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Abstract. In the present work, we propose a different reciprocal second power Functional Equa-
tion (FE) which involves the arguments of functions in rational form and determine its stabilities in
the setting of modular spaces with and without using Fatou property. We also prove the stabilities
in β-homogenous spaces. As an application, we associate this equation with the electrostatic forces
of attraction between unit charges in various cases using Coloumb’s law.
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1. Introduction & Preliminaries

The hypothesis connected with linear spaces and the concepts of modular spaces were
dealt in [20]. Later, this theory has been employed by many authors [1, 9, 16, 29, 32]. The
significant application of modular theory is that it is useful in interpolation ([10, 17]) and
in numerous Orlicz spaces [21]. The common notions and properties related to modular
theory are available in [18, 19, 21].
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The detailed information about the evolution of theory of stability of FEs are available
in [3, 5, 6, 24, 25, 30]. There are many techniques of solving stability problems of FEs,
such as the technique through the attribute of shadowing [28], the technique via fixed
averages [27], the technique by virtue of sandwich hypothesis [22]. The dominant tools to
determine classical stability problems are the direct method and the fixed point method
[6, 23].

Also, without the application of ∆2-condition, proposed in [7], there are many stability
problems via fixed point theorem of quasicontracion functions in the setting of modular
spaces. By employing Khamis’s invariant point theorem, the modular stabilities of additive
FE alongwith with the Fatou property and ∆2-condition are dealt in [26]. Moreover, the
modular stability problems of quadratic FEs were discussed satisfying Fatou property
without utilizing ∆2-condition in [31]. One can refer [2, 4, 8, 11–15] for more details about
stabilities of real and complex valued multiplicative inverse FEs.

In this present work, we propose a different reciprocal second power FE of the form

mq

(
uv

2u+ v

)
+mq

(
uv

2u− v

)
= 2mq(u) + 8mq(v). (1)

We solve equation (1) for its solution and investigate its various stability results in modular
spaces with and without using Fatou property and in β-homogenous spaces.

2. Solution of equation (1) in the domain of non-zero real numbers

In this section, we impose the definition of reciprocal second power function and then
we solve equation (1) for its solution in the setting of non-zero real numbers.

Definition 1. A mapping mq : R? −→ R is called a reciprocal second power function if it
satisfies (1). Hence, (1) is said to be a reciprocal second power FE.

Theorem 1. Let mq : R? −→ R be a function. Then, mq satisfies (1) if and only if there
exists an identity function I : R? −→ R such that mq(u) = [I(1/u)]2, for all u ∈ R?.

Proof. Let mq satisfies (1). Then mq is a reciprocal second power function and hence

we can assume mq(u) =
1

u2
for all u ∈ R?. If I is an identity mapping, then [I(1/u)]2 =

1

u2
= mq(u) for all u ∈ R?.
On the other hand, let there exists an identity function I : R? −→ R such that

mq(u) = [I(1/u)]2 for all u ∈ R?. Thus, we have

mq

(
uv

2u+ v

)
+mq

(
uv

2u− v

)
=

[
I

(
2u+ v

uv

)]2
+

[
I

(
2u− v
uv

)]2
=

(2u+ v)2

u2v2
+

(2u− v)2

u2v2

=
8

v2
+

2

u2
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= 2mq(u) + 8mq(v)

for all u, v ∈ R?, which indicates mq satisfies (1).

In the following results, for the purpose of easy computation, let us consider the dif-
ference operator Γmq defined as follows:

Γmq(u, v) = mq

(
uv

2u+ v

)
+mq

(
uv

2u− v

)
− 8mq(u)− 2mq(v).

3. Modular stability of equation (1) with ∆ 1
3
-condition

In this present section, we explore the investigate stability results of equation (1) con-
nected with modular theory with modular space Uµ without applying the Fatou property.
In this section, let P denote a linear space. In the following results, suppose there exists

` > 0 so that µ(3u) ≤ 1

`
µ(u), for all u ∈ Uµ, then the modular µ is said to satisfy the

∆ 1
3
-condition. Also, we say this constant ` is a ∆ 1

3
-constant related to ∆ 1

3
-condition. One

can notice that if µ is convex and satisfies ∆ 1
3
-condition with ∆ 1

3
-constant ` > 0. If ` < 1

3 ,

then µ(u) ≤ 1
`µ
(
u
3

)
≤ 1

3`µ(u), which implies µ = 0. When µ is convex modular, then we
have ∆ 1

3
-constant ` ≥ 1

3 . In the following main results, let us consider U to be a normed

linear space over the set of real numbers.

Theorem 2. Suppose Uµ satisfies the ∆ 1
3
-condition. Let there exists a mapping φ :

P × P −→ [0,∞) such that the mapping mq : P −→ Uµ satisfies

µ
(
Γmq(u, v)

)
≤ φ(u, v), (2)

lim
n→∞

`2nφ
( u

3n
,
v

3n

)
= 0 and

∞∑
i=0

(
3`3
)i
φ
( u

3i
,
u

3i

)
<∞

for all u, v ∈ P, then a unique reciprocal second power function D : P −→ Uµ exists and
satisfies

µ (mq(u)−D(u)) ≤ 3

`

∞∑
i=0

(
3`3
)i
φ
( u

3i
,
u

3i

)
(3)

for all u ∈ P.

Proof. By taking v = u in (2), we obtain µ
(
mq

(u
3

)
− 9mq(u)

)
≤ φ(u, u) for all

u ∈ P . Employing ∆ 1
3
-condition of µ, one can find

µ

(
mq(u)− 1

9n
mq

( u
3n

))
= µ

(
n∑
i=0

3i
(

1

33i−2
mq

( u

3i−1

)
− 1

33i
mq

( u
3i

)))

≤ 1

`2

n∑
i=0

(3`3)iφ
( u

3i
,
u

3i

)
(4)
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for all u ∈ P . Now, shifting u to 3−mu in (4), we obtain

µ

(
1

9m
mq

( u

3m

)
− 1

9n+m
mq

( u

3n+m

))
≤ `−2mµ

(
mq

( u

3m

)
− 1

9n
mq

( u

3n+m

))
≤ `−(2m+2)

n∑
i=0

(3`3)iφ
( u

3i+m
,

u

3i+m

)
≤ 3−m

`m+2

n+m∑
i=m+1

(3`3)iφ
( u

3i
,
u

3i

)
for all u ∈ P . The right-hand side of the above inequality tends to 0 when m→∞ since
` ≥ 1

3 , which indicates that the series is convergent. In lieu of completeness of Uµ, this

sequence

{
1

9n
mq

( u
3n

)}
turns out to be Cauchy for all u ∈ P and hence it is µ−convergent

in Uµ. Hence, we have a mapping D : P −→ Uµ given by

D(u) = µ− lim
n→∞

1

9n
mq

( u
3n

)
,

that is, limn→∞ µ
(

1
9nmq

( u
3n

)
−D(u)

)
= 0 for all u ∈ P . So, without using Fatou

property, we observe from ∆ 1
3
-condition that the inequality

µ (mq(u)−D(u))

≤ 3µ

(
1

3
mq(u)− 1

3
· 1

9n
mq

( u
3n

))
+ 3µ

(
1

3
· 1

9n
mq

( u
3n

)
− 1

3
D(u)

)
≤ 3

k
µ

(
mq(u)− 1

9n
mq

( u
3n

))
+ 3kµ

(
1

9n
mq

( u
3n

)
−D(u)

)
≤ 3

`

n∑
i=0

(
3`3
)i
φ
( u

3i
,
u

3i

)
+ 3`µ

(
1

9n
mq

( u
3n

)
−D(u)

)
is true for u ∈ P and all integers n > 1. Allowing n→∞ in the above inequality indicates
that (4) holds. Plugging (u, v) by (3−nu, 3−nv) in (2), we find that

µ

(
3−nmq

(
3−2nuv

3−n(2u+ v)

)
+ 3−nmq

(
3−2nuv

3−n(2u− v)

)
− 8 · 3−nmq(3

−nu)− 2 · 3−nmq(3
−nv)

)
≤ `2nφ

( u
3n
,
v

3n

)
which approaches zero as n→∞ for all u, v ∈ P . Thus, in liue of the convexity of µ, we
have

µ

(
1

13
D

(
uv

2u+ v

)
+

1

13
D

(
uv

2u− v

)
− 8

13
D(u)− 2

13
D(v)

)
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≤ 1

13
µ

(
1

13
D

(
uv

2u+ v

)
− 3−nmq

(
3−nuv

2u+ v

)
+

1

13
D

(
uv

2u− v

)
− 3−nmq

(
3−nuv

2u− v

)

+
8

13
µ
(
D(u)− 3−nmq

(
3−nu

))
+

2

13
µ
(
D(v)− 3−nmq

(
3−nv

))
+

1

13
µ

(
3−nmq

(
3−nuv

2u+ v

)
+ 3−nmq

(
3−nuv

2u− v

))
− 8 · 3−nmq

(
3−nu

)
− 2 · 3−nmq

(
3−nv

))
for all u, v ∈ P and all integer n > 1. Letting the limit n → ∞, one obtains that D is
reciprocal inverse second power function. To show the uniqueness of D, let us assume that
there is another reciprocal second power function D′ : P −→ Uµ satisfying

µ
(
mq(u)−D′(u)

)
≤ 3

k

∞∑
i=0

(3`3)iφ
( u

3i
,
u

3i

)
.

Then we see from the equalities: D(3−nu) = 9nD(u) and D
′
(3−nu) = 9nD

′
(u) that

µ
(
D(u)−D′(u)

)
≤ 3µ

(
1

3
· 1

9n
D
( u

3n

)
− 1

3
· 1

9n
mq

( u
3n

))
+ 3µ

(
1

3
· 1

9n
mq

( u
3n

)
− 1

3
· 1

9n
D′
( u

3n

))
≤ 3`−(2n+1)µ

(
D
( u

3n

)
−mq

( u
3n

))
+ 3`−(2n+1)µ

(
mq

( u
3n

)
−D′

( u
3n

))
≤ 3`−3n

∞∑
i=1

(3`3)iφ
( u

3(n+i)
,

u

3(n+i)

)
≤ 31−n

`n

∞∑
i=0

(3`3)iφ
( u

3i
,
u

3i

)
for all u ∈ P . It indicates from the above inequality that D is distinctive by allowing
n→∞. Hence the proof is complete.

4. Modular stability of equation (1) without ∆ 1
3
-condition

In this present section, we provide a different result related to modular stability of
equation (1) without ∆ 1

3
-condition.
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Theorem 3. Assume that Up is a p-complex modular space where p is convex. Also, let
φ : U × U −→ [0,∞) be a function with the condition

φ̂(u, v) =
∞∑
i=0

1

9i+1
φ(3−iu, 3−iu) <∞ (5)

for all u, v ∈ U . Assume that mq : U −→ Up is a mapping such that

p
(
Γmq(u, v)

)
≤ φ(u, v) (6)

for all u, v ∈ U . Then a unique reciprocal second power function T : U −→ Up exists and
satisfies

p (mq(u)− T (u)) ≤ φ̂(u, v) (7)

for all u, v ∈ U .

Proof. Putting (u, v) as (u, u) in (6) and then dividing by 9 on both sides, we obtain

p

(
1

9
mq(3

−1u)−mq(u)

)
≤ 1

9
mq(u, u) (8)

for all u ∈ U . Then by induction arguments, we arrive at

p

(
mq(3

−nu)

9n
−mq(u)

)
≤ 1

9

n−1∑
i=0

1

9i
φ(3−iu, 3−iu) (9)

for all u ∈ U . It is clear that the case n = 1 follows directly from (8). Assume that (9) is
true for n ∈ N. Then, we obtain the ensuing inequality:

p

(
mq(3

−(n+1)u)

9n+1
−mq(u)

)

= p

(
1

9

(
mq(3

−nu)

9n
−mq(3

−1u)

)
+

1

9

(
mq(3

−1u)− 9mq(u)
))

≤ 1

9
p
(
mq(3

−nu)−mq(3
−1u)

)
+

1

9
p
(
mq(3

−1u)− 9mq(u)
)

≤ 1

9
.
1

9

n−1∑
i=0

φ(3−(i+1)u, 3−(i+1)u)

9i
+

1

9
φ(u, u)

≤ 1

9

(
n−1∑
i=0

φ(3−(i+1)u, 3−(i+1)u)

9i+1

)
+

1

9
φ(u, u)

=
1

9

n∑
i=0

φ
(
3−iu, 3−iu

)
9n
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for all u ∈ U . Hence (9) holds for every k ∈ N. Let m and n be non-negative integers with
n > m. Then (9), we have

p

(
mq(3

−nu)

9n
− mq(3

−mu)

9m

)
= p

(
1

9m

(
mq(3

−nu)

9n−m
−mq(3

−mu)

))
≤ 1

9m
· 1

9

n−m−1∑
i=0

1

9i
φ
(

3−(m+i)u, 3−(m+i)u
)

≤ 1

9

n−m−1∑
i=0

1

9m+i
φ
(

3−(m+i)u, 3−(m+i)u
)

≤ 1

9

n−1∑
k=m

1

9k
φ
(

3−ku, 3−ku
)

(10)

for all u ∈ U . By the application of (5) and (10), we observe that the the sequence{
mq(3

−nu)

9n

}
turns out to be Cauchy in Up. By virtue of completeness of Up, the sequence

is convergent. This formulates that there exists a function T : U −→ Up defined by

T (u) = p− lim
mq(3

−nu)

9n
. (11)

To confirm that T satisfies (1), plugging (u, v) into (3−nu, 3−nv) in (6) and then multiplying
by 9−n on both sides, we obtain

9−np

(
mq

(
3−n

(
uv

2u+ v

))
+mq

(
3−n

(
uv

2u− v

))
− 8mq(3

−nu)− 2mq(3
−nv)

)
≤ 9−nφ(3−nu, 3−nu) (12)

for all u, v ∈ U . We can find that T satisfies (1) by letting n→∞ in the above inequality.
To prove that T is unique reciprocal second power function which satisfies (1) and also
(7). It is clear that both T ′ and T satisfy (7). Hence, we obtain

p
(
T
′
(u)− T (u)

)
= 9−np

(
T
′
(3−nu)− T (3−nu)

)
≤ 9−n

(
p
(
T
′
(3−nu)− f(3−nu)

)
+ p

(
f(3−nu)− T (3−nu)

))
≤

∞∑
i=n+1

1

9i
φ(3−iu, 3−iu) (13)

for all u, v ∈ U . It is easy to find that T is distinctive by allowing n → ∞ in (13) and
employing (5), which completes the proof.

Corollary 1. Let mq : U −→ Up be a mapping with a constant c ≥ 0, not depending on
the values of u, v such that the inequality

p
(
Γmq(u, v)

)
≤ c
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holds for all u, v ∈ U . Then, T : U −→ Up is a unique reciprocal second power function

satisfying (1) and p (mq(u)− T (u)) ≤ c

8
, for all u ∈ U .

Proof. It is easy to prove this corollary by taking φ(u, v) = c, for all u, v ∈ U in
Theorem 3.

Corollary 2. Let λ1 ≥ 0 be fixed and s 6= −2 if a function mq : U −→ Up fulfills the
inequality

p
(
Γmq(u, v)

)
≤ λ1(|u|s + |v|s)

holds for all u, v ∈ U . Then, there exists a unique reciprocal second power function T :
U −→ Up satisfying (1) and

p (mq(u)− T (u)) ≤ 2λ1
(9− 3−s)

|u|s

for all u ∈ U .

Proof. The proof is obtained by taking φ(u, v) = λ1(|u|s + |v|s) in Theorem 3.

Corollary 3. Let mq : U −→ Up be a mapping. If there exist x, y : s = x + y 6= −2 and
λ2 ≥ 0 such that

p
(
Γmq(u, v)

)
≤ λ2(|u|x|v|y)

holds for all u, v ∈ U . Then, there exists a unique reciprocal second power function T :
U −→ Up satisfying (1) and

p (mq(u)− T (u)) ≤ λ2
(9− 3−s)

|u|s

for all u ∈ U .

Proof. The proof directly follows by taking φ(u, v) = c2(|u|a|v|b) in Theorem 3.

Corollary 4. Let λ3 ≥ 0 be fixed and s 6= −1. If a function mq : U −→ Up satisfies the
inequality

p
(
Γmq(u, v)

)
≤ λ3(|u|s|v|s + (|u|2s + |v|2s))

for all u, v ∈ U . Then, a unique reciprocal second power function T : U −→ Up exists and
satisfies (1) and

p (mq(u)−mq(v)) ≤ 3λ3
(9− 3−2s)

|u|2s

for all u ∈ U .

Proof. The proof is achieved by considering φ(u, v) = λ3(|u|s|v|s + (|u|2s + |v|2s)) in
Theorem 3.
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5. Stability of equation (1) in β-homogeneous spaces

In this section, we obtain the stability results of equation (1) in β-homogenous spaces.

Theorem 4. Let V be a β-homogeneous complex Banach space (0 < β ≤ 1), and φ :
U × U −→ (0,∞] be a function with

φ̂(u, v) =
1

9β

∞∑
i=0

1

9βi
φ
(
3−iu, 3−iu

)
<∞ (14)

for all u, v ∈ U . Assume that mq : U −→ V is a mapping such that∥∥Γmq(u, v)
∥∥ ≤ φ(u, v) (15)

holds for all u, v ∈ U . Then there exists a unique reciprocal second power function T :
U −→ V such that

‖mq(u)− T (u)‖ ≤ φ̂(u, u) (16)

for all u ∈ U .

Proof. Firstly, let us substitute v = u in (15). Then, we get∥∥mq(3
−1u)− 9mq(u)

∥∥ ≤ φ(u, u) (17)

for all u ∈ U . By employing induction technique on k ∈ N and using (17), we acquire∥∥∥∥mq(3
−nu)

9n
−mq(u)

∥∥∥∥ ≤ 1

9β

n−1∑
i=0

φ(3−iu, 3−iu)

9iβ
(18)

for all u ∈ U . Let m and n be non-negative integers with n > m, Then using (18), we
have ∥∥∥∥mq(3

−nu)

9n
− mq(3

−nu)

9m

∥∥∥∥ =

∥∥∥∥ 1

9m

(
mq(3

−n)

9n−m
−mq(3

−m)

)∥∥∥∥
≤ 1

9mβ
1

9β

n−m−1∑
i=0

φ(3−(i+m)u, 3−(i+m)u)

9iβ

=
1

9β

n−1∑
i=m

1

9iβ
φ
(
3−iu, 3−iu

)
(19)

for all u ∈ U . Letting n → ∞ in the above inequality, we find that the sequence{
mq(3

−nu)

9n

}
becomes Cauchy in U . Due to the completeness of U , the sequence is

convergent. Hence there exists a mapping T : U −→ V defined by

T (u) = lim
n→∞

mq(3
−nu)

9n
(20)
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for all u ∈ U . Putting m = 0 and taking the limit n → ∞ in the above inequality, we
obtain (16) using (20). Next, consider an additional function S : U −→ V satisfying (16)
and (20). Then, we get

‖T (u)− S(u)‖ ≤
∥∥∥∥T (3−n)−mq(3

−n)

9n

∥∥∥∥+

∥∥∥∥mq(3
−n)− S(3−n)

9n

∥∥∥∥
≤ 1

9β

∞∑
i=0

1

9(i+n)β
φ
(

3−(n+i)u, 3−(n+i)u
)

=
1

9β

∞∑
i=n

1

9iβ
φ
(
3−iu, 3−iu

)
.

From the above inequality, weobserve T is unique by letting n→∞, which completes the
proof.

Corollary 5. Let mq : U −→ V be a function with a constant λ4 ≥ 0, not depending on
the values of u, v such that the inequality∥∥Γmq(u, v)

∥∥ ≤ λ4
holds for all u, v ∈ U . Then, T : U −→ V is a unique reciprocal second power function
satisfying (1) and

‖mq(u)− T (u)‖ ≤ λ4
9β − 1

for all u ∈ U .

Proof. Taking φ(u, v) = λ4 in Theorem 4, we arrive at the required result.

Corollary 6. Let λ5 ≥ 0 be fixed and s 6= −2β. Suppose a function mq : U −→ V satisfies
the inequality ∥∥Γmq(u, v)

∥∥ ≤ λ5(||u||s + ||v||s)

for all u, v ∈ U . Then, a unique reciprocal second power function T : U −→ V exists and
satisfies (1) and

‖mq(u)− T (u)‖ ≤ 2λ5
(9β − 3−s)

||u||s

for all u ∈ U .

Proof. Replacing φ(u, v) = λ5(||u||s + ||v||s) in Theorem 4 and proceeding further, we
obtain the desired result.

Corollary 7. Let mq : U −→ V be a function. If there exist x, y : s = x + y 6= −2β and
λ6 ≥ 0 such that ∥∥Γmq(u, v)

∥∥ ≤ λ6(||u||x||v||y)
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holds for all u, v ∈ U . Then, there exists a unique reciprocal second power function T :
U −→ V satisfying (1) and

‖mq(u)− T (u)‖ ≤ λ6
(9β − 3−s)

||u||s

for all u ∈ U .

Proof. Choosing φ(u, v) = λ6(|u|x|v|y) in Theorem 4, we achieve the result.

Corollary 8. Let λ7 ≥ 0 be fixed and s 6= −β. Let a function mq : U −→ V satisfies the
inequality ∥∥Γmq(u, v)

∥∥ ≤ λ7(||u||s||v||s + (||u||2s + ||v||2s))

for all u, v ∈ U . Then, a unique reciprocal second power function T : U −→ V exists and
satisfies (1) and

‖mq(u)− T (u)‖ ≤ 3λ7
(9β − 3−2s)

||u||2s

for all u ∈ U .

Proof. Selecting φ(u, v) = λ7(||u||s||v||s + (||u||2s + ||v||2s)) in Theorem 4, we get the
required result.

6. Application of equation (1)

We close our investigation with an application of equation (1) using Coloumb’s law.
According to Coloumb, the electrostatic force of attraction between two point charges
is directly proportional to the product of the charges and inversely proportional to the
square of the distance between them.

Figure 1: Electrostatic force of attraction F between two point charges q1 and q2

That is,

F =
1

4πε0

q1q2
r2

where F and r, respectively, are the force of attraction and distance between the point
charges q1 and q2. Suppose the constant 1

4πε0
is taken as a constant c and unit point

charges are assumed, then the electrocstatic force of attraction is given by

F =
c

r2
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which is a reciprocal second power function. Suppose the distance between two unit point
charges is uv

2u+v , then the electrocstatic force of attraction is given by

mq

(
uv

2u+ v

)
=
c(2u+ v)2

u2v2
.

Also, if the distance is uv
2u−v , then the electrocstatic force of attraction is given by

mq

(
uv

2u− v

)
=
c(2u− v)2

u2v2
.

Then using equation (1), we can relate that the sum of the above electrocstatic forces

of attraction mq

(
uv

2u+v

)
and mq

(
uv

2u−v

)
is given by the sum of electrocstatic forces of

attraction 2mq(u) = 2c
u2

and 8mq(v) = 8c
v2

. Hence equation (1) dealt in this study can
be associated with the electrocstatic forces of attraction between the charges in different
situations.

7. Conclusion

In this investigation, we introduced a new reciprocal second power FE (1) and inves-
tigated its various classical stability results in modular spaces and β-homogenous spaces.
We solved equation (1) for its solution in the setting of non-zero real numbers. We asso-
ciated equation (1) with Coloumb’s law to employ it in various situations to connect the
electrocstatic forces of attraction in different assumptions.
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