EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 3, 2020, 701-709
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Upper Distance k - Cost Effective Numbers in the Join of Graphs

Julius G. Caadan ${ }^{1, *}$, Rolando N. Paluga ${ }^{2}$, Imelda S. Aniversario ${ }^{3}$
${ }^{1}$ Surigao State College of Technology, 8400 Surigao City, Philippines
${ }^{2}$ Department of Mathematics, College of Mathematics and Natural Sciences, Caraga State University, 8600, Ampayon, Butuan City City, Philippines
${ }^{3}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Let k be a positive integer and G be a connected graph. The open k-neighborhood set $N_{G}^{k}(v)$ of $v \in V(G)$ is the set $N_{G}^{k}(v)=\left\{u \in V(G) \backslash\{v\}: d_{G}(u, v) \leq k\right\}$. A set S of vertices of G is a distance k - cost effective if for every vertex u in $S,\left|N_{G}^{k}(u) \cap S^{c}\right|-\left|N_{G}^{k}(u) \cap S\right| \geq 0$. The maximum cardinality of a distance k - cost effective set of G is called the upper distance k - cost effective number of G. In this paper, we characterized a distance k - cost effective set in the join of two graphs. As direct consequences, the bounds or the exact values of the upper distance k - cost effective numbers are determined.

2020 Mathematics Subject Classifications: 05C12
Key Words and Phrases: Distance k-cost effective set, upper distance k-cost effective number, join, t-fringe set, t - increment

1. Introduction

We assume that all graphs $G=(V(G), E(G))$ considered throughout this paper are finite, simple, and undirected connected graphs. The basic graph theoretic concepts are adapted from [1] and [7]. The notations $V(G)$ and $E(G)$ are the vertex set and edge set, respectively, of G. The $|V(G)|$ denotes the order of G and for any set $S \subseteq V(G),|S|$ is the cardinality of S.

Let G be a connected graph and $v \in V(G)$. The open neighborhood of v in G, denoted by $N_{G}(v)$, is the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex $v \in V(G)$, denoted by $\operatorname{deg}_{G}(v)$, is the cardinality of $N_{G}(v)$. The minimum degree of G is $\delta(G)=\min \left\{\operatorname{deg}_{G}(v): v \in V(G)\right\}$ and the maximum degree of G is $\Delta(G)=$ $\max \left\{\operatorname{deg}_{G}(v): v \in V(G)\right\}$. The distance between vertices u and v in G, denoted by

[^0]$d_{G}(u, v)$, is the length of the shortest path from vertex u to vertex v in G. Thediameter of G, denoted by $\operatorname{diam}(G)$, is the maximum distance between any two vertices in G.

For any positive integer k and $v \in V(G)$, the open k - neighborhood set $N_{G}^{k}(v)$ of vertex v is the set of all vertices u of G such that $0<d_{G}(u, v) \leq k$. That is, $N_{G}^{k}(v)=$ $\left\{u \in V(G): 0<d_{G}(u, v) \leq k\right\}$. The degree of v in G of distance k, denoted by $\operatorname{deg}_{G}^{k}(v)$, is the cardinality of $N_{G}^{k}(v)$. The minimum degree $\delta^{k}(G)$ of G with distance k is $\delta^{k}(G)=\min \left\{\operatorname{deg}_{G}^{k}(v): v \in V(G)\right\}$ and the maximum degree of G with distance k is $\Delta^{k}(G)=\max \left\{\operatorname{deg}_{G}^{k}(v) ; v \in V(G)\right\}$. Note that $\operatorname{deg}_{G}^{1}(v)=\operatorname{deg}_{G}(v), \delta^{1}(G)=\delta(G)$, and $\Delta^{1}(G)=\Delta(G)$. A simple graph G is called regular if all vertices of G have the same degree. Thus, $\Delta(G)=\delta(G)$.

Given graphs G and H with disjoint vertex sets, the join of G and H, denoted by $G+H$, is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and edge set $E(G+H)=$ $E(G) \cup E(H) \cup\{u v: u \in V(G), v \in V(H)\}$. For a nonempty set $S \subseteq V(G)$, the subgraph $\langle S\rangle_{G}$ of G induced by S is the maximal subgraph of G with vertices in S. The $\delta(G: S)=$ $\min \left\{\operatorname{deg}_{G}(v): v \in S\right\}$.

A vertex v in a set $S \subseteq V(G)$ is a cost effective if $\left|N_{G}(v) \cap S^{c}\right|-\left|N_{G}(v) \cap S\right| \geq 0$. A set $S \subseteq V(G)$ is called cost effective if every vertex $v \in S$ is cost effective. The concept of cost effective set in graph was introduced by Haynes, et.al. in [5] which was motivated by Aharoni, et. al. in [8]. In 2018, Chellali, et. al. in [2] established a generalization of this concept. Its application in computer networks plays a vital role: in particular in maintaining edges in a network that are directly associated with the cost that should be used effectively and in a set of servers (vertices) that each server is serving a maximal number of clients (non-servers). We refer the readers to [2, 4] for some of its relevant applications and to $[3,6,9]$ for some investigations of the concepts.

In this paper, we characterized the distance k - cost effective sets in the join of two graphs. As direct consequences, we determined the bounds or the exact values of the upper distance k-cost effective numbers of the join of graphs.

2. Results

Remark 1. Let G be a connected graph. If $S \subseteq V(G)$ is a distance k - cost effective then every subset of S is also a distance k-cost effective in G.

Definition 1. Let G be a connected graph and k be a positive integer. A set $S \subseteq V(G)$ is a distance k - cost effective set of G if for every $v \in S,\left|N_{G}^{k}(v) \cap S^{c}\right|-\left|N_{G}^{k}(v) \cap S\right| \geq 0$. The upper distance k - cost effective number of a graph G, denoted by $\alpha_{c e}^{k}(G)$, is the maximum cardinality of a distance k - cost effective set in G.

It is worth noting that the concept of a distance 1- cost effective set in G is just equivalent to the concept of a cost effective set in G.

Example 1. Let k and n be positive integers. For any complete graph K_{n}, a set S is a distance k - cost effective in K_{n} if and only if $|S| \leq\left\lfloor\frac{n+1}{2}\right\rfloor$. Hence, $\alpha_{c e}^{k}\left(K_{n}\right)=\left\lfloor\frac{n+1}{2}\right\rfloor$.

Remark 2. Let G and H be any connected graphs and k be any positive integer.
(i) If $S \subseteq V(G)$ is a distance k - cost effective set in G, then S is a distance k-cost effective set in $G+H$.
(ii) If $S \subseteq V(H)$ is a distance k - cost effective set in H, then S is a distance k - cost effective set in $G+H$.

Remark 3. Let G and H be any connected graphs and k be any positive integer. Then

$$
\alpha_{c e}^{k}(G+H) \geq \max \left\{\alpha_{c e}^{k}(G), \alpha_{c e}^{k}(H)\right\} .
$$

Example 2. Let $G=C_{8}$ and $H=K_{1,9}$. Then $\alpha_{c e}^{1}(G+H)=\alpha_{c e}^{1}(H)$ and for any connected graph G and for all integers $k \geq 2, \alpha_{c e}^{k}\left(G+K_{1}\right)=\alpha_{c e}^{k}(G)$.

Theorem 1. Let k be a positive integer and G be a connected graph such that $k \geq$ $\operatorname{diam}(G)$. Then S is a distance k-cost effective set in G if and only if $|S| \leq\left\lfloor\frac{|V(G)|+1}{2}\right\rfloor$.

Proof: Let k be a positive integer and G be a connected graph such that $k \geq \operatorname{diam}(G)$. Suppose S is a distance k-cost effective set in G. Then for each $u \in S$,

$$
\begin{aligned}
\left|N_{G}^{k}(u) \cap S^{c}\right|-\left|N_{G}^{k}(u) \cap S\right| & =\left|(V(G) \backslash\{u\}) \cap S^{c}\right|-|(V(G) \backslash\{u\}) \cap S| \\
& =\left|S^{c}\right|-(|S|-1) \\
& =|V(G)|-|S|-|S|+1 \\
& =|V(G)|+1-2|S| \\
& \geq 0 .
\end{aligned}
$$

That is, $|S| \leq \frac{|V(G)|+1}{2}$. Since $|S|$ is an integer, $|S| \leq\left\lfloor\frac{|V(G)|+1}{2}\right\rfloor$.
Suppose that $|S| \leq\left\lfloor\frac{|V(G)|+1}{2}\right\rfloor$. Then $|S| \leq \frac{|V(G)|+1}{2}$. Equivalently, $2|S| \leq|V(G)|+1$. Let $u \in S$. Then

$$
\begin{aligned}
\left|N_{G}^{k}(u) \cap S^{c}\right|-\left|N_{G}^{k}(u) \cap S\right| & =|V(G)|-|S|-|S|+1 \\
& =|V(G)|+1-2|S| \\
& \geq|V(G)|+1-[|V(G)|+1] \\
& =0 .
\end{aligned}
$$

Thus, S is a distance k-cost effective set in G.
Corollary 1. If $k \geq \operatorname{diam}(G)$, then $\alpha_{c e}^{k}(G)=\left\lfloor\frac{\lfloor V(G) \mid+1}{2}\right\rfloor$.
Corollary 2. Let G and H be connected graphs and an integer $k \geq 2$. Then S is a distance k-cost effective set in $G+H$ if and only if $|S| \leq\left\lfloor\frac{|V(G)|+|V(H)|+1}{2}\right\rfloor$. Consequently, $\alpha_{c e}^{k}(G+H)=\left\lfloor\frac{|V(G)|+|V(H)|+1}{2}\right\rfloor$.

Proof: Follows from Theorem 1 since $k \geq \operatorname{diam}(G+H)=2$.
Remark 4. For all positive integer $k \geq 2, \alpha_{c e}^{k}(G+H)=\alpha_{c e}^{2}(G+H)$.

Definition 2. Let G be a connected graph and t be a nonnegative integer. A set $S \subseteq V(G)$ is a t - fringe subset of G if $\Delta\left(\langle S\rangle_{G}\right) \leq t$. The t - fringe number of G, denoted by $\tau_{t}(G)$, is the maximum cardinality of a t - fringe subset of G.

Example 3. Consider the graph G as shown in Figure 1. Let $S_{1}=\left\{v_{3}, v_{5}, v_{6}, v_{7}\right\}$ and $S_{2}=\left\{v_{2}, v_{4}, v_{5}, v_{7}\right\}$. Then $\Delta\left(\left\langle S_{1}\right\rangle_{G}\right)=3$ and $\Delta\left(\left\langle S_{2}\right\rangle_{G}\right)=0$. Thus, S_{1} is t-fringe subset of G if $t \geq 3$ while S_{2} is a t-fringe subset of G if $t \geq 0$.

Figure 1: The Graph G with $\Delta(G)=5$

Theorem 2. Let G be a connected graph, $S \subseteq V(G)$, and $t \geq\left\lfloor\frac{\Delta(G)}{2}\right\rfloor$. If S is a distance 1 -cost effective set in G, then S is a t-fringe subset of $V(G)$.

Proof: Let $S \subseteq V(G)$ be a distance 1-cost effective set in G. Then for $u \in S$,

$$
\begin{aligned}
\left|N_{G}^{1}(u) \cap S^{c}\right|-\left|N_{G}^{1}(u) \cap S\right| & =\operatorname{deg}_{G}(u)-\operatorname{deg}_{\langle S\rangle_{G}}(u)-\operatorname{deg}_{\langle S\rangle_{G}}(u) \\
& =\operatorname{deg}_{G}(u)-2 \operatorname{deg}_{\langle S\rangle_{G}}(u) \\
& \geq 0 .
\end{aligned}
$$

It follows that $\operatorname{deg}_{G}(u)-2 \operatorname{deg}_{\langle S\rangle_{G}}(u) \geq 0$. Hence, $2 \operatorname{deg}_{\langle S\rangle_{G}}(u) \leq \operatorname{deg}_{G}(u)$. Since u is arbitrary, $2 \Delta\left(\langle S\rangle_{G}\right) \leq \Delta(G)$. Equivalently, $\Delta\left(\langle S\rangle_{G}\right) \leq \frac{\Delta(G)}{2}$. Hence, $\Delta\left(\langle S\rangle_{G}\right) \leq\left\lfloor\frac{\Delta(G)}{2}\right\rfloor \leq$ t. Accordingly, S is a t-fringe subset of $V(G)$.

Theorem 3. Let G be a connected graph and H be any graph of order $n \geq 2, S \subseteq V(G)$, and $t \geq\left\lfloor\frac{n+\Delta(G)}{2}\right\rfloor$. If S is a distance 1 -cost effective set in $G+H$, then S is a t-fringe subset of $V(G)$.

Proof: Let $u \in S$. Then

$$
\begin{aligned}
\left|N_{G+H}^{1}(u) \cap S^{c}\right|-\left|N_{G+H}^{1}(u) \cap S\right| & =\operatorname{deg}_{G}(u)-\operatorname{deg}_{\langle S\rangle_{G}}(u)+n-\operatorname{deg}_{\langle S\rangle_{G}}(u) \\
& =\operatorname{deg}_{G}(u)+n-2 \operatorname{deg}_{\langle S\rangle_{G}}(u)
\end{aligned}
$$

Since S is a distance 1-cost effective set in $G+H, \operatorname{deg}_{G}(u)+n-2 \operatorname{deg}_{\langle S\rangle_{G}}(u) \geq 0$. Hence, $2 \operatorname{deg}_{\langle S\rangle_{G}}(u) \leq \operatorname{deg}_{G}(u)+n$. It follows that $2 \operatorname{deg}_{\langle S\rangle_{G}}(u) \leq \Delta(G)+n, \forall u \in S$. Since u is arbitrary, $2 \Delta\left(\langle S\rangle_{G}\right) \leq \Delta(G)+n$. Equivalently, $\Delta\left(\langle S\rangle_{G}\right) \leq \frac{\Delta(G)+n}{2}$. Hence, $\Delta\left(\langle S\rangle_{G}\right) \leq\left\lfloor\frac{\Delta(G)+n}{2}\right\rfloor \leq t$. Accordingly, S is a t-fringe subset of $V(G)$.

Corollary 3. Let G be a connected graph, H be any graph of order $n \geq 2$ and $t \geq$ $\left\lfloor\frac{n+\Delta(G)}{2}\right\rfloor$. Then $\alpha_{c e}^{1}(G+H) \leq \tau_{t}(G)$.

Theorem 4. Let G be a connected graph and H be any graph of order $n \geq 2, S \subseteq V(G)$, and $t \leq\left\lfloor\frac{n+\delta(G)}{2}\right\rfloor$. If S is a t-fringe subset of $V(G)$, then S is a distance 1-cost effective set in $G+H$.

Proof: Since S is a t-fringe subset of $V(G)$, then $\Delta\left(\langle S\rangle_{G}\right) \leq t \leq\left\lfloor\frac{n+\delta(G)}{2}\right\rfloor \leq \frac{n+\delta(G)}{2}$. It follows that $2 \Delta\left(\langle S\rangle_{G}\right) \leq \delta(G)+n$. Let $u \in S$. Then

$$
\begin{aligned}
\left|N_{G+H}^{1}(u) \cap S^{c}\right|-\left|N_{G+H}^{1}(u) \cap S\right| & =\operatorname{deg}_{G}(u)-\operatorname{deg}_{\langle S\rangle_{G}}(u)+n-\operatorname{deg}_{\langle S\rangle_{G}}(u) \\
& =\operatorname{deg}_{G}(u)+n-2 \operatorname{deg}_{\langle S\rangle_{G}}(u) \\
& \geq \operatorname{deg}_{G}(u)+n-2 \Delta\left(\langle S\rangle_{G}\right) \\
& \geq \operatorname{deg}_{G}(u)+n-(n+\delta(G) \\
& =\operatorname{deg}_{G}(u)-\delta(G) \\
& \geq 0 .
\end{aligned}
$$

Thus, S is a distance 1-cost effective set in $G+H$.
Corollary 4. Let G be a connected graph, H be any graph of order $n \geq 2$, and $t \leq$ $\left\lfloor\frac{n+\delta(G)}{2}\right\rfloor$. Then $\alpha_{c e}^{1}(G+H) \geq \tau_{t}(G)$.

The next theorem is an immediate consequence of Theorems 3 and 4 .
Theorem 5. Let G be any regular graph, H be any graph of order $n \geq 2$ and $t=\left\lfloor\frac{n+\Delta(G)}{2}\right\rfloor$. Then $\alpha_{c e}^{1}(G+H)=\tau_{t}(G)$.

Definition 3. Let G be a connected graph, $S \subseteq V(G)$ and t be any integer. The $\pi(G: S)$ is defined as $\pi(G: S)=\max \left\{2 \operatorname{deg}_{\langle S\rangle_{G}}(v)-\operatorname{deg}_{G}(v): v \in S\right\}$. A set S is t - increment subset of G if $\pi(G: S) \leq t$.

Example 4. Consider the graph G as shown in Figure 1. Let $S_{1}=\left\{v_{2}, v_{4}, v_{6}, v_{7}\right\}$, $S_{2}=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$, and $S_{3}=\left\{v_{2}, v_{3}, v_{5}, v_{7}\right\}$. Then

$$
\begin{aligned}
& \pi\left(G: S_{1}\right)=\max \left\{2 \operatorname{deg}_{\left\langle S_{1}\right\rangle_{G}}(u)-\operatorname{deg}_{G}(u): u \in S_{1}\right\}=-1 \\
& \pi\left(G: S_{2}\right)=\max \left\{2 \operatorname{deg}_{\left\langle S_{2}\right\rangle_{G}}(u)-\operatorname{deg}_{G}(u): u \in S_{2}\right\}=0 \\
& \pi\left(G: S_{3}\right)=\max \left\{2 \operatorname{deg}_{\left\langle S_{3}\right\rangle_{G}}(u)-\operatorname{deg}_{G}(u): u \in S_{3}\right\}=1
\end{aligned}
$$

Thus, S_{1} is -1 -increment, S_{2} is 0 -increment, and S_{3} is 1 -increment subsets of $V(G)$.
Remark 5. Let G be a connected graph. If $S=V(G)$, then $\pi(G: S)=\Delta(G)$.
Definition 4. Let t be any integer. The t-increment number of G, denoted by $\rho_{t}(G)$, is the maximum cardinality of a t-increment.

Example 5. Consider the graph G as shown in Figure 1. Observe that the sets $\left\{v_{3}, v_{5}, v_{6}\right\}$, $\left\{v_{1}, v_{3}, v_{5}, v_{6}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{5}, v_{7}\right\}$ and $\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ are 2-increment subsets of G while $S_{4}=V(G)$ is not a 2-increment subset of G since $\pi\left(G: S_{4}\right)=5$. Thus, $\rho_{2}(G)=6$.

Remark 6. Let G be a connected graph and $t_{1} \leq t_{2}$. If $S \subseteq V(G)$ is a t_{1} - increment, then S is a t_{2} - increment. Hence, $\rho_{t_{1}}(G) \leq \rho_{t_{2}}(G)$.

Theorem 6. Let G and H be connected graphs of order m and n, respectively. Then S is a distance 1-cost effective set in $G+H$ if and only if any of the following holds:
(i) $S \subseteq V(G)$ is n-increment of G.
(ii) $S \subseteq V(H)$ is m-increment of H.
(iii) $V(G) \cap S$ is $(n-2 q)$-increment and $V(H) \cap S$ is $(m-2 p)$-increment, where $|V(G) \cap S|=$ p and $|V(H) \cap S|=q$.

Proof: Suppose S is a distance 1-cost effective set in $G+H$. Consider the following cases:

Case 1: $S \subseteq V(G)$
Let $u \in S$. Then

$$
\begin{aligned}
\left|N_{G+H}^{1}(u) \cap S^{c}\right|-\left|N_{G+H}^{1}(u) \cap S\right| & =\operatorname{deg}_{G}(u)-\operatorname{deg}_{\langle S\rangle_{G}}(u)+n-\operatorname{deg}_{\langle S\rangle_{G}}(u) \\
& =\operatorname{deg}_{G}(u)+n-2 \operatorname{deg}_{\langle S\rangle_{G}}(u) \\
& =n-\left(2 \operatorname{deg}_{\langle S\rangle_{G}}(u)-\operatorname{deg}_{G}(u)\right) \\
& \geq 0 .
\end{aligned}
$$

Thus, $n-\left(2 \operatorname{deg}_{\langle S\rangle_{G}}(u)-\operatorname{deg}_{G}(u)\right) \geq 0$, for each $u \in S$. Equivalently, for each $u \in S$, $2 \operatorname{deg}_{\langle S\rangle_{G}}(u)-\operatorname{deg}_{G}(u) \leq n$. Hence, $\pi(G: S) \leq n$. Thus, (i) holds.

Case 2: $S \subseteq V(H)$
By similar argument to case 1, (ii) holds.
Case 3: $V(G) \cap S \neq \varnothing$ and $V(H) \cap S \neq \varnothing$
Let $u \in V(G) \cap S$. Suppose $|V(G) \cap S|=p$, where $1 \leq p \leq m$. Then for each $u \in S$,

$$
\begin{aligned}
\left|N_{G+H}^{1}(u) \cap S^{c}\right|-\left|N_{G+H}^{1}(u) \cap S\right| & =\operatorname{deg}_{G}(u)-\operatorname{deg}_{\langle V(G) \cap S\rangle}(u)+n-q-\operatorname{deg}_{\langle V(G) \cap S\rangle}(u)-q \\
& =\operatorname{deg}_{G}(u)-2 \operatorname{deg}_{\langle V(G) \cap S\rangle}(u)+n-2 q .
\end{aligned}
$$

Since S is a distance 1-cost effective, $\operatorname{deg}_{G}(u)-2 \operatorname{deg}_{\langle V(G) \cap S\rangle}(u)+n-2 q \geq 0, \forall u \in S$. Thus, $2 \operatorname{deg}_{\langle V(G) \cap S\rangle}(u)-\operatorname{deg}_{G}(u) \leq n-2 q$. This implies that $V(G) \cap S$ is $(n-2 q)$-increment of G. Similarly, let $u \in V(H) \cap S$. Then for each $u \in S$,
$\left|N_{G+H}^{1}(u) \cap S^{c}\right|-\left|N_{G+H}^{1}(u) \cap S\right|=m-p+\operatorname{deg}_{H}(u)-\operatorname{deg}_{\langle V(H) \cap S\rangle}(u)-p-\operatorname{deg}_{\langle V(H) \cap S\rangle}(u)-q$
J. G. Caadan, R. N. Paluga, I. S. Aniversario / Eur. J. Pure Appl. Math, 13 (3) (2020), 701-709 707

$$
\begin{aligned}
& =m-2 p+\operatorname{deg}_{H}(u)-2 \operatorname{deg}_{\langle V(H) \cap S\rangle}(u) \\
& \geq 0
\end{aligned}
$$

It follows that $2 \operatorname{deg}_{\langle V(H) \cap S\rangle}(u)-\operatorname{deg}_{H}(u) \leq m-2 p$. This implies that $V(H) \cap S$ is $(m-2 p)$-increment of H. Thus, (iii) holds.

Conversely, if (i) holds then $\pi(G: S) \leq n$. Let $u \in S$. Then

$$
\begin{aligned}
\left|N_{G+H}^{1}(u) \cap S^{c}\right|-\left|N_{G+H}^{1}(u) \cap S\right| & =\operatorname{deg}_{G}(u)+n-2 \operatorname{deg}_{\langle S\rangle_{G}}(u) \\
& =n-\left(2 \operatorname{deg}_{\langle S\rangle_{G}}(u)-\operatorname{deg}_{G}(u)\right) \\
& =n-\pi(G: S) \\
& \geq n-n \\
& =0 .
\end{aligned}
$$

Thus, S is a distance 1-cost effective set in $G+H$.
Suppose (ii) holds. Let $u \in S$. Then by similar argument, S is a distance 1-cost effective set in $G+H$.

Suppose (iii) holds. Then $\pi(G: V(G) \cap S) \leq n-2 q$ and $\pi(H: V(H) \cap S) \leq m-2 p$. Let $u \in V(G) \cap S$. Then for each $u \in S$,

$$
\begin{aligned}
\left|N_{G+H}^{1}(u) \cap S^{c}\right|-\left|N_{G+H}^{1}(u) \cap S\right| & =\operatorname{deg}_{G}(u)-2 \operatorname{deg}_{\langle V(G) \cap S\rangle}(u)+n-2 q \\
& =n-2 q-\left(2 \operatorname{deg}_{\langle V(G) \cap S\rangle}(u)-\operatorname{deg}_{G}(u)\right) \\
& =n-2 q-\pi(G: V(G) \cap S) \\
& \geq n-2 q-(n-2 q) \\
& =0 .
\end{aligned}
$$

Thus, S is a distance 1-cost effective set in $G+H$.
Similarly, let $u \in V(H) \cap S$. Then for each $u \in S$,

$$
\begin{aligned}
\left|N_{G+H}^{1}(u) \cap S^{c}\right|-\left|N_{G+H}^{1}(u) \cap S\right| & =m-2 p+\operatorname{deg}_{H}(u)-2 \operatorname{deg}_{\langle V(H) \cap S\rangle}(u) \\
& =m-2 p-\left(2 \operatorname{deg}_{\langle V(H) \cap S\rangle}(u)-\operatorname{deg}_{H}(u)\right) \\
& =m-2 p-\pi(H: V(H) \cap S) \\
& \geq m-2 p-(m-2 p) \\
& =0 .
\end{aligned}
$$

Thus, S is a distance 1-cost effective set in $G+H$.
Corollary 5. Let G be a connected graph, $S \subseteq V(G)$ and $n \geq 2$. Then S is a distance 1-cost effective set in $G+K_{n}$ if and only if S is n-increment.

Corollary 6. Let G be a connected graph and $n \geq 2$. A set $S \subseteq V\left(K_{n}\right)$ is a distance 1-cost effective in $G+K_{n}$ if and only if $|S| \leq\left\lfloor\frac{|V(G)|+n+1}{2}\right\rfloor$.

Corollary 7. Let G be a graph, $n \geq 2$ and $S \subseteq\left(G+K_{n}\right)$ such that $V(G) \cap S \neq \varnothing$ and $V\left(K_{n}\right) \cap S \neq \varnothing$. Then S is a distance 1-cost effective set in $G+K_{n}$ if and only if the following hold:
(i) $|S| \leq\left\lfloor\frac{|V(G)|+n+1}{2}\right\rfloor$; and
(ii) $V(G) \cap S$ is $(n-2 p)$-increment, where $p=\left|V\left(K_{n}\right) \cap S\right|$ and $1 \leq p \leq n$.

Theorem 7. Let G and H be connected graphs of order m and n, respectively. Then

$$
\alpha_{c e}^{1}(G+H)=\max \left\{\rho_{n}(G), \rho_{m}(H), \rho_{n-2 q}(G)+\rho_{m-2 p}(H), 1 \leq p \leq m, 1 \leq q \leq n\right\} .
$$

Proof: Let S be an upper distance 1-cost effective set in $G+H$. Suppose $S \subseteq V(G)$. Then by theorem $6(\mathrm{i}),|S|=\rho_{n}(G)$. Suppose $S \subseteq V(H)$. Then by Theorem $6(\mathrm{ii}),|S|=$ $\rho_{m}(H)$. Suppose $V(G) \cap S \neq \varnothing$ and $V(H) \cap S \neq \varnothing$. Then by Theorem 6(iii), $|S|=$ $\rho_{n-2 q}(G)+\rho_{m-2 p}(H)$. Therefore,

$$
\alpha_{c e}^{1}(G+H)=\max \left\{\rho_{n}(G), \rho_{m}(H), \rho_{n-2 q}(G)+\rho_{m-2 p}(H), 1 \leq p \leq m, 1 \leq q \leq n\right\} .
$$

Corollary 8. Let G be a graph and $n \geq 2$. Then

$$
\alpha_{c e}^{1}\left(G+K_{n}\right)=\max \left\{\left\lfloor\frac{|V(G)|+n+1}{2}\right\rfloor, \rho_{n}(G)\right\} .
$$

Acknowledgements

This research is funded by the Commission of Higher Education (CHED) and Mindanao State University-Iligan Institute of Technology.

References

[1] F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood City, CA, 1990.
[2] T.W. Haynes, M. Chellali, and S.T. Hedetniem. Client-server and cost effective sets in graphs. AKCE International Journal of Graphs and Combinatorics, 15:211-218, 2018.
[3] T.W. Haynes, I. Vasylieva, and S.T. Hedetniemi. Very cost effective bipartitions in graphs. AKCE International Journal of Graphs and Combinatorics, 12:155-160, 2015.
[4] T.W. Hayness, M. Henning, and S.T. Hedetniemi. Domination in graphs applied to electrical power networks. J. Discrete Math, 15(4), 2000.
[5] S.M. Hedetniemi, T.W. Haynes, S.T. Hedetniemi, T.L. McCoy, and I. Vasylieva. Cost Effective Domination in Graphs. Congr. Numer., 211:197-209, 2012.
[6] F. Jamil and H. Nuenay-Maglanque. Cost Effective Domination in the Join, Corona and Composition of Graphs. European Journal of Pure and Applied Mathematics, 12(3):978-998, 2019.
[7] L. Lesniaks, G. Chartrand, and P. Zhang. Graphs and Digraphs (6th ed). Taylor and Francis Group, LLC CRC Press, 2016.
[8] E.C. Milners, R.Aharoni, and K. Prikry. Unfriendly partitions of a graph. J. Combin. Theory, Ser B 50(1):1-10, 1990.
[9] J. Palco, R. Paluga, and G. Malacas. On k-cost effective domination number, cost effective domination index, and maximal cost effective domination number of simple graphs . Far East Journal of Mathematical Sciences, 114(1):55-68, 2019.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3657
 Email addresses: juliusgcaadan@gmail.com (J. G. Caadan),
 rnpaluga@carsu.edu.ph (R. N. Paluga), imelda.aniversario@g.msuiit.edu.ph (I. S. Aniversario)

