EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 13, No. 3, 2020, 701-709 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Upper Distance k- Cost Effective Numbers in the Join of Graphs

Julius G. Caadan^{1,*}, Rolando N. Paluga², Imelda S. Aniversario³

¹ Surigao State College of Technology, 8400 Surigao City, Philippines

² Department of Mathematics, College of Mathematics and Natural Sciences,

Caraga State University, 8600, Ampayon, Butuan City City, Philippines

³ Department of Mathematics and Statistics, College of Science and Mathematics,

Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. Let k be a positive integer and G be a connected graph. The open k-neighborhood set $N_G^k(v)$ of $v \in V(G)$ is the set $N_G^k(v) = \{u \in V(G) \setminus \{v\} : d_G(u, v) \leq k\}$. A set S of vertices of G is a distance k- cost effective if for every vertex u in S, $|N_G^k(u) \cap S^c| - |N_G^k(u) \cap S| \geq 0$. The maximum cardinality of a distance k- cost effective set of G is called the upper distance k- cost effective number of G. In this paper, we characterized a distance k- cost effective set in the join of two graphs. As direct consequences, the bounds or the exact values of the upper distance k- cost effective numbers are determined.

2020 Mathematics Subject Classifications: 05C12

Key Words and Phrases: Distance *k*-cost effective set, upper distance *k*-cost effective number, join, *t*-fringe set, *t*- increment

1. Introduction

We assume that all graphs G = (V(G), E(G)) considered throughout this paper are finite, simple, and undirected connected graphs. The basic graph theoretic concepts are adapted from [1] and [7]. The notations V(G) and E(G) are the vertex set and edge set, respectively, of G. The |V(G)| denotes the order of G and for any set $S \subseteq V(G)$, |S| is the cardinality of S.

Let G be a connected graph and $v \in V(G)$. The **open neighborhood** of v in G, denoted by $N_G(v)$, is the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$. The **degree** of a vertex $v \in V(G)$, denoted by $\deg_G(v)$, is the cardinality of $N_G(v)$. The **minimum degree** of G is $\delta(G) = \min\{\deg_G(v) : v \in V(G)\}$ and the **maximum degree** of G is $\Delta(G) =$ $\max\{\deg_G(v) : v \in V(G)\}$. The **distance** between vertices u and v in G, denoted by

https://www.ejpam.com

© 2020 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3657

Email addresses: juliusgcaadan@gmail.com (J. G. Caadan), rnpaluga@carsu.edu.ph (R. N. Paluga), imelda.aniversario@g.msuiit.edu.ph (I. S. Aniversario)

 $d_G(u, v)$, is the length of the shortest path from vertex u to vertex v in G. The **diameter** of G, denoted by diam(G), is the maximum distance between any two vertices in G.

For any positive integer k and $v \in V(G)$, the **open** k-**neighborhood set** $N_G^k(v)$ of vertex v is the set of all vertices u of G such that $0 < d_G(u, v) \leq k$. That is, $N_G^k(v) =$ $\{u \in V(G) : 0 < d_G(u, v) \leq k\}$. The degree of v in G of distance k, denoted by $\deg_G^k(v)$, is the cardinality of $N_G^k(v)$. The minimum degree $\delta^k(G)$ of G with distance k is $\delta^k(G) = \min\{\deg_G^k(v) : v \in V(G)\}$ and the maximum degree of G with distance k is $\Delta^k(G) = \max\{\deg_G^k(v); v \in V(G)\}$. Note that $\deg_G^1(v) = \deg_G(v), \ \delta^1(G) = \delta(G)$, and $\Delta^1(G) = \Delta(G)$. A simple graph G is called **regular** if all vertices of G have the same degree. Thus, $\Delta(G) = \delta(G)$.

Given graphs G and H with disjoint vertex sets, the **join** of G and H, denoted by G + H, is the graph with vertex set $V(G + H) = V(G) \cup V(H)$ and edge set $E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$. For a nonempty set $S \subseteq V(G)$, the **subgraph** $\langle S \rangle_G$ of G induced by S is the maximal subgraph of G with vertices in S. The $\delta(G : S) = \min \{\deg_G(v) : v \in S\}$.

A vertex v in a set $S \subseteq V(G)$ is a **cost effective** if $|N_G(v) \cap S^c| - |N_G(v) \cap S| \ge 0$. A set $S \subseteq V(G)$ is called **cost effective** if every vertex $v \in S$ is cost effective. The concept of cost effective set in graph was introduced by Haynes, et.al. in [5] which was motivated by Aharoni, et. al. in [8]. In 2018, Chellali, et. al. in [2] established a generalization of this concept. Its application in computer networks plays a vital role: in particular in maintaining edges in a network that are directly associated with the cost that should be used effectively and in a set of servers (vertices) that each server is serving a maximal number of clients (non-servers). We refer the readers to [2, 4] for some of its relevant applications and to [3, 6, 9] for some investigations of the concepts.

In this paper, we characterized the distance k- cost effective sets in the join of two graphs. As direct consequences, we determined the bounds or the exact values of the upper distance k-cost effective numbers of the join of graphs.

2. Results

Remark 1. Let G be a connected graph. If $S \subseteq V(G)$ is a distance k- cost effective then every subset of S is also a distance k-cost effective in G.

Definition 1. Let G be a connected graph and k be a positive integer. A set $S \subseteq V(G)$ is a *distance* k- cost effective set of G if for every $v \in S$, $|N_G^k(v) \cap S^c| - |N_G^k(v) \cap S| \ge 0$. The *upper distance* k- cost effective number of a graph G, denoted by $\alpha_{ce}^k(G)$, is the maximum cardinality of a distance k - cost effective set in G.

It is worth noting that the concept of a distance 1- cost effective set in G is just equivalent to the concept of a cost effective set in G.

Example 1. Let k and n be positive integers. For any complete graph K_n , a set S is a distance k- cost effective in K_n if and only if $|S| \leq \lfloor \frac{n+1}{2} \rfloor$. Hence, $\alpha_{ce}^k(K_n) = \lfloor \frac{n+1}{2} \rfloor$.

Remark 2. Let G and H be any connected graphs and k be any positive integer.

- J. G. Caadan, R. N. Paluga, I. S. Aniversario / Eur. J. Pure Appl. Math, 13 (3) (2020), 701-709 703
 - (i) If $S \subseteq V(G)$ is a distance k- cost effective set in G, then S is a distance k-cost effective set in G + H.
 - (ii) If $S \subseteq V(H)$ is a distance k- cost effective set in H, then S is a distance k- cost effective set in G + H.

Remark 3. Let G and H be any connected graphs and k be any positive integer. Then

$$\alpha_{ce}^k(G+H) \ge \max\{\alpha_{ce}^k(G), \alpha_{ce}^k(H)\}.$$

Example 2. Let $G = C_8$ and $H = K_{1,9}$. Then $\alpha_{ce}^1(G + H) = \alpha_{ce}^1(H)$ and for any connected graph G and for all integers $k \ge 2$, $\alpha_{ce}^k(G + K_1) = \alpha_{ce}^k(G)$.

Theorem 1. Let k be a positive integer and G be a connected graph such that $k \geq 1$ diam(G). Then S is a distance k-cost effective set in G if and only if $|S| \leq \lfloor \frac{|V(G)|+1}{2} \rfloor$.

Proof: Let k be a positive integer and G be a connected graph such that $k \ge diam(G)$. Suppose S is a distance k-cost effective set in G. Then for each $u \in S$,

$$|N_G^k(u) \cap S^c| - |N_G^k(u) \cap S| = |(V(G) \setminus \{u\}) \cap S^c| - |(V(G) \setminus \{u\}) \cap S|$$

= |S^c| - (|S| - 1)
= |V(G)| - |S| - |S| + 1
= |V(G)| + 1 - 2|S|
\ge 0.

That is, $|S| \leq \frac{|V(G)|+1}{2}$. Since |S| is an integer, $|S| \leq \lfloor \frac{|V(G)|+1}{2} \rfloor$. Suppose that $|S| \leq \lfloor \frac{|V(G)|+1}{2} \rfloor$. Then $|S| \leq \frac{|V(G)|+1}{2}$. Equivalently, $2|S| \leq |V(G)|+1$. Let $u \in S$. Then

$$|N_G^k(u) \cap S^c| - |N_G^k(u) \cap S| = |V(G)| - |S| - |S| + 1$$

= |V(G)| + 1 - 2|S|
\ge |V(G)| + 1 - [|V(G)| + 1]
= 0.

Thus, S is a distance k-cost effective set in G.

Corollary 1. If $k \geq diam(G)$, then $\alpha_{ce}^k(G) = \lfloor \frac{|V(G)|+1}{2} \rfloor$.

Corollary 2. Let G and H be connected graphs and an integer $k \ge 2$. Then S is a distance k-cost effective set in G + H if and only if $|S| \le \lfloor \frac{|V(G)| + |V(H)| + 1}{2} \rfloor$. Consequently, $\alpha_{ce}^k(G+H) = \lfloor \frac{|V(G)| + |V(H)| + 1}{2} \rfloor.$

Proof: Follows from Theorem 1 since $k \ge diam(G + H) = 2$.

Remark 4. For all positive integer $k \ge 2$, $\alpha_{ce}^k(G+H) = \alpha_{ce}^2(G+H)$.

Definition 2. Let G be a connected graph and t be a nonnegative integer. A set $S \subseteq V(G)$ is a t- *fringe* subset of G if $\Delta(\langle S \rangle_G) \leq t$. The t- fringe number of G, denoted by $\tau_t(G)$, is the maximum cardinality of a t- fringe subset of G.

Example 3. Consider the graph G as shown in Figure 1. Let $S_1 = \{v_3, v_5, v_6, v_7\}$ and $S_2 = \{v_2, v_4, v_5, v_7\}$. Then $\Delta(\langle S_1 \rangle_G) = 3$ and $\Delta(\langle S_2 \rangle_G) = 0$. Thus, S_1 is *t*-fringe subset of G if $t \geq 3$ while S_2 is a *t*-fringe subset of G if $t \geq 0$.

Figure 1: The Graph G with $\Delta(G) = 5$

Theorem 2. Let G be a connected graph, $S \subseteq V(G)$, and $t \ge \lfloor \frac{\Delta(G)}{2} \rfloor$. If S is a distance 1-cost effective set in G, then S is a t-fringe subset of V(G).

Proof: Let $S \subseteq V(G)$ be a distance 1-cost effective set in G. Then for $u \in S$,

$$\begin{split} |N_G^1(u) \cap S^c| - |N_G^1(u) \cap S| &= \deg_G(u) - \deg_{\langle S \rangle_G}(u) - \deg_{\langle S \rangle_G}(u) \\ &= \deg_G(u) - 2\deg_{\langle S \rangle_G}(u) \\ &> 0. \end{split}$$

It follows that $\deg_G(u) - 2\deg_{\langle S \rangle_G}(u) \geq 0$. Hence, $2\deg_{\langle S \rangle_G}(u) \leq \deg_G(u)$. Since u is arbitrary, $2\Delta(\langle S \rangle_G) \leq \Delta(G)$. Equivalently, $\Delta(\langle S \rangle_G) \leq \frac{\Delta(G)}{2}$. Hence, $\Delta(\langle S \rangle_G) \leq \lfloor \frac{\Delta(G)}{2} \rfloor \leq t$. Accordingly, S is a *t*-fringe subset of V(G).

Theorem 3. Let G be a connected graph and H be any graph of order $n \ge 2$, $S \subseteq V(G)$, and $t \ge \lfloor \frac{n+\Delta(G)}{2} \rfloor$. If S is a distance 1-cost effective set in G + H, then S is a t-fringe subset of V(G).

Proof: Let $u \in S$. Then

$$|N_{G+H}^{1}(u) \cap S^{c}| - |N_{G+H}^{1}(u) \cap S| = \deg_{G}(u) - \deg_{\langle S \rangle_{G}}(u) + n - \deg_{\langle S \rangle_{G}}(u)$$
$$= \deg_{G}(u) + n - 2\deg_{\langle S \rangle_{G}}(u)$$

Since S is a distance 1-cost effective set in G + H, $\deg_G(u) + n - 2\deg_{\langle S \rangle_G}(u) \geq 0$. Hence, $2\deg_{\langle S \rangle_G}(u) \leq \deg_G(u) + n$. It follows that $2\deg_{\langle S \rangle_G}(u) \leq \Delta(G) + n$, $\forall u \in S$. Since u is arbitrary, $2\Delta(\langle S \rangle_G) \leq \Delta(G) + n$. Equivalently, $\Delta(\langle S \rangle_G) \leq \frac{\Delta(G) + n}{2}$. Hence, $\Delta(\langle S \rangle_G) \leq \lfloor \frac{\Delta(G) + n}{2} \rfloor \leq t$. Accordingly, S is a t-fringe subset of V(G).

Corollary 3. Let G be a connected graph, H be any graph of order $n \geq 2$ and $t \geq \lfloor \frac{n+\Delta(G)}{2} \rfloor$. Then $\alpha_{ce}^1(G+H) \leq \tau_t(G)$.

Theorem 4. Let G be a connected graph and H be any graph of order $n \ge 2$, $S \subseteq V(G)$, and $t \le \lfloor \frac{n+\delta(G)}{2} \rfloor$. If S is a t-fringe subset of V(G), then S is a distance 1-cost effective set in G + H.

Proof: Since S is a t-fringe subset of V(G), then $\Delta(\langle S \rangle_G) \leq t \leq \lfloor \frac{n+\delta(G)}{2} \rfloor \leq \frac{n+\delta(G)}{2}$. It follows that $2\Delta(\langle S \rangle_G) \leq \delta(G) + n$. Let $u \in S$. Then

$$\begin{aligned} |N_{G+H}^{1}(u) \cap S^{c}| - |N_{G+H}^{1}(u) \cap S| &= \deg_{G}(u) - \deg_{\langle S \rangle_{G}}(u) + n - \deg_{\langle S \rangle_{G}}(u) \\ &= \deg_{G}(u) + n - 2\deg_{\langle S \rangle_{G}}(u) \\ &\geq \deg_{G}(u) + n - 2\Delta(\langle S \rangle_{G}) \\ &\geq \deg_{G}(u) + n - (n + \delta(G)) \\ &= \deg_{G}(u) - \delta(G) \\ &\geq 0. \end{aligned}$$

Thus, S is a distance 1-cost effective set in G + H.

Corollary 4. Let G be a connected graph, H be any graph of order $n \ge 2$, and $t \le \lfloor \frac{n+\delta(G)}{2} \rfloor$. Then $\alpha_{ce}^1(G+H) \ge \tau_t(G)$.

The next theorem is an immediate consequence of Theorems 3 and 4.

Theorem 5. Let G be any regular graph, H be any graph of order $n \ge 2$ and $t = \lfloor \frac{n + \Delta(G)}{2} \rfloor$. Then $\alpha_{ce}^1(G + H) = \tau_t(G)$.

Definition 3. Let G be a connected graph, $S \subseteq V(G)$ and t be any integer. The $\pi(G:S)$ is defined as $\pi(G:S) = \max\{2\deg_{\langle S \rangle_G}(v) - \deg_G(v) : v \in S\}$. A set S is t- increment subset of G if $\pi(G:S) \leq t$.

Example 4. Consider the graph G as shown in Figure 1. Let $S_1 = \{v_2, v_4, v_6, v_7\}$, $S_2 = \{v_1, v_2, v_5, v_6\}$, and $S_3 = \{v_2, v_3, v_5, v_7\}$. Then

$$\pi(G:S_1) = \max\{2\deg_{\langle S_1 \rangle_G}(u) - \deg_G(u) : u \in S_1\} = -1$$

$$\pi(G:S_2) = \max\{2\deg_{\langle S_2 \rangle_G}(u) - \deg_G(u) : u \in S_2\} = 0$$

$$\pi(G:S_3) = \max\{2\deg_{\langle S_3 \rangle_G}(u) - \deg_G(u) : u \in S_3\} = 1$$

Thus, S_1 is -1-increment, S_2 is 0-increment, and S_3 is 1-increment subsets of V(G).

Remark 5. Let G be a connected graph. If S = V(G), then $\pi(G:S) = \Delta(G)$.

Definition 4. Let t be any integer. The t-increment number of G, denoted by $\rho_t(G)$, is the maximum cardinality of a t-increment.

 \square

Example 5. Consider the graph G as shown in Figure 1. Observe that the sets $\{v_3, v_5, v_6\}$, $\{v_1, v_2, v_3, v_5, v_7\}$ and $\{v_1, v_2, v_4, v_5, v_6, v_7\}$ are 2-increment subsets of G while $S_4 = V(G)$ is not a 2-increment subset of G since $\pi(G: S_4) = 5$. Thus, $\rho_2(G) = 6$.

Remark 6. Let G be a connected graph and $t_1 \leq t_2$. If $S \subseteq V(G)$ is a t_1 - increment, then S is a t_2 - increment. Hence, $\rho_{t_1}(G) \leq \rho_{t_2}(G)$.

Theorem 6. Let G and H be connected graphs of order m and n, respectively. Then S is a distance 1-cost effective set in G + H if and only if any of the following holds:

- (i) $S \subseteq V(G)$ is *n*-increment of G.
- (ii) $S \subseteq V(H)$ is *m*-increment of *H*.
- (iii) $V(G) \cap S$ is (n-2q)-increment and $V(H) \cap S$ is (m-2p)-increment, where $|V(G) \cap S| = p$ and $|V(H) \cap S| = q$.

Proof: Suppose S is a distance 1-cost effective set in G + H. Consider the following cases:

Case 1: $S \subseteq V(G)$ Let $u \in S$. Then

$$|N_{G+H}^{1}(u) \cap S^{c}| - |N_{G+H}^{1}(u) \cap S| = \deg_{G}(u) - \deg_{\langle S \rangle_{G}}(u) + n - \deg_{\langle S \rangle_{G}}(u)$$
$$= \deg_{G}(u) + n - 2\deg_{\langle S \rangle_{G}}(u)$$
$$= n - \left(2\deg_{\langle S \rangle_{G}}(u) - \deg_{G}(u)\right)$$
$$\geq 0.$$

Thus, $n - (2 \deg_{\langle S \rangle_G}(u) - \deg_G(u)) \ge 0$, for each $u \in S$. Equivalently, for each $u \in S$, $2 \deg_{\langle S \rangle_G}(u) - \deg_G(u) \le n$. Hence, $\pi(G:S) \le n$. Thus, (i) holds.

Case 2: $S \subseteq V(H)$ By similar argument to case 1, (ii) holds.

Case 3: $V(G) \cap S \neq \emptyset$ and $V(H) \cap S \neq \emptyset$ Let $u \in V(G) \cap S$. Suppose $|V(G) \cap S| = p$, where $1 \le p \le m$. Then for each $u \in S$,

$$|N_{G+H}^{1}(u) \cap S^{c}| - |N_{G+H}^{1}(u) \cap S| = \deg_{G}(u) - \deg_{\langle V(G) \cap S \rangle}(u) + n - q - \deg_{\langle V(G) \cap S \rangle}(u) - q$$

= $\deg_{G}(u) - 2\deg_{\langle V(G) \cap S \rangle}(u) + n - 2q.$

Since S is a distance 1-cost effective, $\deg_G(u) - 2\deg_{\langle V(G)\cap S \rangle}(u) + n - 2q \ge 0, \forall u \in S$. Thus, $2\deg_{\langle V(G)\cap S \rangle}(u) - \deg_G(u) \le n - 2q$. This implies that $V(G)\cap S$ is (n-2q)-increment of G. Similarly, let $u \in V(H) \cap S$. Then for each $u \in S$,

$$|N_{G+H}^{1}(u) \cap S^{c}| - |N_{G+H}^{1}(u) \cap S| = m - p + \deg_{H}(u) - \deg_{\langle V(H) \cap S \rangle}(u) - p - \deg_{\langle V(H) \cap S \rangle}(u) - q$$

$$= m - 2p + \deg_H(u) - 2\deg_{\langle V(H) \cap S \rangle}(u)$$

$$\geq 0.$$

It follows that $2\deg_{\langle V(H)\cap S \rangle}(u) - \deg_H(u) \leq m - 2p$. This implies that $V(H) \cap S$ is (m-2p)-increment of H. Thus, (iii) holds.

Conversely, if (i) holds then $\pi(G:S) \leq n$. Let $u \in S$. Then

$$|N_{G+H}^{1}(u) \cap S^{c}| - |N_{G+H}^{1}(u) \cap S| = \deg_{G}(u) + n - 2\deg_{\langle S \rangle_{G}}(u)$$
$$= n - \left(2\deg_{\langle S \rangle_{G}}(u) - \deg_{G}(u)\right)$$
$$= n - \pi(G : S)$$
$$\geq n - n$$
$$= 0.$$

Thus, S is a distance 1-cost effective set in G + H.

Suppose (ii) holds. Let $u \in S$. Then by similar argument, S is a distance 1-cost effective set in G + H.

Suppose (iii) holds. Then $\pi(G: V(G) \cap S) \leq n - 2q$ and $\pi(H: V(H) \cap S) \leq m - 2p$. Let $u \in V(G) \cap S$. Then for each $u \in S$,

$$|N_{G+H}^{1}(u) \cap S^{c}| - |N_{G+H}^{1}(u) \cap S| = \deg_{G}(u) - 2\deg_{\langle V(G) \cap S \rangle}(u) + n - 2q$$

= $n - 2q - (2\deg_{\langle V(G) \cap S \rangle}(u) - \deg_{G}(u))$
= $n - 2q - \pi(G : V(G) \cap S)$
 $\geq n - 2q - (n - 2q)$
= $0.$

Thus, S is a distance 1-cost effective set in G + H.

Similarly, let $u \in V(H) \cap S$. Then for each $u \in S$,

$$|N_{G+H}^{1}(u) \cap S^{c}| - |N_{G+H}^{1}(u) \cap S| = m - 2p + \deg_{H}(u) - 2\deg_{\langle V(H) \cap S \rangle}(u)$$

= $m - 2p - (2\deg_{\langle V(H) \cap S \rangle}(u) - \deg_{H}(u))$
= $m - 2p - \pi(H : V(H) \cap S)$
 $\geq m - 2p - (m - 2p)$
= 0

Thus, S is a distance 1-cost effective set in G + H.

Corollary 5. Let G be a connected graph, $S \subseteq V(G)$ and $n \geq 2$. Then S is a distance 1-cost effective set in $G + K_n$ if and only if S is n-increment.

Corollary 6. Let G be a connected graph and $n \ge 2$. A set $S \subseteq V(K_n)$ is a distance 1-cost effective in $G + K_n$ if and only if $|S| \le \lfloor \frac{|V(G)| + n + 1}{2} \rfloor$.

REFERENCES

Corollary 7. Let G be a graph, $n \ge 2$ and $S \subseteq (G + K_n)$ such that $V(G) \cap S \ne \emptyset$ and $V(K_n) \cap S \ne \emptyset$. Then S is a distance 1-cost effective set in $G + K_n$ if and only if the following hold:

(i)
$$|S| \leq \lfloor \frac{|V(G)|+n+1}{2} \rfloor$$
; and

(ii) $V(G) \cap S$ is (n-2p)-increment, where $p = |V(K_n) \cap S|$ and $1 \le p \le n$.

Theorem 7. Let G and H be connected graphs of order m and n, respectively. Then

$$\alpha_{ce}^{1}(G+H) = \max\{\rho_{n}(G), \rho_{m}(H), \rho_{n-2q}(G) + \rho_{m-2p}(H), 1 \le p \le m, \ 1 \le q \le n\}.$$

Proof: Let S be an upper distance 1-cost effective set in G + H. Suppose $S \subseteq V(G)$. Then by theorem 6(i), $|S| = \rho_n(G)$. Suppose $S \subseteq V(H)$. Then by Theorem 6(ii), $|S| = \rho_m(H)$. Suppose $V(G) \cap S \neq \emptyset$ and $V(H) \cap S \neq \emptyset$. Then by Theorem 6(iii), $|S| = \rho_{n-2q}(G) + \rho_{m-2p}(H)$. Therefore,

$$\alpha_{ce}^{1}(G+H) = \max\{\rho_{n}(G), \rho_{m}(H), \rho_{n-2q}(G) + \rho_{m-2p}(H), 1 \le p \le m, \ 1 \le q \le n\}.$$

Corollary 8. Let G be a graph and $n \ge 2$. Then

$$\alpha_{ce}^1(G+K_n) = \max\{\lfloor \frac{|V(G)|+n+1}{2} \rfloor, \rho_n(G)\}.$$

Acknowledgements

This research is funded by the Commission of Higher Education (CHED) and Mindanao State University-Iligan Institute of Technology.

References

- F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood City, CA, 1990.
- [2] T.W. Haynes, M. Chellali, and S.T. Hedetniem. Client-server and cost effective sets in graphs. AKCE International Journal of Graphs and Combinatorics, 15:211–218, 2018.
- [3] T.W. Haynes, I. Vasylieva, and S.T. Hedetniemi. Very cost effective bipartitions in graphs. AKCE International Journal of Graphs and Combinatorics, 12:155–160, 2015.
- [4] T.W. Hayness, M. Henning, and S.T. Hedetniemi. Domination in graphs applied to electrical power networks. J. Discrete Math, 15(4), 2000.
- [5] S.M. Hedetniemi, T.W. Haynes, S.T. Hedetniemi, T.L. McCoy, and I. Vasylieva. Cost Effective Domination in Graphs. *Congr. Numer.*, 211:197–209, 2012.

- [6] F. Jamil and H. Nuenay-Maglanque. Cost Effective Domination in the Join, Corona and Composition of Graphs. *European Journal of Pure and Applied Mathematics*, 12(3):978–998, 2019.
- [7] L. Lesniaks, G. Chartrand, and P. Zhang. Graphs and Digraphs (6th ed). Taylor and Francis Group, LLC CRC Press, 2016.
- [8] E.C. Milners, R.Aharoni, and K. Prikry. Unfriendly partitions of a graph. J. Combin. Theory, Ser B 50(1):1–10, 1990.
- [9] J. Palco, R. Paluga, and G. Malacas. On k-cost effective domination number, cost effective domination index, and maximal cost effective domination number of simple graphs. Far East Journal of Mathematical Sciences, 114(1):55–68, 2019.