
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 4, 2019, 1676-1688
ISSN 1307-5543 – www.ejpam.com
Published by New York Business Global

Hankel Transform of the Second Form (q, r)-Dowling
Numbers

Roberto B. Corcino1,∗, Jay M. Ontolan1, Gladys Jane S. Rama1

1 Research Institute for Computational Mathematics and Physics, Cebu Normal University,
6000 Cebu City, Philippines

Abstract. In this paper, using the rational generating for the second form of the q-analogue of
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Moreover, the Hankel transform for the second form of the q-analogue of r-Dowling numbers is
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1. Introduction

The matrix of the form 
a0 a1 a2 . . . an
a1 a2 a3 . . . an+1

a2 a3 a4 . . . an+2

. . . . . . . . . . . . . . . . . . . . . . . . . . .
an an+1 an+2 . . . a2n

 (1)

whose entries are the elements of the sequence A = (an)∞n=0 was defined in [16] as the
Hankel matrix of order n of a sequence A, denoted by Hn. This can also be written as
Hn = (ai+j)0≤i,j≤n. In the same paper [16], the Hankel determinant hn of order of n
of A was defined as the determinant of the corresponding Hankel matrix of order n, (i.e.
hn = det(Hn)) and the Hankel transform of the sequence A, denoted by H(A), was defined
as the sequence {hn} of Hankel determinants of A.
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For example, the sequence of (r, β)-Bell numbers in [12, 15], denoted by {Gn,r,β}, has
possessed the following Hankel transform (see [14])

H(Gn,r,β) =

n∏
j=0

βjj!.

As mentioned in [16], one can easily verify that the (r, β)-Bell numbers are simply the
r-Dowling numbers Dm,r(n), which are defined in [5] as

Dm,r(n) =

n∑
k=0

Wm,r(n, k)

where Wm,r(n, k) denotes the r-Whitney numbers of the second kind introduced by Mezo
in [29]. In [14], the authors have also tried to derive the Hankel transform of the sequence
of q-analogue of (r, β)-Bell numbers. In this attempt, they used the q-analogue defined in
[17]. But they failed to derive it.

Just recently, another definition of q-analogue of r-Whitney numbers of the second
Wm,r[n, k]q was introduced in [13, 16] by means of the following triangular recurrence
relation

Wm,r[n, k]q = qm(k−1)+rWm,r[n− 1, k − 1]q + [mk + r]qWm,r[n− 1, k]q. (2)

From this definition, two more forms of the q-analogue were defined in [13, 16] as

W ∗m,r[n, k]q := q−kr−m(k2)Wm,r[n, k]q (3)

W̃m,r[n, k]q := qkrW ∗m,r[n, k]q = q−m(k2)Wm,r[n, k]q, (4)

where W ∗m,r[n, k]q and W̃m,r[n, k]q denote the second and third forms of the q-analogue,
respectively. Corresponding to these, three forms of q-analogues for r-Dowling numbers
may be defined as follows:

Dm,r[n]q :=
n∑
k=0

Wm,r[n, k]q (5)

D∗m,r[n]q :=
n∑
k=0

W ∗m,r[n, k]q (6)

D̃m,r[n]q :=
n∑
k=0

W̃m,r[n, k]q. (7)

However, among these three forms, only the third form was considered in [16] and was
given the Hankel transform as follows

H(D̃m,r[n]q) = qm(n+1
3 )−rn(n+1)[0]qm ![1]qm ! . . . [n]qm ![m]

(n+1
2 )

q . (8)
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This Hankel transform was derived using the Hankel transform of q-exponential polyno-
mials in [20], the Layman’s Theorem in [26] and the Spivey-Steil Theorem in [34]. This
method cannot be used to derive the Hankel transform of the first and second forms of
q-analogues for r-Dowling numbers. But the method used by Cigler in [8] is found to be
useful to derive the Hankel transforms for the second form of the q-analogue of r-Dowling
numbers.

In this paper, the Hankel transform for the sequence
(
D∗m,r[n]q

)∞
n=0

will be estab-
lished using Cigler’s method [8]. However, a more general form of D∗m,r[n]q, denoted by
ϕn[x, r,m]q, is considered, which is defined in polynomial form as follows:

ϕn[x, r,m]q =
n∑
k=0

W ∗m,r[n, k][x]nq , (9)

such that, when x = 1, ϕn[1, r,m]q = D∗m,r[n]q.

2. A q-Analogue of Wm,r(n, k): Second Form

The second form of q-analogue of Wm,r(n, k) is a kind of generalization of the q-
analogue considered by Cigler [8]. This q-analogue possessed several properties (see [13])
including certain combinatorial interpretation in terms of A-tableau, which is defined in
[27] to be a list φ of column c of a Ferrer’s diagram of a partition λ(by decreasing order of
length) such that the lengths |c| are part of the sequence A = (ri)i≥0, a strictly increasing
sequence of nonnegative integers. By making use of the following explicit formula in
symmetric function form [13]

Wm,r[n, k]q = qm(k2)+kr
∑

S1+S2+···Sk=n−k

k∏
j=1

[mj + r]
Sj
q

=
∑

0≤j1≤j2≤···jn−k≤k
qm(k2)+kr

n−k∏
i=1

[mji + r]q, (10)

we have

W ∗m,r[n, k]q =
∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏
i=1

[mji + r]q. (11)

In [16], W ∗m,r[n, k] was expressed as

W ∗m,r[n, k] =
∑

φ∈TA
r (k,n−k)

∏
c∈φ

ω(|c|)

where TAr (h, l) denotes the set of A-tableau with l columns of lengths |c| ≤ h and ω(|c|) =
[m|c|+r]q. Using the combinatorics of A-tableau, the following identities were established
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in [16]:

W ∗m,r[n, k]q =

n∑
j=k

(−1)n−j
(
n

j

)
q−nr2 [r2]

n−j
q W ∗m,r1 [j, k]q (12)

W ∗m,r[n+ 1,m+ j + 1]q =
n∑
k=0

W ∗m,r[k,m]qW
∗
m,r−m−1[n− k, j]q (13)

W ∗m,r[s+ p, t]q =

min{t,s}∑
k=max{0,t−p}

W ∗m,r[s, k]qW
∗
m,r+mk[p, t− k]q. (14)

Moreover, the convolution-type identity (14) has been used in [13] to derive the following
Hankel determinant

det
(
W ∗m,r[s+ i+ j, s+ j]q

)
0≤i,j≤n =

n∏
k=0

[m(s+ k) + r]kq .

Another interesting property of W ∗m,r[n, k]q is the divisibility property. One can easily
observe that, using the triangular recurrence relation of Wm,r[n, k]q in (2), we can generate
the following table of values

n/k 0 1 2 3

0 1

1 [r]q qr

2 [r]2q qr ([r]q + [m+ r]q) qm+2r

2 [r]2q qr ([r]q + [m+ r]q) qm+2r

3 [r]3q qr[r]2q + qr[r]q[m+ r]q qm+2r ([r]q + [m+ r]q) q3m+3r

+qr[m+ r]2q qm+2r (+[2m+ r]q)

Then, we can generate the first values of W ∗m,r[n, k]q as follows

n/k 0 1 2 3

0 1

1 [r]q 1

2 [r]2q [r]q + [m+ r]q 1

3 [r]3q [r]2q + [r]q[m+ r]q + [m+ r]2q [r]q + [m+ r]q + [2m+ r]q 1

Note that [n]q = 1 + q+ q2 + . . .+ qn−1. Based on the preceding table, the constant values
of W ∗m,r[n, k]q from row 0 to row 3 form the following triangle of numbers

1
1 1

1 2 1
1 3 3 1.
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This can be written as (
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)
,

which is a portion of Pascal’s triangle. The following theorem generalizes the above ob-
servation.

Theorem 2.1. The q-analogue W ∗m,r[n, k]q satisfies the following congruence relations

W ∗m,r[n, k]q ≡
(
n

k

)
(mod q). (15)

Proof. We recall the rational generating function [13] for W ∗m,r[n, k]q is given by

Ψ∗k(t) =
∑
n≥0

W ∗m,r[n, k]q[t]
n
q =

[t]kq∏k
j=0(1− [mj + r]q[t]q)

.

Since

1

1− [mj + r]q[t]q
=
∑
n≥0

[mj + r]nq [t]nq

=
∑
n≥0

(1 + q + q2 + ...+ qmj+r−1)n[t]nq

=
∑
n≥0

(1 + qy)n[t]nq ,

where y in q. Then
1

1− [mj + r]q[t]q
=
∑
n≥0

(1 + qzn)[t]nq

for some polynomial zn in q. Hence,

1

1− [mj + r]q[t]q
=
∑
n≥0

[t]nq + q
∑
n≥0

zn[t]nq

≡
∑
n≥0

[t]nq (mod q) ≡
(

1

1− [t]q

)
(mod q)

Then

Ψ∗k(t) =
∑
n≥0

W ∗m,r[n, k]q[t]
n
q =

[t]kq∏k
j=0(1− [mj + r]q[t]q)
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≡ [t]kq

(
1

(1− [t]q)k+1

)
(mod q).

Using the Newton’s Binomial Theorem, we have∑
n≥0

W ∗m,r[n, k]q[t]
n
q ≡ [t]kq

∑
n≥0

(
n+ (k + 1)− 1

n

)
[t]nq (mod q)

≡
∑
n≥0

(
n+ k

n

)
[t]n+kq (mod q)

≡
∑
n≥k

(
n− k + k

n− k

)
[t]n+k−kq (mod q)

≡
∑
n≥k

(
n

k

)
[t]nq (mod q).

Comparing the coefficients of [t]nq completes the proof of the theorem.

3. Hankel Transform of D∗m,r[n]q

We recall that the horizontal generating function for Wm,r[n, k]q is given by

n∑
k=0

Wm,r[n, k]q[x− r|m]k,q = [x]nq . (16)

Using the fact that

[x− r|m]k,q = q−kr−m(k2)〈x〉r,m,k,

where 〈x〉r,m,k =
∏n−1
j=0 ([x]q − [r + jm]q), we can write (16) as follows

n∑
k=0

q−kr−m(k2)Wm,r[n, k]q〈x〉r,m,k = [x]nq

n∑
k=0

W ∗m,r[n, k]q〈x〉r,m,k = [x]nq .

Using the method of Cigler [8], let d[n, k] = det (ai+j+k)
n−1
i,j=0 denote the kth Hankel

determinant. That is, the 0th Hankel determinant is given by

d[n, 0] = det


a0 a1 a2 . . . an−1
a1 a2 a3 . . . an
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
an−1 an an+1 . . . a2n−2


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and the 1st Hankel determinant is given by

d[n, 1] = det


a1 a2 a3 . . . an
a2 a3 a4 . . . an+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
an an+1 an+2 . . . a2n−1

 .
Now, define a linear functional F on the polynomial by

F (xn) = an

By Gram-Schmidt orthogonalization process, there exists a sequence of orthogonal poly-
nomials

pn(x) = c0,n + c1,nx+ . . .+ cn−1,nx
n−1 + xn (cn,n = 1)

with respect to F such that

pn(x) =
1

d[n, 0]
det


a0 a1 a2 . . . an−1 1
a1 a2 a3 . . . an x
a2 a3 a4 . . . an+1 x2

. . . . . . . . . . . . . . . . . . . . . . . . . . .
an an+1 an+2 . . . a2n. xn

 (17)

where pn(x) := 1. This means that

F (pnpk) = dn[n = k] with dn 6= 0.

Then

d[n, 0] =
n−1∏
i=0

di.

Clearly, from (17), we have

pn(0) = c0,n =
1

d[n, 0]
(−1)nd[n, 1].

Hence, we have
d[n, 1] = d[n, 0](−1)npn(0). (18)

First, let us consider the Hankel transform of ϕn[x, r,m]q corresponding to the 0th Hankel
determinant.

Theorem 3.1. The Hankel transform of ϕn[x, r,m]q corresponding to the 0th Hankel de-
terminant is given by

H(ϕn[x, r,m]q) = ([m]q[x]q)
(n2) qr(

n
2)+(n3)

n−1∏
k=0

[k]qm !
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Proof. We prove this theorem using the method of Cigler [8]. First, consider a linear
operator Ur,q on the polynomials defined by

Ur,q〈x〉r,m,n = [x]nq where Ur,q[x]qU
−1
r,q = [x]q(1 + [x]−rq D[x]rq)

Then, we have

Ur,q[x]qU
−1
r,q [x]nq = Ur[x]q〈x〉r,m,n

= Ur,q(〈x〉r,m,n+1 + [r + n]q〈x〉r,m,n)

= [x]n+1
q + [r + n]q[x]nq

= [x]q(1 + [x]−rq D[x]rq)[x]nq .

Let Fr,q be the linear function defined by

Fr,q(〈x〉r,m,n) = [a]nq .

The orthogonal polynomial with respect to Fr,q is given by

hn,q(x, a, r,m) =
n∑
k=0

(−[a]q)
kq(

k
2)
[
n

k

]
q

〈x〉r,m,n−k,

which is a kind of q-Poisson-Charlier polynomials satisfying the following recurrence rela-
tion

hn+1,q(x, a, r,m) = ([x]q − [mn+ r]q − qn[a]q)hn,q(x, a, r,m)

− qr+mn−1[a]q[n]qhn−1,q(x, a, r,m).

Now, consider the following polynomial in [x]q

pn,q(x, a) =

n−1∏
k=0

(
[x]q − qk[a]q

)
=

n∑
k=0

(−[a]q)
kq(

k
2)
[
n

k

]
q

[x]n−kq .

By applying the linear operator Ur,q : 〈x〉r,m,k 7→ [x]kq to hn,q(x, a, r,m),

Urhn,q(x, a, r,m) =
n∑
k=0

(−[a]q)
kq(

k
2)
[
n

k

]
q

[x]n−kq = pn,q(x, a).

This implies that
U−1r,q (pn,q(x, a)) = hn,q(x, a, r,m).

Then

Ur[x]qhn,q(x, a, r,m) = Ur[x]qU
−1
r,q (pn,q(x, a))

= [x]q(1 + [x]−rq D[x]rq)pn,q(x, a)



R. Corcino, J. Ontolan, G. J. Rama / Eur. J. Pure Appl. Math, 12 (4) (2019), 1676-1688 1684

= [x]qpn,q(x, a) + [r +mn]qpn,q(x, a)

Note that

pn+1,q(x, q) =
n∏
k=0

(
[x]q − qk[a]q

)
= ([x]q − qn[a]q) pn,q(x, q).

Hence, [x]qpn,q(x, a) = pn+1,q(x, a) + [a]qq
npn,q(x, a). Using the fact that

[r +mn]q = [r]q + qr[mn]q,

we have

Ur[x]hn,q(x, a, r,m) = pn+1,q(x, a) + [a]qq
npn,q(x, a)

+ ([r]q + qr[mn]q)pn,q(x, a)

= pn+1,q(x, a) + [a]qq
npn,q(x, a) + [r]qpn,q(x, a) + qr[mn]qpn,q(x, a)

= pn+1,q(x, a) + [a]qq
npn,q(x, a) + [r]qpn,q(x, a) + qr[mn]q[x]qpn−1,q(x, a).

Also, [x]qpn−1,q(x, a) = pn,q(x, a) + [a]qq
n−1pn−1,q(x, a). Then

Ur[x]hn,q(x, a, r,m) = pn+1,q(x, a) + [a]qq
npn,q(x, a)

+ [r]qpn,q(x, a) + qr[mn]q(pn,q(x, a) + [a]qq
n−1pn−1,q(x, a))

= pn+1,q(x, a) + [a]qq
npn,q(x, a) + [r]qpn,q(x, a) + qr[mn]qpn(x, a)

+ [a]q[mn]qq
r+n−1pn−1,q(x, a)

Applying U−1r,q yields

[x]qhn,q(x, a, r,m) = hn+1,q(x, a, r,m) + ([a]qq
n + [r]q + qr[mn]q)hn,q(x, a, r,m)

+ [a]q[mn]qq
r+n−1hn−1,q(x, a, r,m).

Clearly,

Fr,q(hn,q(x, a, r,m)) =
n∑
k=0

(−[a]q)
k q(

k
2)
[
n

k

]
q

[a]nq = pn,q(a, a) = 0,

which implies

dn,q = Fr,q([x]nq hn,q(x, a, r,m))

= qr+n−1[mn]q[a]q Fr,q([x]n−1q hn−1,q(x, a, r,m))

=

n∏
k=1

qr+k−1[mk]q[a]q =

n∏
k=1

qr+k−1[k]qm [m]q[a]q

= (qr[a]q[m]q)
n q(

n
2)[n]qm !

Hence, we have

d[n, 0]q =
n−1∏
k=0

dk,q
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=
n−1∏
k=0

(qr[m]q[x]q)
k q(

k
2)[k]qm !

= (qr[m]q[x]q)
0+1+2+...+n−1 q(

0
2)+(12)+(22)+...+(n−1

2 )
n−1∏
k=0

[k]qm !

= (qr[m]q[x]q)
(n2) q(

n
3)
n−1∏
k=0

[k]qm !.

This is exactly the desired Hankel transform.

As an immediate consequence of Theorem 3.1, we have the following corollary.

Corollary 3.2. The Hankel transform of D∗m,r[n]q is given by

H(D∗m,r[n]q) = [m]
(n2)
q q(

n
3)+r(

n
2)
n−1∏
k=0

[k]qm !

Proof. This can easily be derived from Theorem 3.1 by letting x = 1.

Remark 3.3. When m = 1, the Hankel tranform in Corollary 3.2 yields

H(D∗1,r[n]q) = q(
n
3)+r(

n
2)
n−1∏
k=0

[k]q!,

which is exactly the Hankel transform of the second form of q-noncentral Bell numbers
B̂q
n,a when r = −a in [11] defined by

B̂q
n,a =

n∑
k=0

S∗a[n, k].

Remark 3.4. When q → 1, Corollary 3.2 gives

H(D∗m,r(n)) = m(n2)
n−1∏
k=0

k!,

which is exactly the Hankel transform of (r, β)-Bell numbers Gn,β,r with β = m in [14].

Theorem 3.5. The Hankel transform of ϕn[x, r,m]q corresponding to the 1st Hankel
determinant d[n, 1]q is given by

H (ϕn[x, r,m]q) = d[n, 1]q

= ([m]q[x]q)
(n2) qr(

n
2)+(n3)

n−1∏
k=0

[k]qm !

n∑
k=0

(−1)n[x]kqq
(k2)
[
n

k

]
q

k−1∏
j=0

[r + jm]q.
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Proof. Taking [pn(x)]q = hn,q(x, a, r,m), we can compute the desired Hankel transform
using (18) with

[pn(0)]q = hn,q(0, a, r,m) =
n∑
k=0

(−[a]q)
k q(

k
2)
[
n

k

]
q

[0− r|m]k,q

=
n∑
k=0

(−1)k[a]kqq
(k2)
[
n

k

]
q

(−1)k
k−1∏
j=0

[r + jm]q

=
n∑
k=0

[a]kqq
(k2)
[
n

k

]
q

k−1∏
j=0

[r + jm]q .

Hence, we have

H (ϕn[x, r,m]q) = d[n, 1]q = d[n, 0]q(−1)n[pn(0)]q

= ([m]q[x]q)
(n2) qr(

n
2)+(n3)

n−1∏
k=0

[k]qm !

n∑
k=0

(−1)n[x]kqq
(k2)
[
n

k

]
q

k−1∏
j=0

[r + jm]q.

4. Recommendation

We observe that the Hankel transform of the second and third forms of the q-analogue
of r-Dowling numbers are obtained using different methods. It would be interesting to
find a method that can be used to establish the Hankel transform of the first form of the
q-analogue of r-Dowling numbers. It may be possible that this method is closely related
to the one being applied in this paper.
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[28] I. Mező, On the Maximum of r-Stirling Numbers, Adv. in Appl. Math. 41(3) (2008),
293-306.
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