Bounds for the Topological Indices of ℘ graph
DOI:
https://doi.org/10.29020/nybg.ejpam.v14i2.3715Keywords:
Jump graph, corona product and Topological index.Abstract
Topological indices are mathematical measure which correlates to the chemical structures of any simple finite graph. These are used for Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR). In this paper, we define operator graph namely, ℘ graph and structured properties. Also, establish the lower and upper bounds for few topological indices namely, Inverse sum indeg index, Geometric-Arithmetic index, Atom-bond connectivity index, first zagreb index and first reformulated Zagreb index of ℘-graph.Downloads
Published
2021-05-18
Issue
Section
Nonlinear Analysis
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Bounds for the Topological Indices of ℘ graph. (2021). European Journal of Pure and Applied Mathematics, 14(2), 340-350. https://doi.org/10.29020/nybg.ejpam.v14i2.3715