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Abstract. In this study, we have given a generalization of the iterative decreasing dimension method
given in [3] and a generalization of the iterative decreasing dimension algorithm based on this method.
The algorithm is suited for implementation using computer algebra systems such as Maple and MAT-
LAB. So we also have given symbolic and numerical examples using this algorithm and a Maple proce-
dure for the algorithm.
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1. Introduction

Studying on solution of the systems of linear algebraic equation
AX = f 1)

is a classical problem which is important not only in linear algebra but also in other branches
of science, engineering, economics. A decreasing dimension method (DDM) has been pro-
posed in [4] to solve the system (1) where A is N x N -regular matrix, X and f are N-
vectors. In [5] (therein [1, 2]), it has been said that the proposed DDM in [4] is same as
the well known domain decomposition technique based on a Schur complement type method.
Also it has been said that this method costs more than the standard Schur complement method
and does not decrease the dimension of the linear systems. So in [3], the authors improved
DDM and gave iterative decreasing dimension method (IDDM) which decreases the dimension
of the linear systems, one order in every step without any pre-process.
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In this study; we have given a generalization of IDDM in [3] for the solution of the linear
algebraic system (1) taking A is any M X N - matrix instead of a N X N - regular matrix.

In section 2; we have given symbols and we have summarized IDDM, then we have given
generalized iterative decreasing dimension method (GIDDM) improving the method in [3].
In section 3, we have given generalized iterative decreasing dimension algorithm (GIDDA)
based on GIDDM and some symbolic and numerical examples. We have also given a Maple
procedure for GIDDA in section 4.

2. Generalized Iterative Decreasing Dimension Method (GIDDM)

In this section, after introduce symbols used in this study and IDDM given in [3] we are
going to give GIDDM which is the generalization of IDDM. The symbols will be used similar
as in [3] in this study.

2.1. Symbols

Let us give some symbols and explanations used in procedure.

n : n=min{M,N}
k : k=1(1)n, (k=1, 2,..., n) - iteration step
A® M, x Ny - reduced coefficient matrix
ag;) : ag.() # 0 which is the first non-zero element of matrix A
Pr  : p which is the number in agg) #0
k=1 0

M - MkZM—_lei; 2.pi=0
N, : Ny=N—k+1
X®) N, - solution vector of reduced system
f® . M, - right side vector of reduced system
agl.() . (i,j) element of matrix A%)
xigk) . " element of vector X %)

i(k) i" element of vector f )
u® . vector composed of fp(k) element of vector f &)
v(®): vector composed of fi(k), i = p 4+ 1(1)M, element of vector f
A(lk) matrix composed of first non-zero row vector of matrix A
A(Zk) matrix composed remain line vector of matrix A%
X (()k) : special solution vector of A(lk)X (k) = (0
R® . base matrix of solution space of A(lk)X K =0

Note: If Ais a N X N-regular matrix, then it is clear that M; = N, = N—k+1 for k = 1(1)n.
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2.2. IDDM
Let us summarize IDDM given in [3]. Consider a system of linear algebraic equation
AX = f; A-regular 2)

where A is a N x N-matrix, X and f are N-vectors. Suppose that k = 1(1)n is the iteration
step, A is a N} x N; - coefficient matrix of reduced system and f* is a right side vector of
reduced system as following

AW = Ak 1 =L sf0 = s k—1) (k=1 =L :
AFTORED k =2(1)n y&=D — AGDx 6D = 2(1)n

OF ia] soluti () _ ) " where a® <5<
X, ' is aspecial solutionas X, = (0 .. O o 0 .. 0] wherea; #0,(1<s<N)
which is the first non-zero element of matrix A(lk) and

(k)
T Ix(N—1) s=1,
Ive—1x@i-1)
Is—Dxs-1)  O—1)x(Ne—s)
k
RO =2 | 0ppy "ix)(N,(_s) s=2(1)Ne—1,. (3)
Oe—s)x(s-1) _T=s)x—s)
Tve—1xv-1) S=N,
O1xv,—1)
Then the solution of linear system (2) is given to be
no[iEL izl Wr®@  pG-1
. ; . R“YR*“ ...R i>1
X :X(l) — R(]) X(l); R(]) — ] . 4

2.3. Generalized Iterative Decreasing Dimension Method (GIDDM)
Let us consider a system of linear algebraic equation
AX = ADXD = f) — f (5)

where Ais a M X N -matrix, X is a N-vector and f is a M-vector and examine the solution of
the linear system (5) according to situations of M and N.
Now, we divide the given system into two systems such that

Wy @) = M. A0 _ JEION @)
APXD =W AL —(apj) ,u()—(fp) (6)
M1 — () . A1) _ J=1N M —
Ay X0 =V Ay = (aij)i:p+1(1)M’ vioT (fi)i=p+1(1)M 7
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where p is the number of first non-zero row of matrix AV, If p > 1, for the equation (5) to
have a solution, fi(l) =0, i=1(1)p — 1 must be satisfied.

X (()1) is chosen to be
&) T
Xé”:(o w0 oo o) )
aps

which is a special solution of (6). In (8), ag) #0(1<s<N, 1<p<M)is the first non-zero

element of matrix A, Then, X }(11) -homogeneous solution of (6) is obtained to be

where X® is a N,-vector composed of x;-parametric variables for i = 1(1)M,, i #s and R®)
is a matrix composed of the base vector of this solution space as

(1
TIx(N=1) s=1
In—1)xv-1)

Is—1xs—1)  Op—1)x(v—s)
1

RY=11 O My | s=20N-1,
Ov—s)xs=1) Iv—s)x(n=s)
In—px(n-1) S=N
O1x(nv=1)
where
1
(1 _ (..M (1) @My, (1 _ pj . _
M Ix(N—s) = (r1(5+1) Ml4a) rlN) Ty = —ﬁ,] =s+1(1)N.

pS

The general solution of (6) is achieved as X M =x (()1) +RWx (2), where X (()1) is a N-vector and
RW is a N x (N — 1)-matrix. By substituting solution X1 into system (7), we have a new
linear algebraic system as following

ADX@ — (@) 9)

where A® =A(21)R(1) and f® =y® —A(ZUXéD.
Applying the steps given above to the system (9), we can write the systems followed by

each other as
AWxE) = £ . k= 2(1)n (10)

where AK) ZA;k_l)R(k_l), f) =y k=1 —A(Zk_l)Xék_D. It is known that the general solutions
of the system (10) are X () = x® + RWx (k+1) if the solutions exist. Here R%) is a matrix as
Y 0

given in (3).
Now, we are going to examine the situations for solution of linear system (5).
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Case 1. Suppose that AT # 0.
We have three situations according to M and N.
a) If M = N, the system (5) is same as in IDDM, i.e. A is a regular matrix and its
solution has been given by equation (4).

b) If M < N, then the solution of (5) is expressed by substituting X **1) solution into
X% solution for k = n(—1)1 as follows

n i—1 n
_ 0 | x® 0 | gt
X—le l_!R xP 4 l_!R XD,
i=1 \ j= j=

T
where X("t1) = ( x&"ﬂ) xénﬂ) x](\;ill) ) and x](.”H) (j =1(1)N,41) are

the arbitrary parameters.
¢) If M > N, then the system
Ay () — f(n)

is obtained, where A™ is a M, x 1 - matrix, f™ is a M, -vector and X is a
1 -vector given as

(n) ()
I fl()
n n
an=| | | 2 X0 = (7).
) )
A1 M,

(n) (n)
Here, if A™ = )% FO (£ 2 0), x(m = xM = (%) and if f™ =0, x™ =
1 a

11
X(()") = 0. Therefore, the solution of (5) is
i-1
=1

X=Zn: [ [r | x.
i=1 \j

(n)
But, if A # J% f (n) (f (M) £ 0), the equation (5) has no solution.
1

Case 2. Suppose that A®) # 0 (k < n) and M, = 1 or py.

In this case; for all of the situations of M and N, the solution of the system (5) is
obtained as follows

k i—1
=1

k
X = R | x® R X(k+1),
2\ =+

i j=1
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k+1 k+1 k+1) \T. (k1) .
where XK+ = ( xg 1) xg A xl(vkjl) ) ;x](. +1) (j = 1(1)Ny,1) are the arbi-

trary parameters and fl.(k) =0,i=1(1)p—1forp > 1.
Case 3. Suppose that A®) =0 (k < n).

a) If f () = 0, then the solution of the system (5) is obtained as follows

-1 [ i-1 k-1
— j U] j k
X = l_[R(]) Xol + l_[R(J) X( )’
i=1 \ j=1 j=1
T
where X = ( xgk) xgk) x,(\i) ) ; xj(-k) (j = 1(1)N,) are the arbitrary pa-

rameters and fi(k) =0, i=1(1)p — 1for p > 1.

b) If f (k) # 0, then (5) is an inconsistent system and has no solution.

3. Generalized Iterative Decreasing Dimension Algorithm (GIDDA)

Here, we are going to give an algorithm based on GIDDM. GIDDA is the modification of
the algorithm IDDA given in [3].

Input. A- M X N matrix, f - M-vector.
Step 1. Get n =min{M,N}, AV =A f =7,
Step 2. k=1(1)n—1,
2.1. Calculate A®, f(® . and N,.

2.2. Control if ag.() #0fori=1(1)M;, j = 1(1)N; let al()];) # 0 is first element and take
P = px. Otherwise go Step 4.

2.3. If p > 1, control iffi(k) =0fori=1(1)p—1.1f3i Bfi(k) # 0 then go Output 2.
2.4. If M =1 or py, calculate X(()k) ,R®, m =k and go Output 1.
2.5. Determine A(lk), A(Zk), u(k), y(,

2.6. Calculate Xék) and R(),
Step 3. For k = n calculate A, £ M, and N,.

3.1. Control if ag.() #0fori=1(1)My, j = 1(1)Ny; let al(f? # 0 is first element and take
P = px. Otherwise go Step 4.

3.2. If M < N , calculate X(()k), R(k), take m = k and go Output 1

®
3.3. If A = j%f(k) or f(K) = 0, calculate X(()k), take m = k and go Output 1.
1
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(K) 2 91 £ (0
3.4. IfAYY # Ff , go Output 2.

Step 4. Control if fi(k) =0fori=1(1)M,. Ifdi> fi(k) # 0 then go Output 2.

4.1. Take m =k — 1 and go Output 1.

Output 1. X = ). (1—[ R(J)) X(()l) + (1—[ R(])) x(m+1)

i=1 \ j=1 j=1
Output 2. No Solution.

Note: Vector X(™*1) in Output 1 is a parametric vector in N4 1-dimension, i.e.
x](.mH) (j = 1(1)N,,) are the arbitrary parameters, if N, ; # 0. If N, ,; = 0, X(™*D = 0.
Now, we are going to give some examples solved using algorithm GIDDA.

1 -2 2 3 1
2 1 1 -1 -1
Example 1. Input: A= 3 _1 3 9 , f = 0
5 0 4 1 -1
Step 1. n = min{4,4} =4.
(1 2 -2 -3
0 1 O 0
Step 2. X5 = RO=|
\ 0 0 0 1
=3 3 7
5 5 5
xP=| 0 |,R®=|1 0
\ 0 0 1

©)
AP =0, f@=0andm=2=>x® = ( X:(lg) ) = ( Z ),a,bER
x
2

R
Output. SolutionX = | 5 tsatsh
a
b
1 2 3
1 -2 4
Example 2. Input: A= 9 3 =12
4
13
1 1 "

Step 1. n=min{4,2} =2.
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Step 2. Xél) = ( g ),R(l) = ( _12 )

@
2)_ 4 2 _ (2 _ 1
Al )—ﬁf( )andm—2=>X0 _(_Z)

z
Output. Solution X = ( 2 )

4
1 2 3
1 -2 1
Example 3. Input: A= 5 3 |’ f= 5
1 1 2

Step 1. n=min{4,2} =2.

-2
soe = (3)0- ()

2 4 2 2 2 a? 2
AP = -1 ,f()= -1 ’A()#ﬁf()
-1 -1

Output. No Solution.

4. Maple Procedure for GIDDA

>#A Maple Procedure: To compute the solution of the given linear system.
>restart;

>with(LinearAlgebra, Multiply);

>with(linalg, coldim, rowdim, blockmatrix, vectdim);
>gidda:=proc(A::Matrix, f::Vector)

global n,B,M,N,u,v,A1,A2,X0,RR,X,5,XS;

local g,m,z,1i,j,p,s,k,t,r,R,H1,H2,B1,B2,B3,B4,B5,B6, Outputl, Output2, Step4,
CalculateX0, CalculateR, Find\_ps, bul;

Outputl:= proc()

RR[0]:= Matrix(N[1], N[1], shape = identity); X:= X0[1];

for i from 1 to m-1 do RR[i]:= R[i]; RR[i]:= Multiply(RR[i-1],RR[i]);

S[i]l:= Multiply(RR[i]l, XO[i+1]); X:= X + S[il; end do:

for i from 1 to m do RR[i]l:= R[i]; RR[i]:= Multiply(RR[i-1], RR[i]); end do;

if N[m+1]=0 then XS:= Vector(l ..coldim(RR[m]), 0);

else XS:= Vector(1 .. coldim(RR[m]), symbol = a); end if:

X:= X + Multiply(RR[m], XS); print(X); break;

end proc:
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Output2:=proc()
printf ("No solution"); break;
end proc:

Step4:=proc()

if verify(glk],Vector(l..vectdim(g[k]),0),Vector)=false then Output2();
end if:

m:=k-1; Output1();

end proc:

CalculateXO:=proc()
X0[k]:=Vector(1l..N[k]); X0[k][s[kl]:=(glk]l [plk]1])/(BLk][plk],s(kl]l); }
end proc:

Calculate R:=proc() r[k]:=Matrix(1,1..N[k]-s[k]);
for z from 1 to N[k]-sl[k]
do rl[k][1,z]:=-((B[k][plk]l,s[kl+z])/(B[k][plk],s[k]])); end do:
Hil:=Matrix(N[k]-1,N[k]-1,shape=identity); H2:=Matrix(1,N[k]-1,0);
Bl:=Matrix(s[k]-1,s[k]-1,shape=identity); B2:=Matrix(s[k]-1,N[k]-s[k],0);
B3:=Matrix(1,s[k]-1,0); B4:=r[k]; B5:=Matrix(N[k]-s[k],s[k]-1,0);
B6:=Matrix (N[k]-s[k],N[k]-s[k],shape=identity) ;
if s[k]=1 then R[k]:=convert(blockmatrix (2,1, [r[k],H1]) ,Matrix);
end if:
if s[k]=N[k] then R[k]:=convert(blockmatrix (2,1, [H1,H2]) ,Matrix);
end if:
if (s[k]\texttt{>}=2 and s[k]\texttt{<}=N[k]-1) then
R[k] :=convert(blockmatrix (3,2, [B1,B2,B3,B4,B5,B6]) ,Matrix); end if:
end proc:

Find\_ps:=proc()

bul:=0; for i from 1 to M[k] do for j from 1 to N[k] do

if bul=0 and B[k][i,j]l\texttt{<>}0 then pl[k]:=i;s[k]:=j; bul:=1;
end if:

end do: end do: if bul=0 then Step4(); end if:

end proc:

>#Main Procedure

M[1] :=rowdim(A); N[1]:=coldim(A); gl[1]:=Vector(1l..M[1]);

B[1]:=Matrix(1..M[1],1..N[1]); n:=min(M[1],N[1]); B[1]:=A; gl[1]:=f;

for k from 1 to n-1 do

if k<>1 then M[k]:=rowdim(A)-sum(p[t],t=1..k-1); N[k]:=coldim(A)-k+1;
end if:
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Find\_psQ);

if p[k]l>1 then for i from 1 to p[k]l-1 do if gl[k][i]<>0 then Output2();
end if: end do:

end if:

if M[k]=1 or M[k]=p[k] then CalculateX0(); CalculateR(); m:=k;
Output1(); end if:

ulk] :=Vector(1..1); ulk]:=glk][p[11]; v[k]:=Vector(l..M[k]l-p[k]);

for i from 1 to M[k]-pl[k] do v[k][il:=glk][plk]l+il; end do:
A1[k] :=Matrix(1,1..N[k]);

for j from 1 to N[k] do A1[k][1,j]1:=B[k][plk],jl; end do:

A2[k] :=Matrix(1..(M[k]-plk]),1..N[k]);

for i from 1 to M[k]l-p[k] do for j from 1 to N[k] do
A2[k][1i,j]:=B[k][p[k]+i,j]l; end do:

end do:

CalculateX0(); CalculateR(); B[k+1]:=Multiply(A2[k],R[k]);

glk+1]:=v[k]-Multiply (A2[k],X0[k]);

end do:

k:=n; M[k]:=rowdim(A)-sum(p[t],t=1..k-1); N[k]:=coldim(A)-k+1;Find_ps();

if M[1]1<N[1] then CalculateX0(); CalculateR(); m:=k;0Outputli(); end if:

if verify(convert(B[k],Vector), (B[k][1,1])/(glk] [1]1)*g[k],Vector) or

verify(gl[k],Vector(l..vectdim(gl[k]),0)) then CalculateX0(); m:=k;
Outputl(); else Output2(); end if:

end proc:

Example 4. >A:=Matrix([[1,-2,2,3],[2,1,1,-1]1,[3,-1,3,2],[5,0,4,111);

1 -2 2 3
2 1 1 -1
A= 3 -1 3 2
5 0 4 1
>f:=Vector([1,-1,0,-1]1);
1
-1
=1 o
-1
>gidda(A,f);
3 + gal + gaz
a
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Example 5. >A:=Matrix([[1,2,-3,1,-1,-2,4],[2,4,-6,2,-2,-4,8],
(3,6,-9,3,-3,-6,12],[1,-1,3,-2,0,1,211);

2 -3 1 -1 -2 4
4 -6 2 -2 —4 8
6 -9 3 -3 -6 12
-1 3 -2 0 1 2

—_ W N e

>f:=Vector([4,8,12,1]);

>gidda(A,f);

( —2—a;+ay+3a3— as )
1+ 2a, —a2+%a3+a4—§a5
a;
as
as
aq

\ as J

5. Conclusion

GIDDM produces a special Xék) solutions and R*%) matrices by reducing the dimension of

a given system of linear algebraic equation. It obtains the solution depending on X(()k) and

R™. GIDDA is suited for implementation using computer algebra systems such as Maple and
MATLAB.
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