Bounds for the Topological Indices of ℘ graph

Muddalapuram Manjunath, V. Lokesha, . Suvarna, Sushmitha Jain


Topological indices are mathematical measure which correlates to the chemical structures of any simple finite graph. These are used for Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR). In this paper, we define operator graph namely, ℘ graph and structured properties. Also, establish the lower and upper bounds for few topological indices namely, Inverse sum indeg index, Geometric-Arithmetic index, Atom-bond connectivity index, first zagreb index and first reformulated Zagreb index of ℘-graph.


Jump graph, corona product and Topological index.

Full Text: