ) 0 —a + 2q cos(2€)

Considering that the motion of the ion is subjected to a perturbation of the type (16), the
equation of the motion of the ion then becomes [2, 5]

gl ) T TR 0L ) — UUTS) Rue, 0, ),

dg

(& a,q) (25)

)A(:a(O, o, q) = I+UUTT

where U = a and a € [0, 1.

Figure 8 represents the spectral portrait of the matrix )?a(a, q, &),V (e, q) € {(0, 0.025),
(0.1, 0.7)}, and @ = 0, 0.3003, V¢ € [0, 7|. Once again, these figures show that the small

=0 and q=0.025, with a=0.3003 =0 and q=0.025, with a-0

04N GAO
[ I VRN

o.8

S
o8 RAE)

—0.2
SME) —0-4

o0z 1
SOUE) —0-4 ROUE))

@=0.1 and q=0.7, with a=0.3003 «=0.1 and q=0.7, with a=0

o 2 o 2

404 NG RO
E I RN

o )
SUEN -1 ROE) IAE) - RAUEN

Figure 8: Spectral porttait of the matrix )~(a(§7 a,q), V¢e€l0, w]and (a, ¢q) € {(0, 0.025), (0.1, 0.7)}
with a € {0, 0.3003}.

rang-2 perturbation on the movement of an ion through a quadrupole analyzer do not
change the nature of the spectral portrait of X, (&, «, q).
V(a,q) € [0, 0.2] x [0, 0.9], Figure 9 shows the stability(strong) zone of the matrix

Xqu(m,a,q). The first figure (to the left) shows the zone of strong stability in white color
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and the zone of instability in red color when our system is subject to a rank-2 perturbation
with @ = 0.35. The second figure (to the right) also shows the zone of strong stability in
white color and instability in red color of the unperturbed system (a = 0). However, we
also see points of stability visible in blue on the first figure compared to the second. Thus
we notice a slight difference between the two figures due to the small rank-2 perturbation
of the system described by the movement of an ion through a quadrupole analyzer.

a=0.3003

a=0

0.9 0.9

os] * 0.8
o7 0.7
o.e o.e
o.s|) 0.5
0.4 0.4
0.3 0.3

0.2 0.2

0.1 o.1

o
o 0.05 o.1 0.15 0.2
o o

o 0.05 0.1 0.15 0.2

Figure 9: Stability(strong) zone of the matrix X, (7, a,q), ¥ (a,q) € [0, 0.2] x [0, 0.9] and a € {0, 0.3003}.

6. Concluding remarks

From works by C. Mehl, et al.[16] on the perturbation theory of structured matrices,
we presented Jordan canonical forms of rank-k perturbations of symplectic matrices and
fundamental solutions of Hamiltonian system with periodic coefficients. These results show
the effect of a k-rank perturbation on spectra of periodic Hamiltonian systems. Examples
of applications on Mathieu systems have been proposed to check the small change of
spectrum under small perturbations. Numerical simulations on the differential equations
of the motion of two uncoupled or coupled pendulums and the movement of an ion through
a quadrupole analyzer show a slight change in their spectra (thus in their stability zones).
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