On the Category of Weakly U-Complexes
DOI:
https://doi.org/10.29020/nybg.ejpam.v13i2.3673Keywords:
$\mathcal{U}$-complexes, generalized $\mathcal{U}$-complexes, homotopy category of generalized $\mathcal{U}$-complexes, triangulated categoryAbstract
Motivated by a study of Davvaz and Shabbani which introduced the concept of U-
complexes and proposed a generalization on some results in homological algebra, we study thecategory of U-complexes and the homotopy category of U-complexes. In [8] we said that the category of U-complexes is an abelian category. Here, we show that the object that we claimed to be the kernel of a morphism of U-omplexes does not satisfy the universal property of the kernel, hence wecan not conclude that the category of U-complexes is an abelian category. The homotopy category of U-complexes is an additive category. In this paper, we propose a weakly chain U-complex by changing the second condition of the chain U-complex. We prove that the homotopy category ofweakly U-complexes is a triangulated category.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.