
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 4, 2009, (520-531)

ISSN 1307-5543 – www.ejpam.com

On Approximation and Generalized Type of Entire

Functions of Several Complex Variables

G. S. Srivastava∗ and Susheel Kumar

Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, IN-

DIA.
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1. Introduction

The concept of generalized order and generalized type for entire transcendental

functions was given by Seremeta [4] and Shah [5]. Hence, let L0 denote the class of
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functions h(x) satisfying the following conditions:

(i) h(x) is defined on [a,∞) and is positive, strictly increasing, differentiable and

tends to∞ as x →∞,

(ii)

lim
x→∞

h[{1+ 1/ψ(x)}x]
h(x)

= 1

for every function ψ(x) such that ψ(x)→∞ as x →∞.

Let Λ denote the class of functions h(x) satisfying conditions (i) and

(iii)

lim
x→∞

h(cx)

h(x)
= 1

for every c > 0, that is h(x) is slowly increasing.

For an entire transcendental function f (z) =
∑∞

n=1
bnzn, define M(r) =max

|z|=r
| f (z)|.

For functions α(x) ∈ Λ , β(x) ∈ L0 , the generalized order of f (z) is given by

ρ(α,β , f ) = lim
r→∞

sup
α[log M(r)]

β(log r)
.

Further, for α(x) , β−1(x) and γ(x) ∈ L0 , generalized type of an entire transcendental

function f (z) is given as

σ(α,β ,ρ, f ) = lim
r→∞ sup

α[log M(r)]

β[{γ(r)}ρ]
where 0< ρ <∞ is a fixed number.

Let g : C N → C , N ≥ 1 , be an entire transcendental function. For z = (z1, z2, ..., zN) ∈
C N , we put S(r, g) = sup{|g(z)| : |z1|2+ |z2|2+ ...+ |zN |2 = r2} , r > 0. Then we define

the generalized order and generalized type of g(z) as

ρ(α,β , g) = lim
r→∞

sup
α [logS(r, g)]

β (log r)
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and

σ(α,β ,ρ, g) = lim
r→∞ sup

α [logS(r, g)]

β [{γ(r)}ρ] .

Let K be a compact set in C N and let ||.||K denote the sup norm on K . The function

ΦK(z)= sup
�

|p(z)|1/n : p−polynomial, deg p ≤ n, ||p||K ≤ 1, n = 1, 2, .. and z ∈ C N
�

,

is called the Siciak extremal function of the compact set K (see [2] and [3]). Given a

function f defined and bounded on K , we put for n = 1, 2, ...

E1
n
( f , K) = || f − tn||K;

E2
n
( f , K) = || f − ln||K;

E3
n+1
( f , K) = ||ln+1 − ln||K;

where tn denotes the nth Chebyshev polynomial of the best approximation to f on

K and ln denotes the nth Lagrange interpolation polynomial for f with nodes at ex-

tremal points of K (see [2] and [3]).

Janik [1] obtained the characterizations of order of entire functions in terms of the

approximation errors defined above. Later he obtained the characterizations of the

generalized order [3]. In this note we obtained the characterizations of the general-

ized type.

For the case N = 1 this result was obtained by Shah [5].

2. Results

We first prove a lemma.

Lemma 1. Let K be a compact set in C N such that ΦK is locally bounded in C N . Set

G(x , t ,ρ) = γ−1{[β−1{tα(x)}]1/ρ}. Suppose that for all t , 0< t <∞,

(a) If γ(x) ∈ Λ and α(x) ∈ Λ, then

d[log{G(x , t ,ρ)}]
d(log x)

= O(1)



G. Srivastava and S. Kumar / Eur. J. Pure Appl. Math, 2 (2009), (520-531) 523

as x →∞.

(b) If γ(x) ∈ (L0 −Λ) or α(x) ∈ (L0 −Λ), then

lim
x→∞

d[log{G(x , t ,ρ)}]
d(log x)

=
1

ρ
.

Let (pn)n∈N be a sequence of polynomials in C N such that

(i) deg pn ≤ n, n ∈ N .

(ii) there exists n0 ∈ N such that

||pn||K ≤ en/ρ

�

γ−1

¨
�

β−1

�

1

t
α(n/ρ)

��1/ρ
«�−n

,

where t = t + ǫ, for small ǫ > 0.

Then
∑∞

n=0
pn is an entire function and the generalized type σ(α,β ,ρ,

∑∞
n=0

pn) of this

entire function satisfies

σ(α,β ,ρ,

∞
∑

n=0

pn)≤ t

provided
∑∞

n=0
pn is not a polynomial.

Proof. By assumption, we have

||pn||K rn ≤ rnen/ρ

�

γ−1

¨
�

β−1

�

1

t
α(n/ρ)

��1/ρ
«�−n

, n ≥ n0, r > 0.

If γ(x) ∈ Λ and α(x) ∈ Λ, then by assumptions of lemma, there exists a number b > 0

such that for x > a, we have

�

�

�

�

d[log{G(x , t ,ρ)}]
d(log x)

�

�

�

�

<b.

Let us consider the function

φ(x) = r x ex/ρ

�

γ−1

¨
�

β−1

�

1

t
α(x/ρ)

��1/ρ
«�−x

.



G. Srivastava and S. Kumar / Eur. J. Pure Appl. Math, 2 (2009), (520-531) 524

The maximum of φ(x) is attained for a value of x given by (see e.g. [4])

x∗(r) = ρα−1[tβ{(γ{re1/ρ−a(r)})ρ}],

where

a(r) =
d[log{G(x/ρ, 1/t,ρ)}]

d(log x)
.

Thus,

||pn||K rn ≤ exp(bρα−1[tβ({γ(re
1/ρ+b

)}ρ)]), n≥ n0, r > 0. (1)

Let us write Kr = {z ∈ C N : ΦK(z) < r, r > 1}, then for every polynomial p of degree

≤ n, we have (see e.g. [3] p.323)

|pn(z)| ≤ ||pn||KΦn
K
(z), z ∈ C N . (2)

So the series
∑∞

n=0
pn is convergent in every Kr , r > 1, whence

∑∞
n=0

pn is an entire

function. Put

M ∗(r) = sup{||pn||K rn : n ∈ N , r > 0}.

On account of 1, for every r > 0, there exists a positive integer ν(r) such that

M ∗(r) = ||pν(r)||K rν(r)

and

M ∗(r)>||pn||K rn, n > ν(r).

It is evident that ν(r) increases with r. First suppose that ν(r)→∞ as r →∞. Then

putting n = ν(r) in 1 we get for sufficiently large r

M ∗(r)≤ exp(bρα−1[tβ({γ(re
1/ρ+b

)}ρ)]). (3)

Put

Fr = {z ∈ C N : ΦK(z) = r}, r > 1
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and

M(r) = sup{|
∞
∑

n=0

pn(z)| : z ∈ Fr}, r > 1.

Now following Janik ( [3] p.323), we have for some positive constant k,

S

 

r,

∞
∑

n=0

pn

!

≤ M(kr) ≤ 2M ∗(2kr). (4)

Combining 3 and 4, we get

S

 

r,

∞
∑

n=0

pn

!

≤ 2exp(bρα−1[tβ({γ(2kre
1/ρ+b

)}ρ)])

or

α
�

1

bρ
log
¦

1

2
S(r,

∑∞
n=0

pn)
©
�

β({γ(2kre
1/ρ+b
)}ρ) ≤ t.

Since α(x) and γ(x) ∈ Λ, we get on using (iii),

lim sup
r→∞

α
�

logS(r,
∑∞

n=0
pn)
�

β({γ(r)}ρ) ≤ t. (5)

Now let α(x) ∈ (L0−Λ) or γ(x) ∈ (L0−Λ), then by the assumption of the lemma and

as in [4], we have

log r + o(1) = log F(x/ρ, 1/t,ρ).

Hence we obtain

r{1+ o(1)} = F(x/ρ, 1/t,ρ).

As in [4], the maximum of the function φ(x) in this case is attained for

x∗(r) = ρα−1[tβ([γ(r{1+ o(1)})]ρ)].

Further,

||pn||K rn ≤ exp({1+ o(1)}α−1[tβ([γ(r{1+ o(1)})]ρ)]), n ≥ n0, r > 0
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and in this case we have

S

 

r,

∞
∑

n=0

pn

!

≤ 2exp
�

{1+ o(1)}α−1[tβ({γ(2kr{1+ o(1)})}ρ)]
�

or
α
�

{1+ o(1)}−1 log
¦

1

2
S(r,

∑∞
n=0

pn)
©�

β({γ(2kr{1+ o(1)})}ρ) ≤ t.

Using the properties of the functions α,β and γ and proceeding to limits we again

obtain 5. Since t = t + ǫ,ǫ > 0 being arbitrarily, we finally get

σ(α,β ,ρ,

∞
∑

n=0

pn) ≤ t .

In the case when ν(r) is bounded then M ∗(r) is also bounded, whence
∑∞

n=0
pn re-

duces to a polynomial. Hence the Lemma is proved.

Now we give our main result.

Theorem 1. Let K be a compact set in C N such that ΦK is locally bounded in C N . Set

F(x , t ,ρ) = γ−1{[β−1{tα(x)}]1/ρ}. Suppose that for all t , 0< t <∞,

(a) If γ(x) ∈ Λ and α(x) ∈ Λ, then

d[log(F(x , t ,ρ))

d(log x)
= O(1)

as x →∞.

(b) If γ(x) ∈ (L0 −Λ) or α(x) ∈ (L0 −Λ), then

lim
x→∞

d[log(F(x , t ,ρ))

d(log x)
=

1

ρ
.

Then the function f , defined and bounded on K , is the restriction of an entire function g

of the generalized type σ(α,β ,ρ, g) if and only if

σ(α,β ,ρ, g) = lim
n→∞

sup
α(n/ρ)

β{[γ(e1/ρ[Es
n
( f , K)]−1/n)]ρ} ; s = 1, 2, 3.
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Proof. First we assume that f has an entire function extension g which is of

generalized type σ = σ(α,β ,ρ, g). We write

ηs = lim
n→∞

sup
α(n/ρ)

β{[γ(e1/ρ[Es
n
]−1/n)]ρ} ; s = 1, 2, 3.

Here Es
n

stands for Es
n

�

g|K , K
�

, s = 1, 2, 3. We show that σ = ηs, s = 1, 2, 3. It is known

(see e.g. [6]) that

E1
n
≤ E2

n
≤ (n∗ + 2)E1

n
, n ≥ 0, (6)

E3
n
≤ 2(n∗ + 2)E1

n−1
, n≥ 1, (7)

where n∗ =







n+ N

n






. Using Stirling formula for the approximate value of

n! ≈ e−nnn+1/2
p

2π,

we get n∗ ≈ nN

N !
for all large values of n. Hence for all large values of n, we have

E1
n
≤ E2

n
≤ nN

N !
[1+ o(1)]E1

n

and

E3
n
≤ 2

nN

N !
[1+ o(1)]E1

n
.

Thus η3 ≤ η2 = η1 and it suffices to prove that η1 ≤ σ ≤ η3. First we prove that

η1 ≤ σ. Using the definition of the generalized type , for ǫ > 0 and r > r0(ǫ), we

have

S(r, g)≤ exp[α−1{σβ({γ(r)}ρ)}],

where σ = σ+ ǫ provided r is sufficiently large. Without loss of generality, we may

suppose that

K ⊂ B = {z ∈ C N : |z1|2+ |z2|2+ ...+ |zN |2 ≤ 1}.

Then

E1
n
≤ E1

n
(g, B).
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Now following Janik ( [3] p.324), we get

E1
n
(g, B) ≤ r−nS(r, g), r ≥ 2, n ≥ 0

or

E1
n
≤ r−n exp[α−1{σβ({γ(r)}ρ)}].

Putting

r = r(n) = F(n/ρ, 1/σ,ρ) = γ−1

¨
�

β−1

�

1

σ
α(n/ρ)

��1/ρ
«

,

we get

E1
n
≤ en/ρ

�

γ−1

¨
�

β−1

�

1

σ
α(n/ρ)

��1/ρ
«�−n

or

[E1
n
]−1/n ≥ e−1/ργ−1

¨
�

β−1

�

1

σ
α(n/ρ)

��1/ρ
«

or
α(n/ρ)

β{[γ(e1/ρ[E1
n
]−1/n)]ρ} ≤ σ.

Taking limits as n→∞, we get

lim
n→∞

sup
α(n/ρ)

β{[γ(e1/ρ[E1
n
]−1/n)]ρ} ≤ σ.

Since ǫ > 0 is arbitrarily small, therefore finally we get

η1 ≤ σ.

Now we will prove that σ ≤ η3. Suppose that η3 < σ. Then for every λ,η3 < λ < σ,

α(n/ρ)

β{[γ(e1/ρ[E3
n
]−1/n)]ρ} ≤ λ

provided n is sufficiently large. Thus

E3
n
≤ en/ρ

�

γ−1

¨
�

β−1

�

1

λ
α(n/ρ)

��1/ρ
«�−n

.
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Also by previous lemma,

σ ≤ λ,

where σ = σ(α,β ,ρ, g) is the generalized type of g(z) as dfefined on page 2.

Since λ has been chosen less than σ, we get a contradiction. Hence

σ ≤ η3.

Now let f be a function defined and bounded on K and such that for s = 1, 2, 3,

ηs = lim
n→∞ sup

α(n/ρ)

β{[γ(e1/ρ[Es
n
]−1/n)]ρ} .

So for every λ1 > ηs and for sufficiently large n, we have

α(n/ρ)

β{[γ(e1/ρ[Es
n
]−1/n)]ρ} ≤ λ1

or

Es
n
≤ en/ρ

�

γ−1

¨
�

β−1

�

1

λ1

α(n/ρ)

��1/ρ
«�−n

.

Proceeding to limits as n→∞, we get

lim
n→∞[E

s
n
]1/n ≤ 0.

Also it is obvious that

lim
n→∞
[Es

n
]1/n ≥ 0.

Hence finally we get

lim
n→∞[E

s
n
]1/n = 0.

So following Janik (see [1], Prop. 3.1), we claim that the function f can be continu-

ously extended to an entire function . Let us put

g = l0 +

∞
∑

n=1

(ln − ln−1),
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where {ln} is the sequence of Lagrange interpolation polynomials of f as defined

earlier.

Now we claim that g is the required continuation of f and σ(α,β ,ρ, g) = ηs. For

every λ1 > η3 and for sufficiently large n, we have

E3
n
≤ en/ρ

�

γ−1

¨
�

β−1

�

1

λ1

α(n/ρ)

��1/ρ
«�−n

or

||ln− ln−1|| ≤ en/ρ

�

γ−1

¨
�

β−1

�

1

λ1

α(n/ρ)

��1/ρ
«�−n

.

So using the Lemma 1, we get

σ(α,β ,ρ, g) ≤ λ1.

Since λ1 > η3 is arbitrary, so finally we get

σ(α,β ,ρ, g) ≤ η3.

Using the inequalities 6, 7 and the proof of first part given above, we haveσ(α,β ,ρ, g) =

ηs, as claimed. This completes the proof of the Theorem.
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