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1. Introduction

In 1965, the degree of membership/truth (t) and the fuzzy set were introduced by
Zadeh [12]. Atanassov [1] introduced the degree of nonmembership/falsehood (f) and
defined the intuitionistic fuzzy set in 1986. Neutrosophy, means knowledge of neutral,
is a branch of philosophy introduced as a theory of generalization of dialectic in 1995
by Smarandache. He proposed the term neutrosophic because neutrosophic originally
comes from neutrosophy. In 1999, he introduced the concept of neutrosophic logics [9] and
introduced the degree of indeterminancy/neuterality (i) and proposed the neutrosophic
set on three components

(t, i, f) =(truth, indeterminacy, falsehood).

Jun et al. [11] introduced a negative-valued function and defined N-structures in 2009.
Khan et al. [4] investigated the notion of neutrosophic N -structures and their applications
in semigroups in 2017. Jun et al. [10, 11] considered neutrosophic N -structures applied
to BCK/BCl-algebras. Song et al. [8] proposed neutrosophic commutative A-ideals in
BCK-algebras in 2017. Rangsuk et al. [6] discussed neutrosophic N-structures and their
applications in UP-algebras.
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Algebraic systems with one n-ary operation, for n > 2, have been widely investigated
(see, e.g., [2, 3, 5, 7]). Algebraic n-ary systems have been applied in several fields of
mathematics.

The purpose of this paper is to investigate the extension of neutrosophic N -structures
in semigroups [4] to n-ary groupoids. Some basic notations and definitions will be pre-
sented in section 2. In section 3, we extend the results of neutrosophic N-structures and
their applications in semigroups to n-ary groupoids. Section 4 contains a brief summary
of this paper.

2. Preliminaries

The aim of this section is to review some notations and definitions of n-ary groupoids
and neutrosophic N -structures which can be also found in [2-4].
2.1. n-ary groupoids

Definition 1. Let S be a nonempty set. The set S together with an n-ary operation
f:8™— S, where n > 2, is called an n-ary groupoid and is denoted by (S, f).

According to the general convention used in the theory of n-ary groupoids, the sequence

of elements x;, zi41,...,x; is denoted by 2. In the case j < i, it is the empty symbol.
If 2541 = 40 = ... = zj4¢+ = x, then we write ) instead of xiﬂ In this convention,
f(wlax% s 7xn) = f(x?)a and

floe, oo @iy @y Ky 1y ey Tpy) = f(mll,m(t),xlﬂtﬂ).

t

Definition 2. A nonempty subset T' of an n-ary groupoids (S, f) is an n-ary subgroupoid
of S if (T, f) is an n-ary groupoid, i.e., if it is closed under the operation f.

2.2. Neutrosophic N-structures

Definition 3. A neutrosophic N -structure over X is defined to be the structure

X T
XN = (Tn, In, Fn) N {(TN(x),IN(w),FN(JU)) e X}

where T, In and Fy are N -functions on X which are called the truth membership func-
tion, the indeterminacy membership function and the falsity membership function on X,
respectively.

X

Definition 4. Let Xy = (TI—F)
My LM LM

and Xy = be neutrosophic N -

(Tn,In, Fn)
structures over X.
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(1) Xy is a neutrosophic N -substructure of Xp; over X, denoted by Xy C Xy, if it
satisfies the conditions

In(z) > Tu(z), In(z) < Iu(z), Fn(z) > Fu(2)
for all x € X.
We have that Xy C Xy and Xpyr € Xy if and only if Xy = Xpy.

(2) The union of Xy and Xy, denoted it briefly by Xnunr, is defined to be a neutro-

sophic N -structure
X

Tnoms Inome, Enonr)

XNnuMm = (
where

Tnom(z) = \A{Tn (@), Tar(2)}

INUM(SU) = \/ {IN(‘T)’ IM(x)} )

Faoar(@) = \ (P (@), Far(a)}

(3) The intersection of Xy and Xy, written it simply as Xnynn, is defined to be a
neutrosophic N -structure

X
X =
NOM (e, Inoat, Fxo)
where
Tnom(x) = \/ {Tn (@), Tar(2)}
Inona (@) = N\ {In(2), I (2)}
Fyon(z) = \/{Fn(2), Fu(2)}.
. X .
Definition 5. Let Xy = —————— be a neutrosophic N -structure over X. The
(TN7 IN) FN)

complement of Xy, denoted by X e, is defined to be a neutrosophic N -structure

X
(Tne, Ine, Fne)

XNC =
over X, where
Tne(z) = —1—Tn(x), Ine(z) = =1 — In(z), Fye(z) = —1— Fy(x)

forallz € X.
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Definition 6. Let X be a neutrosophic N -structure over X and let cv, 3, be real numbers
such that o, B,y € [—1,0]. Define the sets

TG = {z € X | Tn(z) < al,
15 = {x e X | In(z) > 8},
Fy={z€X|Fn(z) <~}

We call a set

Xn(a, B,7) ={r € X [Tn(2) < a, In(2) > B, Fn(2) <7}
an (o, B,7)-level set of Xy.

For the convenience, we note that
Xw(a,8,7) = T N Iy N Fy.

From now on, an n-ary groupoid X denotes the universe of discourse unless otherwise
specified.

3. Main results

In this section, we will look closely at neutrosophic n-ary N-subgroupoids, the (a, 3,7)-
level set, the intersection of neutrosophic n-ary N-subgroupoids, neutrosophic n-ary N-
subgroupoid products, e-neutrosophic n-ary N-subgroupoids, homomorphic preimage of
the neutrosophic n-ary N-subgroupoids and onto homomorphic image of the neutrosophic
n-ary N-subgroupoids.

X

(TN7 IN7 FN)
X. Then Xy is called a neutrosophic n-ary N -subgoupoid of X if the following conditions
are valid:

Definition 7. Let Xy := be a neutrosophic structure over an n-ary groupoid

Tn(f(1) < \{Tn (@), ..., Tn(za)},
In(f@) = Nn(@), . In(za)},
Fx(f(=1)) < \[{Fx(21), .., Fn(@n)},

for all x1,x9,..., 2, € X.

Theorem 1. Let Xy be a neutrosophic n-ary N -subgroupoid of an m-ary groupoid X
and let «, 8,y € [—1,0]. If the (o, B,7)-level set of Xy is nonempty, then it is an n-ary
subgroupoid of X.
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Proof. Let x1,...,2, € Xn(a, 3,7). Then
In(21) < a,In(z1) = B, Fy(21) < 7v,o o, Tiv(an) < @, In(zn) 2 B, Fn(2,) < 7.
It follows that
Tn(f(@7) < \{Tn (@), .., Tv(an)} < o,
IN(f@D) > N{In(z1), .. In(2n)} = B,
En(f(1) < \{FN(z1), ..., Fn(za)} <.

Therefore f(z}) € Xn(a, 8,7). This implies that Xy («, 8,7) is an n-ary subgroupoid of
X.

Theorem 2. Let X be a neutrosophic N -structure over an n-ary groupoid X . If TS, I]/f,
and FX, are n-ary subgroupoids of X for all o, B,y € [—1,0], then Xy is a neutrosophic
n-ary N -subgroupoid of X.

Proof. We prove this theorem by contradiction. Assume that there exist x1,...,z, € X
such that Ty (f(27)) > V{In(z1),...,Tn(2zs)}. Then

Tn(f(21)) > to = \/{Tn(21), ..., Tn(zn)}

for some t, € [~1,0). Thus 21,...,2, € Tk but f(z}) ¢ Tk, which is a contradiction.
Thus

Tn(f(21)) < \{Tn(@1), .., Tv(an)}
for all z1,...,x, € X.

We now assume that In(f(z})) < V{In(z1),...,In(2,)} for some z1,...,2, € X.
Then

In(f(=1)) < tg < \/{In(21), -, In(2n)}

for some tg € [-1,0). Thus z1,...,2, € If\? but f(z7) ¢ If\’?. This is a contradiction.
Hence

In(f(z)) = NIn(@)s- - In(za)}

for all zq,...,z, € X.
It remains to prove that

En(f@1) < \[{Fn(z1),..., Fx(wn)}

for all zq,...,z, € X. Suppose contrary to our claim that there are x1,...,z, € X such
that FN(f<$?)) > \/{FN(Z’l), e ,FN(xn)}. Then

Fn(f(a1)) > ty = \/{Fn(21), ..., Fy(zn)}

for some t, € [-1,0). Thus z1,...,z, € F;? but f(z}) ¢ F% . which is a contradiction.
Therefore X is a neutrosophic n-ary A-subgroupoid of X.
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X JX X
—————— an =
(Tn,In, FN) M (Tor, Ing, Fr)

n-ary N-subgroupoids over X. Then Xynys is also a neutrosophic n-ary N -subgroupoid
of X.
Proof. Let z1, ..., 2, € X. We obtain
T (f(27)) = \/{Tn (f (@), Tar (f ()}
<\VAV T, T}, \ ATu(@), - Tar(a)}
=V {VATw @) Tur(@n)} o VAT (@), s ()} }
= \/{TNOM 1), T ()}
Inom(f /\ {In(f(27)), I (f (7))}
> A\ {/\ {In(@), oo Iy}, \ (@), D(ea)}
= A {A v, )t N\ (), IM<xn>}}
:/\ {INmM $1) oo Innn(zn)}
Faonr(F@2)) = \/ {Fw (F(0)), Far(F(a5))}
<\/ {\/{FN 1 ,...,FN(:cn)},\/{FM(asl), s Fu(ea)}}
=\ AV Ewen, Futant, . \ B (@), Far(en)} |
= \/{Fvanr(@1), - Fvona ()}

for all z1,...,z, € X. Therefore X nys is a neutrosophic n-ary A-subgroupoid of X.

Theorem 3. Let Xy = be two neutrosophic

Corollary 1. Let {Xn, | i € N} be a family of neutrosophic n-ary N -subgroupoids of an
n-ary groupoid X .Then (\;cy Xn, is also a neutrosophic n-ary N -subgroupoid of X.
X
(Tny, In;, FN,)
over an n-ary groupoid (X, f). Then a neutrosophic N-structure over X
X
(TN1 ® ... QTleNl ®--~®INH7FN1 ® ~-®FNn)

For each ¢ € {1,2,...,n}, let Xy, := be a neutrosophic N -structure

XN ©...0XN, =

x
= reX
{TN1 @...@TNn(x),INl @...@INn(l'),FNl ® @FNH(:L')’ }
is defined to be a neutrosophic N-product of Xn,, Xn,, .- ., X, where

N AT (@) Vv T, ()}, if 2= f@]) Fa1,.00 20 € X,
TN, ®...0TN, (x) = a=f(a?)
0, otherwise,
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In®...OIN,(z) = e=f(})
~1, otherwise,

and

/\ {Fn(z1) V..V Fy, (20)}, ifz=fa}) Iz, ...z, € X,
Fn,®...OFy, () = a=f(a?)
0, otherwise.

If Xy = Xn, = Xn, =...= Xy, then XN1 ®...® Xy, is denoted by ®(Xy)™. For

X, the el t
any & A, e Cement ™ (@), o(In) ™ (2), ©(Fx )™ (z)

O(XN) (@) i= (O(Tw) ™ (), 0 (In) ™ (@), O(F) " () )

is denoted by

Theorem 4. A neutrosophic N -structure X over X is a neutrosophic N -subgroupoid of
X if and only if ©(Xn)™ C Xy.

Proof. We first prove that if a neutrosophic N-structure Xy over X is a neutrosophic
n-ary N-subgroupoid of X, then ®(X N)(") C Xy. We assume that X is a neutrosophic
n-ary N-subgroupoid of X and let z € X. If z # f(z}) for all z1,...,z, € X, then
this clearly forces @(XN)(") C Xy. Suppose that there are x1,...,x, € X such that
x = f(x), we obtain

o(Tw) (@) = N {Tn@)V..VIn@)} = N\ Tn(f(h) = Tv(),

r=f(z1) r=f(z})

O(In =\ {n@)AAIn(E)y <\ In(f@h) = In(e),
z=f(z7) v=f(x}

O(FN) ()= AN {Fv(@)V...VFEy(@)}> N Fn(f(a])) = Fy(o).
r=f(z) z=f(a})

Therefore ©(Xy)™ C Xy.

Conversely, let Xy be any neutrosophic n-ary N-subgroupoid of X such that ©(X N)(")
Xy. We only need to show that Xy is a neutrosophic n-ary N-subgroupoid of X. Let
Z1,...,Tyn be elements of X and let x = f(z7). Then

N

Tn(f(a1) = Tn(e) < O(Iw) (@) = N\ {Tn(z1) V...V Ty(za)}

z=f(z7)
<Tn(21)V...VIn(z )
In(f(@h) = In(z) =2 o(In) () = \/ {In(z) A Aly(zs)}
r= f($1)

> In(z) Ao AN (),
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Fx(f(a})) = Fn() <o(Fn)™ (@) = N {Fn(@) V...V Fy(en)}
z=f(z7)
< FN(:L'l) V...V FN(J}n)

Therefore Xy is a neutrosophic n-ary N-subgroupoid of X.

X
Theorem 5. Let X be an n-ary groupoid with identity e and let Xy = m be
Ny, IN,I'N

a neutrosophic n-ary N -subgroupoid over X such that
Xn(e) = Xn(z)

for all x € X, that is, Tn(e) < Tn(z),In(e) > In(x) and Fy(e) < Fy(x) for all x € X.
If X is a neutrosophic n-ary N -subgroupoid of X, then &(Xxn)™ = Xy.

Proof. For any x € X, we have

oTw) (@)= N A{Tn(@1) V...V Ty(zn)} < Tv(z) V In(e) = Ty (),

r=f(a})

oIn)M(x) = \/ {In(@)A.. Aly(aa)} > In(@) Aln(e) = In(z),
w=f(a7})

OFN) (@)= N\ {Fn(@1) V...V Fy(zn)} < Fn(z) V Fy(e) = Fy(x).
w=f(a7)

This shows that Xy € ®(Xy)™. From Theorem 4, we already have ®(Xy)™ C Xy.
Then ©(Xy)™ = Xy.

Definition 8. A neutrosophic N -structure Xy over X is said to be an e-neutrosophic
n-ary N -subgroupoid of X if the conditions

Tn(f(21) <\ {Tn(21), ..., Tn(@n), 1},

In(f (=) > N{In(@1), .. In(2n) €1},

Ex(f(«1) <\ {Fn(21), ..., Fn(zn),r}
hold for all z1,. .., xn € X where ep,er,ep € [~1,0].

Proposition 1. Let Xy be an e-neutrosophic n-ary N -subgroupoid of X. If Xy(x) <
(er,er,er), that is, Tn(x) > ep,In(z) < €1, Fn(z) > ep for all x € X, then Xy is a
neutrosophic n-ary N -subgroupoid of X .

Theorem 6. Let X be a neutrosophic N -structure over X and let a, 3, be real numbers
on the interval [—1,0]. If Xy is an e-neutrosophic n-ary N -subgroupoid of X, then the
(a, B,7)-level set of Xy is an n-ary subgroupoid of X whenever (a,,7) < (er,e1,€F),
that is a > ep, B <er, and v > ep.
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Proof. Assume that Xy («, 8,7) # 0 for o, 8,7 € [-1,0]. Let 21, ..., 2, € Xn(o, 8,7).
Then Ty (z1) < o, In(21) > B, Fn(21) <7,y IN(20) < o, IN(2n) 2> B, Fn(2,) < . It
follows that

Tn(f@}) < \/{Tn(@1), ..., In(zn),er} < \/H{a,er} = o,
In(f(@) = N {In(@r), .. In(za),ery = \{Ber} = B,
Fx(f(=1)) <\ {Fn(@1), ... Fn(@n)er} < \/{v,er} = 7.

Hence f(z1) € Xn(a, B,7). It follows that Xy («, 3,7) is an n-ary subgroupoid of X.

Theorem 7. Let X be a neutrosophic N -structure over X and let av, 3, be real numbers
on the interval [—1,0]. If Tﬁ‘,,]ﬁi and Fy; are n-ary subgroupoids of X for all ep,er,ep €
[—1,0] and (o, B,7) < (er,e1,€F), then XN is an e-neutrosophic n-ary N -subgroupoid of

X.
Proof. We prove this theorem by contradiction. We begin the proof by assuming that
Tn(f(27)) > \/{Tn(21), ..., Tiv(zn), 67}
for some z1,...,z, € X. Then

Tn(f(27)) > to > \/{Tn(21), ..., Ty (zn), 67}

for some t, € [—1,0). It follows that x1,...,z, € Th, f(2}) ¢ Tr and t, > ep. This is
a contradiction since Tf\? is an n-ary subgroupoid of X by hypothesis. Thus

TN(f(x?)) < \/ {TN(ajl)a cee aTN(l‘n)asT}

for all z1,...,z, € X.
Suppose now that there are x1,...,x, € X such that

In(f(27)) < /\ {In(x1),. . IN(20) €1}

Then
In(f(a0) <tg < N{In(z1), ... In(20) €1}

for some tg € [—1,0). It follows that z1,...,2, € If\’;, f(zh) ¢ I]t\‘; and tg < e7. This
contradicts to the fact that I%j is an n-ary subgroupoid of X. Thus

IN(f(x?)) > /\ {IN(x1)7 cee ’IN(xn)vf‘:I}

for all z1,...,z, € X.
Similarly, assume that

FN(f(l’?)) > \/{FN(xl)a"wFN(xn)asF}
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for some x1,...,z, € X. Then
Fn(at) >ty > \[{Fn(21), ..., Fy(zn), er}

for some t, € [-1,0). It implies that z1,...,2, € th\7, f(z}) ¢ F]t\,7 and t, > ep. This is
a contradiction since F;? is an n-ary subgroupoid of X. Thus

Ex(f(1) < \/{Fn(21), ..., Fn(zn),er}

for all z1,...,xz, € X. Therefore Xy is an e-neutrosophic n-ary N-subgroupoid of X.

Theorem 8. Let ep,er,ep,07,01,0p € [—1,0]. Let Xn and Xps be an e-neutrosophic
n-ary N -subgroupoid and a §-neutrosophic n-ary N -subgroupoid of X, respectively. The
intersection of Xy and Xy is a -neutrosophic n-ary N -subgroupoid of X for & :=e Ao
where (£T,§[,§F) = (ET Vop,er ANdr,ep V 5F>

Proof. For any 1, . ..,T, € X, we have
Tnenr (F(a)) = \/ {Tn (F@)), Tar(F(2))}
g\/{v{TN 21), o Tv(wa)ser}, \/ATu (@), Tur(wn), o7} }
<\/ {\/{TN (@1), - In(an). &rt \ AT (1), Tar (), gT}}

=\/ {\/{TN 1), Tn(n) rd s, \{Tn (@), Taa (), $T}}
= VAV @), Tuent s VAT @), Tu(ea)} )
=\ {Twvone (1), ., T (), 0}
Inor (F(2)) = N\ {In(F @), Inr (f (1))}
> A {/\{IN(xl),...,IN(xn),aj},/\{IM(xl),...,IM(mn),éf}}
ZA{A{IN(fvl),... In(za),éry s \ (i), ... IM(xn),§1}}
(1), Dng (@), &} s oo A\ U (@), T (), €1}
- /\{/\{IN(xl),IM(:pl W eees N\ {In(2n) ,JM(g;n)},gI}
= /\{INmM (1), ., Innnr(n), &1}
Faoar(£a5)) = \/ LN (F(@1)), Far(F(a3)}
<\/ {\/{FN (21), - Fn(@n),er}, \ {Fur(@1), - Far (), 0r} |
<\ A{V P, FN<xn>,sF},\/{FM<x1>, ooy Faran),€r} }
=\ AV 1B, Fu@n).éeb o\ B (@), Far(an), €0} }
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VAV Ev@, Fulant, ., B (@), Fur(an)} &r }
= \/ {Enone(@1)s - Fnom (20), §R} -

Therefore X ynps is a &-neutrosophic n-ary N-subgroupoid of X.

Theorem 9. Let Xy be an e-neutrosophic n-ary N -subgroupoid of X . If

k1= (kp, K1, KE) = (\/ {In(@)}, \ {In(@)}) \/ {FN<x>}>

zeX reX rzeX

then the set
Q:={x e X|Tn(x)<kpVer, In(x)>rrNer, Fn(z) < kpVep}
is an n-ary subgroupoid of X.
Proof. Let x1,...,x, € Q for any x1,...,2, € X. Then

Tn(x1) < kpVer = \/ {Tn(z1)} Ver,

x1€X

In() > ki ner= \ {In(z1)} Ae,
r1EX

Fn(z1) < kpVep = \/ {Fn(z1)} Ver,
r1eX

Tn(zp) < kpVer = \/ {Tn(zn)} Ver,

Tn€X

IN((I}n) > K Ner= /\ {IN(.’L'n)} NEr,
rn€X

FN(.CUn) <KkpVep= \/ {FN(xn)} VeEFp.
rn€X

It follows that

Tn(f (1)) <\ {Tw(@1), ..., T (@), e}

S\/{/‘GT\/gTwwa/‘iTVETvET}

=K VET,

In(f(=0)) > N{In(@1), .. In(2n) €1}
Z/\{/i]/\&],...,/i[/\é‘[,&[}

=Ky NEg,
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FN(f(x?)) S \/{FN(xl)v 7FN(xn)’5F}

S\/{%F\/EF7---,HF\/€F,€F}

= Kr VEF,

Then f(z}) € Q. Hence Q is an n-ary subgroupoid of X.

Y
Let X and Y be sets, g : X — Y be a function, Yy := —————— be a neutrosophic
(T'n, In, FN)
N-structure over Y with e = (e, e7,er). An e-neutrosophic N-structure over X is defined

X
[
by X§ = (7515, ) where
Ty : X = [-1,0], 2 = V{Tn(g(2)), e},
I]EV X = [-1,0],.% = /\{IN(Q(.’B)),EI},
FY: X = [-1,0,z — V{Fn(g9(z)),er}.

Theorem 10. Let X,Y be two n-ary groupoids and g : X — Y be a homomorphism. If
Y

a neutrosophic N -structure Yy := over Y is an e-neutrosophic n-ary N -

(In,In, FN)
subgroupoid of Y, then X§ = WXW is an e-neutrosophic n-ary N -subgroupoid of
X.
Proof. For any z1,...,x, € X, we have
= \{Tw(g(f (1)), e}

= \/{TN g(z1 -~~9($n))v5T}
<\V{\VA{Tw(g(@1), .., Tn(g(xn)) e} en}
= \/{\/{TN(Q(QH)), erts .-y \/{TN(Q(%)% ert,ert
= \{Tx(z1),. .. va(xn),eT},

= \In(9(f (=) er}
= A{In(g(z1 --'g(xn))afl}
> /\{/\{IN 9(1)), -, In(g(zn)), 1}, 61}
= N{A\Ux (1) er} - NIn(g(an)), er} e}
:/\{IN z1),... IN(xn),a‘[},

\/{FN ), €r}
= \/{FN 9(x1 ---g(iﬁn)),é‘F}
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< VAVA{FN(g(21)), ... Fn(g(xn)),er},er}
= \/{\/{FN g .%'1 5F} \/{FN xn 5F} EF}
= \/{FN (1),..., Fx(zn),er}.

X

Therefore X§, := —————— is an e-neutrosophic n-ary N-subgroupoid of X.
(T 15 FR)
. Y .
Let X,Y be two sets and g : X — Y be a function. If Yy ;= ————— is a
(TMy IM7 FM)

neutrosophic N-structure over Y, then the preimage of Yj; under g is a neutrosophic
N-structure over X defined by

X
(9= (Ta) g~ (Unr), 9~ (Far))

where g~ (Tar)(z) = Tu(9(2)), 9~ (Inr) (x) = In(g(x)), and g~ (Far)(x) = Fa(g(x)) for
all x € X.

71(YM) =

Theorem 11. Let X,Y be two n-ary groupoids and g : X — Y be a homomorphism. If

Y
Yy =————"F7—"—
M (TMaIMaFM)
Yy under g,

18 a neutrosophic n-ary N -subgroupoid of Y, then the preimage of

X
(97 (Tar)s g7 In), 97 (For))’

is a neutrosophic n-ary N -subgroupoid of X .

9 ' (Yu) =

Proof. For any x1,...,x, € X, we have

“HTan) (f(27) = T (g(f (1)) = Tar(g(1) - - - g(2n))
< \/{TM 1‘1 ) TM(g(a?n))}
=\ {o7' @) (@1), .., 97 (D) (an) }

=\ {o (Ea) (@), . g (Far) () } -

Therefore g~*(Y)) is a neutrosophic n-ary N-subgroupoid of X.
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X
(TNa IN7 FN)
is a neutrosophic N-structure over X, then the image of Xy under g is a neutrosophic
N-structure over Y defined by

Let X,Y be two sets and g : X — Y be an onto function. If Xy :=

Y
<g<TN)7g(IN)ag(FN))

9(Xn) =
where

9T = N Tn),

z€g~1(y)
gIn) ) = \/ In(2),
€97 (y)
g(FN)(y) = /\ Fn(z).
€9~ (y)

Theorem 12. Let X,Y be two n-ary groupoids and let g : X — Y be an onto homo-

morphism. Let Xy := be a neutrosophic N -structure of X such that for all

(TNaINaFN)
A C X, there is xg € A such that

Tn(wo) = N\ Tn(2),  In(zo) = \/ In(2),  Fn(wo) = )\ Fn(2).
z€A z€A z€A
If X is a neutrosophic n-ary N -subgroupoid of X, then the image of X under g,

Y
(9(Tw), 9(In),9(Fn))’

is a neutrosophic n-ary N -subgroupoid of Y.

9(Xn) =

Proof. Let
Y

(9(Tn),9(In),9(FN))

be the image of X under g. Let 41,...,y, €Y. Then g ' (y1) #0,..., ,9 (yn) # 0 in
X which implies that there are x,, € g1 (y1),...,2y, € g (yn) such that

Tn(zy) = N Tv(n), In(@y) =\ In(an), Fyley) =\ Fn(a),

z1€97 (1) z1€97 (1) z1€97 (Y1)

g(Xn) =

Tn(ry)= N\ TnGa), Iv(y) =\  In(z), Fy(ey)= N\ Fn(z)

2n €9~ (yn) 2n€97 1 (yn) z2n€9 1 (yn)
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Hence

g T = N\ Tn@) < Tn(ay, ... zy,)
z€g~ 1 (y7)

< \/ {TN<$y1)7 e TN(a:yn)}
:\/ /\ TN(Zl),..., /\ TN(Zn)

z1€97 (1) z2n€9 1 (yn)
= \/{9(TW) (1), - -, 9(Tn) ()},
oI =\ Iv@) > Iney,...x,)
z€g~1(y7)

> /\{IN(xyl)7 s 7IN(xyn)}
:/\ \/ IN(Zl),..., \/ IN(Zn)

z1€97 (y1) 2n €971 (yn)
= A {gn)(n), - 9(In) ()},
gFN ) = N\ Fn(x) < Fy(ay, ... zy,)
z€g~1(y})

< \/{FN(xm)v"'vFN(xyn)}
= \/ /\ FN(Zl),..., /\ FN(Zn)

z1€97 (1) 2n€9~ 1 (yn)

=\ {9F~) W), -, g(Fn)(yn)} -

Hence g(Xy) is a neutrosophic n-ary N-subgroupoid of Y.

4. Conclusions

We have studied the neutrosophic N -structure and applied it to n-ary groupoids. We
also investigated the notion of neutrosophic A/-structures in n-ary groupoids and showed
some properties. We have investigated the conditions for neutrosophic NV -structures to be
neutrosophic n-ary N-subgroupiods. A neutrosophic A/-product has been introduced. In
addition, we have introduced neutrosophic n-ary N-subgroupoids, e-neutrosophic n-ary
N-subgroupoids and shown the relation between n-ary subgroupoids and neutrosophic
n-ary N-subgroupoids. Finally, we showed that the homomorphic preimage of the neu-
trosophic n-ary N-subgroupoids is a neutrosophic n-ary A/-subgroupoids and the onto
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homomorphic image of the neutrosophic n-ary N -subgroupoids is also a neutrosophic n-
ary N-subgroupoids.
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