EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 5, 2020, 1325-1336

ISSN  1307-5543 — www.ejpam.com
Published by New York Business Global

Special Issue Dedicated to
Professor Hari M. Srivastava
On the Occasion of his 80th Birthday

On approximation of signals in the generalized
Zygmund class using (F,7)(N, q,) mean of conjugate
derived Fourier series

Anwesha Mishra!, Birupakhya Prasad Padhy!'*, Umakanta Misra®

L Department of Mathematics, School of Applied Sciences, KIIT, Deemed to be University,
Bhubaneswar, Odisha, India

2 Department of Mathematics, National Institute of Science and Technology, Pallur Hills,
Berhampur, Odisha, India.

Abstract. In the present article, we have established a result on degree of approximation of
function in the generalized Zygmund class Zl(m),(l > 1) by (E,r)(N,gn)- mean of conjugate
derived Fourier series.
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1. Introduction

Signal Analysis describes the field of study whose objective is to collect, understand
and deduce information and intelligence from various signals. Now-a-days the analysis
of signals is a fundamental problem for many engineers and scientists. In the recent
past, we have seen the applications of mathematical methods such as Probability theory,
Mathematical statistics etc. in the analysis of signals. Very recently, approximation
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theory has got a large popularity as it has given a new dimension in approximating the
signals. The estimation of error functions in Lipschitz and Zygmund space using different
summability techniques of Fourier series and conjugate Fourier series have been of great
interest among the researchers in the last decades. For details see [3, 7, 9, 12, 13] and [15]
to [16]. Also, the generalized Zygmund class Z;™ (I > 1) was investigated by Leindler
[8], Moricz [4], Moricz and Nemeth [6] etc. Very recently Das et al.[1], Nigam [7], Pradhan
et al.[11, 14] and Singh et al.[10] proved approximation of functions in the generalized
Zygmund class by using different summability means. In the present paper, we investigate
on the degree of approximation of a function in the generalized Zygmund class Z; (m) (1 >1)
by (E,r)(N,¢,) product mean of the conjugate derived Fourier series.

2. Definitions and Notations

Let h be a function, which is periodic in [0, 27| such that f027r |h(z)|'dx < oo.
Let us denote

2w
L;]0,27] = {h :[0,27] - R : / \h(z)|'dx < oo},l > 1.
0

The Fourier series of h(x) is given by

o0 oo
Z up(x) = % + Z (ancosnx + bnsinnx> (1)
n=0 n=1

Also,the conjugate Fourier series and derived conjugate Fourier series of h(x) are respec-
tively
oo
(bncosnfv — ansinnl‘>

n=1

and

Let us define
1 2 ;
[ <
Il = (55 [ ha)ltar) 1 <1< o
and

|l =ess  sup |h()],] = oo
0<x<2m

Let STQ(h; x) denotes the p-th partial sum of conjugate derived Fourier series and is given
by

STJ(MQC) — W (z)— = —Q/Oﬂw(k+1)3in<k+l)v dv_l/O” U(x;v) Sin(l{:—l—%)v

T 4sin% 2 2 T 4sin% tan%

dv
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Where /' is the conjugate derived function of 27 periodic function ’h’, which is given by

_ 1 [7
h(z)=—— U (z;v) cosec® > dv
0 2

T
Let the Zygmund modulus of continuity of h(z) be:
m(h;r) = sup |h(z+v)+ h(x —v)|(see [2]
0<r,xzeR

Let B represents the Banach space of all 27 periodic functions which are continuous and
defined over [0, 27] under the supremum norm. Clearly,

Ziay = {heB |h(z +v) + h(z —v)| :o(\vya),0<ag 1}

is a Banach space under the norm ||.[|(,) defined by

h(x+v)+ h(x —v
[hll@) = sap |h(2)] + Sup’ ( ) a( )
0<z<2m x,t#£0 v

For h € L;[0,27], (Il > 1), the integral Zygmund modulus of continuity is defined by

1

my(h;r) = sup {/027r|h(a:+v)+h(x—v)\ldx}l

and for h € B, = oo,

Moo(h;7) = sup max |h(z + v) + h(z — v)].
o<v<r 7T

Clearly,

my(h;r) =0 as [ —0.
Let us define the space

1
l

2
Zoy. 1= {h e Li0.27] : (/ W@+ ) + bz —v)l'd)
0
which is a Banach space under the norm ||.[|(4), ; for 0 < a <1 and [ > 1. Clearly,

[2(. +v) + h(. = V)l

|v]*

1Pll@), ¢ = 1Pl + sup
v#0

Let

Zm) _ {h €B: |h(z+v) +h(z —v)| = O(m(”)>}



A. Mishra, B. P. Padhy, U. K. Misra / Eur. J. Pure Appl. Math, 13 (5) (2020), 1325-1336 1328

where m is a Zygmund modulus of continuity satisfying

(a)m(0) =0
(b)m(v1 + v2) < m(v1) +m(v2).

Let m : [0,27] — R a function with m(v) > 0 for 0 < v < 27 and

lim m(v) =m(0) = 0.

v—0t
Define
m h(. h(. —
Zl():{hELl:1SZ<oo,8upH(—H])+ ( v)Hl<oo}
v#£0 m(v)
where
I +0) +hC =l 5

(m)
h = ||h||; + sup
|| ||l || ||l ’U#O m('l))

Clearly, H||l(m) is a norm Zl(m).

Also, Zl(m) is complete since L, (I > 1) is complete.

So, Zl(m) is a Banach space under ”Hz(m)

Let m(v) and p(v) represents the Zygmund moduli of continuity such that (ZZ((;’D is
positive and non-decreasing then

m(2m)
p(2m)

IRl < ma. (1,2 250 )™ < oo (2)

Clearly,
7™Mz L, > ).

Let > u, be an infinite series with sequence of partial sums {s, }. Let {q;} represents the
sequence of non-negative integers such that

n
Qn:qu%oo as n — oo. (3)
k=0
Let
1 n
N = —an_ksk, n=0,1,2,.. (4)
@n k=0

represents the (N, ¢,) mean of {s,} generated by the sequence {g,}.
By (N, g,) method, the series Y u,, is said to be summable to 's’ if

lim 7 — s.
n—oo
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We know, (N, ¢,) method is regular [5].
The (E,r) transform of {s,} is given by

ro__ # - n—k
E = AT 2 C(n,k) r" "syp (5)

If E) — s as n — oo then Y u, is summable to ’s’ by (E,r) summability. Also, (E,r)
method is regular [5].
The (E,r)(N,qy) transform of {s,} is given by

BN — 71 Y n i y S
Tn - (l—i-T)n ZC( 7k){le/Z:()q’€—V l/} (6)

k=0

The series 3" u,, is summable to s by the (E,r)(N, g,) transform if 72" — s as n — .
Also we have used the following notation in the rest part of our paper.

U(x,v) = h(x +v) + h(z —v)

3. Known Result
Using Hausdorff mean, Nigam [7] proved the following theorem:

Theorem 1. Error approximation of a conjugate derived function n of a 21 periodic

function h € Zl(m),l > 1, using H = (0 ) of conjugate derived Fourier series is given by
——H — 1 T (v+1)m(v)
7 ) = HOI™ = 0(4 [, o),
j+1J 0P ()

where m(v) and p(v) are Zygmund moduli of continuity, provided

™ m(v) m(n)
/0 v2u(v)dvzo(n u?n))’ Vsnsm

4. Main Theorem

Theorem 2. The degree of approxrimation of a conjugate derived function n of a 27
periodic function h € Zl(m),l > 1, using (E,r)(N,qn)- mean of conjugate derived Fourier
series is given by

™

m(v) dv)

E,(h) = inf |x, ()} = O( / L 0% (o)
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m(v)
v p(v)

where m(v) and p(v) are the Zygmund moduli of continuity and is positive and

non-decreasing, provided

/” mv) o _ O(m(n)>.
0o v pv) ()
We require the below mentioned lemmas to prove our main theorem:
5. Lemmas
Lemma 1.
|71l(v)| =O0(n?) for 0<wv<m.
Lemma 2.
) 1
Y5 (v)] = o(ﬁ) for 0<v <.

Lemma 3. Let h € Zl(m) then for 0 <wv <,

(@) 1% (vl = O(m(v))
(id) (. + 9,0) + ¥(. = 5 0) s = O(m(v)) or O(m(y))

(#i72) If m(v) and p(v) are as defined in the main theorem, then

1U(.+y,v) + T(. —y,0) |, = O(“(y) TZ((:;})))

where ¥(x,v) = h(z +v) + h(z —v).

6. Proof of the Lemmas

6.1. Proof of Lemma-1
For v € (O

,——| and sin nv < n sin v, we have
n+1 ’

sin(v + 3)v
’Yl ’_‘47T1+7“ Zkan { Z%V sm22 H

(2v 4 1))sin (1/ + §>v

) Tn_k{Qlk ZZZO%_V sing }‘
) ek { o > G}
v=0
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= 0(n?)

Vi (v)] = —2 k C(n, k)yr" " 1 & sin(v + 3)v
|1<“>|—’47r<1+r>nz (. k)r {Qk;ﬂ“sins}’

k
7nnk{élk Z (2v+1)v qr—p}

_47r1—|-r

1 n—
gw‘kzokC(n,k)r 2k;+1{ quy}‘
= 0(n?)

6.2. Proof of Lemma-2

We know, L <z (0<v§7r);sinv§v,v>0;
sin | 2
2

and |sinv| < 1,|cosv| < 1 for all t.
Clearly, for v € (0, ],

k

_ —1 i e 1 coS Vv
Ya (v)] = ‘WI;)C(”’]‘:) " k{@Zq’“_” sanQH

v=0
-o(%)

6.3. Proof of Lemma-3
See [12].

7. Proof of the Main Theorem

Let Sikl(h; x) denotes the k-th partial sum of the conjugate derived Fourier series, we
have

Sk (h; @) — h7( ) = _2/0 M <k+%) sin(k‘—l—%)v dv _1/07F Yz, v) 003<k+%>v dv

- v - v v
T 4szn§ T 4sm§ tang

where A/ is the conjugate derived function of 27 periodic function h, which is given by

— 1

B (x) = 471_/0 U (z;v) 6056022 dv
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and the (V, g,) transform of it is given by

Ly S, W —2k 1 & 4 1
anzzoan{Sk (h;x) — W (2)} = A p(w,v)%kzzoansm(k—s-2>v dv

1 [7 1 < coskv
_ - - E L
T /() P(%U) Qn k=0 n—k S’LTI,% v

U (z;v)

where p(z,v) =

4sing *

Denoting the (E,r)(N,gy,) transform of Sk (h; x) by TTZ’ET’N. Then,
n k

—E. N 7, —2k T i 1 ) 1

T —h(z) = 7T(1+7")”/0 p(z,v) kZ::OC(n, k) r {@ ;()qk_,,sm<1/ + 5)0 }dv
1 i - 1 coSVv
= Cln, k) "M o= ae s o b d
e ol 3 Clonk) " H{ g S T}

- /07T U(z,v){Y] (v) + Yy (v)} dv

’

= xn (z), (say)
Then,

@)+ @) = [ { ¥t )+ ¥ g0} 570)+ V0 do

Using Minkowski’s inequality, we have
%

27
IXn (- +9) +xn (. =9l = {;ﬁ/o Xn (2 +Y) + Xa (z = y)| dw}

g 1 2m 17, —
g/ {/ [+ y,0) + W~y o)} V() + 3 (0)] do
0 27 Jo

-/ U ) £ (g0 [V () + Y (0)] do

= /0 19 ( 4y, 0) + (. — y,0)|ly |Y] (0) + Y5 (v)] dv

[ I )+ 00l B )+ T ) do

n+1
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=L+ 1o, (say) (7)
Further,
Wz +y;0) + ¥z —y0)| <Az +y+0) +h(z+y—o)| + Mz -y +0) + h(z -y —v)]
By Minkowski’s inequality, we have

V(. +y0) + P —go)i <A +y+o) +h(+y—o)li+[A(. -y +0) +h(. -y - o)l
= O(m(v)) or O(m(y))

Again, by using lemma-1, lemma-3 and monotonicity of %, we get

1

) =31 v’ Y.
I :/0 (- +y,v) + ¥ —y,0)[i]Y](v) + Y5 (v)] dv

< O(/On-1H u(y)% n? dv) +0</0"_1H () =) % dv)
m % 1 m(v
= O(nzu(y) M((n;))) —i—O(u(y) /0 () 1 dv) (8)
m(v)

Similarly, by using lemma-2, lemma-3 and monotonicity of M(—:, we get

L= [ W40 + 8= g )Y + V0] do

n+1

—o(wut [T ™) o 1>u<y>u((”“)) Q

Therefore, we have

I (- +y) +x0 (=9
sup
y£0 w(y)
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2m<ni+1) %ﬂm(v) 1
=0|n* ———%& @) — dv
ey O 2( ))
m(at1) 10)
M(nil))

+0(n? /O"il ”W) +0((n+1)

Since, h € Zl(m) and U(z;v) = |h(z + v) + h(x — v)|, by Minkowski’s inequality, we have

Therefore,

From (10) ,

provided

Hence,

19 (e, 0) |1 = bz +v) + e = o)l = O(m(v))

s

+O<n2 /t m(v) dv) + O(/1 mv(:)dv) (11)

n+1

(11) and by the monotonicity of u(v) we have

HXn/(‘ + y) + Xn/(’ — y)Hl

Ixn' ( )H“*Hxn()llﬂrzg p(y)
- 0(/;% )
T m(v) _ m(n)
| st = oGy
Ey(h) = inf [ ()]} = 0( /7r f,ﬂ?f))dv)

This completes the proof of our main theorem.
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