Some Results on C-retractable Modules
DOI:
https://doi.org/10.29020/nybg.ejpam.v13i1.3588Keywords:
retractable modules, complement submodules, c-retractable modules, projective modules.Abstract
An R-module M is called c-retractable if there exists a nonzero homomorphism from M to any of its nonzero complement submodules. In this paper, we provide some new results of c- retractable modules. It is shown that every projective module over a right SI-ring is c-retractable. A dual Baer c-retractable module is a direct sum of a Z2-torsion module and a module which is a direct sum of nonsingular uniform quasi-Baer modules whose endomorphism rings are semi- local quasi-Baer. Conditions are found under which, a c-retractable module is extending, quasi-continuous, quasi-injective and retractable. Also, it is shown that a locally noetherian c-retractable module is homo-related to a direct sum of uniform modules. Finally, rings over which every c-retractable is a C4-module are determined.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.