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Abstract. A mathematical model of the magnetohydrodynamic free convective flow of a viscous
incompressible fluid, which is based on a system of coupled steady-state nonlinear deferential
equations, is discussed. A new approach of the homotopy perturbation method is employed to
derive analytical expressions of the fluid velocity, fluid temperature, and species concentration.
The efficiency and accuracy of the derived results are tested against highly accurate and widely
used numerical methods. The obtained analytical expressions are employed to study the effects
of the magnetic field, chemical reaction, and other relevant flow parameters on fluid velocity,
fluid temperature, and species concentration. Sensitivity analysis of these parameters is also
presented.
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1. Introduction

The basic idea of magnetohydrodynamic (MHD) oscillatory flow in a channel is
that, if the heat source is connected to a heat sink by an oscillating fluid, then the
convective motion implies sharp spikes in velocity leading to optimal heat transport over
pure conduction [24]. Underground water and energy storage systems, plasma physics,
petroleum industries, nuclear reactors, and crystal growth are just a few applications of
MHD convection with heat transfer.

In recent years, the development of heat and mass transfer processes, due to the
effects of external forces, has been intensively studied in science and engineering research.
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Examples of these studies include the effect of heat transfer on MHD oscillatory flow in
an asymmetric wavy channel [24], the MHD convective flow through a porous medium
in a horizontal channel [20], the effect of viscous dissipation on the MHD boundary layer
flow [5], the MHD free convection and mass transfer flow with a heat generation [14], and
the chemical and radiation effects on MHD heat and mass transfer flow along a moving
vertical porous plate and a long a porous medium bounded by an inclined surface [22].

The effect of magnetic fields on the MHD boundary flow layers has been examined in
several research. As examples, we mention the studies on the effect of induced magnetic
and convective heating on MHD stagnation point flow [13], the heat transfer of unsteady
MHD convective assuming that the semi-infinite plate is moving in a transverse magnetic
field [8], and the effect of an electromagnetic field on natural convection in an inclined
porous medium [6].

The mathematical model of the MHD free convective heat and mass transfer flow is
represented by a system of nonlinear boundary differential equations for which no exact
solution exists. Despite the fact that reliable numerical methods have been implemented
to find approximate solutions, the need for reliable analytical solutions is necessary
to investigate the effects of parameters variation on the governing system and hence
improve the efficiency and control of the heat and mass transfer processes. Of the
numerical methods that have been implemented by researchers, we mention a sixth-
order Runge-Kutta coupled with a shooting method [29], an implicit finite difference
method of Crank-Nicolson-type [5], a numerical integration scheme over the entire range
of physical parameters [19], and a DuFort-Frankel finite difference method [21].

In the last two decades, researchers have carried out several theoretical investiga-
tions to study the effect of thermal radiation on magnetohydrodynamics flow and heat
transfer. However, efficient and reliable analytical methods to find accurate approxi-
mate analytical solutions for the underlined nonlinear differential equations in unsteady
MHD flow are still largely outnumbered by numerical simulations despite some remark-
able techniques. For example, an analytical solution was obtained in terms of two-term
harmonic and nonharmonic functions to discuss the MHD free convective flow through a
porous medium past a vertical plate in the presence of heat absorption [27]. A Laplace
transform technique was employed by Hussein et al. in a series of articles to investigate
the MHD heat and mass transfer under various assumptions. Of these articles, we men-
tion their studies on: The combined effects of Hall current and rotation on unsteady
MHD free convective heat and mass transfer flow, the effect of thermal radiation on
magneto-nanofluids free convective flow in the presence of an inclined magnetic field,
and the effect of magnetic field, heat absorption and chemical reaction on fluid flow (see
[11, 12, 26] and the references therein). Also a Laplace transform approach was used to
study the effect of hall current on MHD natural convection heat and mass transfer of
Casson fluid flow past a vertical plate with ramped wall temperature [25].

Other methods that are prone to deliver reliable analytical or semi-analytical solu-
tions include, but not limited to, the variational iteration method [1, 17], the homotopy
analysis method [16], and a Greens function based method [2–4, 15]. In this article,
analytical expressions of the velocity, temperature, and concentration distributions are
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Figure 1: Physical model and coordinate system.

derived using a modified simple approach of the homotopy perturbation method. A sen-
sitivity analysis is presented to explain the effect of parameter variation on the velocity
profile.

2. Mathematical formulation of the problem

Consider a steady laminar, two-dimensional free convective flow of chemically re-
acting and viscous incompressible and electrically conducting along an inclined non-
conducting plate kept at uniform temperature T ′w. It is assumed that the x′-axis is
along the plate, the y′-axis is normal to it, and the flux is uniformly in the y′ direction.
Initially, the fluid and the plate are assumed to have the same temperature, and for
t′ > 0, the plate temperature is raised to T ′w, and the concentration level close to the
plate is also raised to C ′w. The physical model and the coordinate system are illustrated
in Figure 1.

The nonlinear equations of momentum, energy, and diffusion for steady state are,
respectively, given by:

ν
d2u′

dy′2
+ gβ(T ′w − T ′∞) cosα+ gβ′(C ′w − C ′∞) cosα− σB0

2

ρ
u′ − v′

K ′
u′ = 0, (1)

κ
d2T ′

dy′2
+ µ

(du′
dy′

)2
= 0, (2)

D
d2C ′

dy′2
−K ′r(C ′w − C ′∞) = 0. (3)

The corresponding initial and boundary conditions are:

u′ = 0, T ′ = T ′w, C
′ = C ′w at y′ = 0, (4)
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u′ → 0, T ′ → T ′∞, C
′ → C ′∞ as y′ →∞, (5)

where ν = µ
ρ (µ is the viscosity and ρ is the constant density of the fluid), g is the

acceleration due to gravity, β is the coefficient of thermal expansion, β′ is the coefficient
of concentration expansion, α is the inclination angle from the vertical direction, σ is
the electrical conductivity, B0 is the magnetic induction and K ′ is the permeability of
the porous medium, κ is the thermal conductivity, D is the molecular, and K ′r is the
chemical reaction constant. Introduce the following dimensionless variables:

u = u′
(
νg(T ′w − T ′∞)

)1/3
, θ =

T ′ − T ′∞
T ′w − T ′∞

, C =
C ′ − C ′∞
C ′w − C ′∞

, y = y′
(gβ(T ′w − T ′∞)

ν2

)1/3
,

N =
β∗(C ′w − C ′∞)

β(T ′ − T ′∞)
, u0 =

(
vgβ(T ′w − T ′∞)

)3
, P r =

µCp
κ
, Ec =

u20
Cp(T ′w − T ′∞)

,

K =
K ′ν2

ν20
, M =

νσB2
0

u20ρ
, Sc =

ν

D
,

(6)

where N,M,K,Ec, Pr, Sc and Kr denote the buoyancy ratio parameter, magnetic pa-
rameter (Hartmann number), permeability parameter, Eckert number, Prandtl number,
Schmidt number, and chemical reaction parameter, respectively. Substituting the vari-
ables in Eq. (6) into Eqs. (1)-(3) lead to the dimensionless steady state nonlinear
equations of momentum, energy and diffusion

d2u

dy2
−
(
M +

1

k

)
u+ θ cosα+NC cosα = 0, (7)

1

PrEc

d2θ

dy2
+
(du
dy

)2
= 0, (8)

d2C

dy2
− ScKr C = 0, (9)

with the new dimensionless boundary conditions:

u = 0, θ = 1, C = 1 at y = 0, (10)

u = 0, θ = 0, C = 0 as y →∞, (11)

where u, θ, and C are dimensionless velocity, temperature, and concentration of fluid,
respectively.

3. Derivation of analytical expression

Combining classical perturbation with homotopy theory, He [9, 10] developed the
homotopy perturbation method (HPM), where the requirement of small parameters is
waved. Over the past two decades, HPM has been employed by many researchers to ob-
tain approximate analytical solutions for many nonlinear engineering dynamical systems
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[7, 18]. In this section, a modified homotopy perturbation method [23, 28] is employed
to obtain an analytical solution of the MHD free convective flow past an inclined plate
under a steady state condition. The basic idea of the HPM is described in Appendix A.

Letting A = M + 1
k in Eqs. (7)-(8) gives

d2u

dy2
−Au+ θ cosα+NC cosα = 0, (12)

1

Pr Ec

d2θ

dy2
+
(du
dy

)2
= 0, (13)

with boundary conditions
u = 0, θ = 1, at y = 0, (14)

u = 0, θ = 0, as y →∞, (15)

The exact solution of Eq. (9) is readily obtained

C = e−y
√
ScKr. (16)

Applying the homotopy as described in Eq. (A4) to Eqs. (12) and (13) gives

(1− p)
(d2u
dy2
−Au

)
+ p

(d2u
dy2
−Au+ θ cosα+NC cosα

)
= 0, (17)

(1− p)
( 1

Pr Ec

d2θ

dy2
− θ

)
+ p

( 1

Pr Ec

d2θ

dy2
−
(du
dy

)2
− θ + θ

)
= 0, (18)

for which the approximate series solutions are, respectively, given by

u = u0 + pu1 + p2u2 + p3u3 + · · · , (19)

θ = θ0 + pθ1 + p2θ2 + p3θ3 + · · · . (20)

Direct substitution of Eqs. (19) and (20) into Eqs. (17) and (18) leads to

(1− p)
(d2(u0 + pu1 + p2u2 + · · · )

dy2
−A(u0 + pu1 + p2u2 + · · · )

)
+ p

(u0 + pu1 + p2u2 + · · ·
dy2

−A(u0 + pu1 + p2u2 + · · · )

+ (θ0 + pθ1 + p2θ2 + · · · ) cosα+NC cosα
)

= 0,

(21)

(1− p)
( 1

Pr Ec

d2(θ0 + pθ1 + p2θ2 + · · · )
dy2

−A(θ0 + pθ1 + p2θ2 + · · · )
)

+ p
( 1

Pr Ec

d2(θ0 + pθ1 + p2θ2 + · · · )
dy2

−
(d(u0 + pu1 + p2u2 + · · · )

dy

)2

− (θ0 + pθ1 + p2θ2 + · · · ) + (θ0 + pθ1 + p2θ2 + · · · )
)

= 0.

(22)
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Rearranging Eq. (21) according to the powers of p, gives the following set of equations:

p0 :
d2u0
dy2

−Au0 = 0, (23)

p1 :
d2u1
dy2

−Au1 + θ0 cosα+NC cosα = 0, (24)

...

and from Eq. (22), we obtain the system

p0 :
1

Pr Ec

d2θ0
dy2

− θ0 = 0, (25)

p1 :
1

Pr Ec

d2θ1
dy2

− θ1 +
(du0
dy

)2
+ θ0 = 0, (26)

...

The sets of corresponding boundary conditions are, respectively

u0 = −1, θ0 = 1 at y = 0, (27)

u0 = 0, θ0 = 0 as y →∞, (28)

and

u1 = 1, θ1 = 0 at y = 0, (29)

u1 = 0, θ1 = 0 as y →∞. (30)

Substituting Eq. (16) into Eq. (24) and solving Eqs. (23)-(24) with boundary
conditions (BC) (27)-(28) lead to

u0 = −e−y
√
A, (31)

u1 = e−y
√
A +

cosα

EcPr −A

(
e−y
√
A − e−y

√
EcPr

)
+

N cosα

ScKr −A

(
e−y
√
A − e−y

√
ScKr

)
.

(32)

The sum of u0 and u1 gives the following two-term HPM semi-analytic formula for
the velocity:

u(y) =
cosα

EcPr −A

(
e−y
√
A − e−y

√
EcPr

)
+

N cosα

ScKr −A

(
e−y
√
A − e−y

√
ScKr

)
. (33)

Similarly, solving the system (25)-(26) with BCs (29)-(30) leads to

θ0 = e−y
√
EcPr, (34)
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θ1 =
AEcPr

4A− EcPr

(
e−y
√
EcPr − e−2y

√
A
)

+
y
√
EcPr

2
e−y
√
EcPr. (35)

The sum of θ0 and θ1 gives the following two-term HPM semi-analytic formula for
the temperature:

θ(y) =
AEcPr

4A− EcPr

(
e−y
√
EcPr − e−2y

√
A
)

+
(y√EcPr

2
+ 1

)
e−y
√
EcPr. (36)

4. Analytical expressions for the skin friction and Nusselt and
Sherwood numbers

As a direct conclusion of Eqs. (33), (36) and (16), analytic expressions for the lo-
cal Skin-friction coefficient (Cf ), the Nusselt number (Nu), and the Sherwood number
(Sh), which are essential material parameters to analyze the rate of fluid velocity and
temperature near to the plate [11], can be derived.

Skin friction From Eq. (16), an analytical expression of the dimensionless skin
friction is given by

Cf =
∂u

∂y
|y=0 =

cosα

EcPr −A
(√
EcPr −

√
A
)

+
N cosα

ScKr −A
(√
ScKr −

√
A
)
. (37)

Nusselt number From Eq. (36), an analytical expression of the dimensionless rate
of heat transfer (Nusselt number) is given by

Nu =
∂θ

∂y
|y=0 =

AEcPr

4A− EcPr
(
2
√
A−
√
EcPr

)
− EcPr

2
. (38)

Sherwood number From Eq. (16), an analytical expression of the dimensionless
rate of mass transfer (Sherwood number) takes the form

Sh =
∂C

∂y
|y=0 = −

√
ScKr. (39)

4.1. Results and discussion

In this section, we present numerical simulations to test the accuracy and reliability
of the proposed method. The analytical expressions obtained in this paper will be
compared to the highly accurate numerical solutions obtained by the MATLAB routine
bvp4c, which is a finite-difference code that implements the three-stage Lobatto IIIA
formula.

The analytical and numerical solutions were plotted on the same coordinates for a
wide range of possible values of the underlined problem parameters. Figures 2,3, 5 and
8-11 reveal that the derived analytical expressions for the velocity, temperature, and
concentration are in strong agreement with numerical solutions.

Velocity profiles for different values of buoyancy ratio parameter (N) are shown in
Figure 2, where it is observed that an increase in N leads to an increase in velocity. The
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effect of the magnetic parameter (M) on the velocity is exactly opposite to that of N as
illustrated in Figure 3. That is, an increase in M leads to a decrease in the velocity or,
in other words, any decrease in the fluid angle on the inclined plate leads to an increase
in the flow of the velocity profile.

Eckert number (Ec), which characterizes the influence of self-heating of a fluid also
affects the velocity profile. From Figure 4, we notice that increasing Ec implies a decrease
in velocity. A Similar effect on the velocity profile is caused by Schmidt number (Sc),
which is the ratio of the kinetic viscosity to the molecular diffusion coefficient. The
inverse proportionality relation between Sc and velocity is presented in Figure 5.

Prandtl number is a dimensionless quantity that puts the viscosity of a fluid in
correlation with the thermal conductivity. Figure 6 shows how an increase in Pr results
in a decrease in the velocity profile. The chemical reaction parameter (Kr) has a similar
affect on the velocity. That is, an increase in Kr leads to a decrease in the velocity, as
illustrated in Figure 7. In fact, Schmidt, Prandtl, and Eckert numbers are all inversely
proportional to velocity, as seen in Figures 4-7.

The exponential analytical expression of the temperature (Eq. (30)) justifies its
inverse proportionality relation with Eckert and Prandtl numbers as well as the magnetic
parameter, as depicted in Figures 810. Figure 11 shows that the increase in temperature
that resulted from increasing the permeability parameter is insignificant.

The effects of problem parameters are summarized in the sensitivity analysis chart
depicted in Figure 12. In this figure, where the rate of change of momentum u was
computed (using the experimental values N = 30, α = 0.8,M = 1, k = 1, Ec = 1, P r =
1, Sc = 0.6 and Kr = 2), it is shown that α has the most impact (72.3%) on the rate
of change of velocity followed by Schmidt number with 13.6% impact on the rate of
change of velocity. For the same experimental values, the sensitivity analysis of problem
parameters reveals that Ec and Pr have the most impact (45% each) on the rate of
change of temperature distribution. As for the concentration, the exact solution of
equation (9) explains the reason why Schmidt number Sc and the permeability parameter
Kr have an identical impact on the concentration profile (50% each).

5. Conclusion

In this paper, a free convective and mass transfer magnetic field of a viscous incom-
pressible fluid in an inclined plate was presented. A modified version of the homotopy
perturbation method was employed to derive analytical expressions for the fluid velocity,
temperature, and concentration of species. These analytical expressions were used to
study the effects of the system parameters on temperature and velocity profiles. An-
alytical expressions for the Skin-friction and Nusselt and Sherwood numbers were also
derived. The accuracy of the analytical solutions was confirmed by noticing a strong
agreement with MATLAB-generated numerical simulations.
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Figure 2: Effect of buoyancy ratio (N) on
velocity profile.

Figure 3: Effect of the magnetic parameter (M)
on velocity profile.

Figure 4: Effect of Eckert number (Ec) on
velocity profile.

Figure 5: Effect of Schmidt number (Sc) on
velocity profile.

Appendix A. The homotopy perturbation method

Consider the nonlinear differential equation

A(u)− f(r) = 0, r ∈ Ω, (A1)

with the boundary condition

B
(
u,
du

dr

)
= 0, r ∈ Γ, (A2)

where A,B, f(r) and Γ are a general differential operator, a boundary operator, a known
analytical function and the boundary of the domain Ω , respectively. Expressing A(u)
as the sum of linear (L) and nonlinear (N) parts, Eq. (A1) becomes
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Figure 6: Effect of Prandtl number (Pr) on
velocity profile.

Figure 7: Effect of chemical reaction parameter
(Kr) on velocity profile.

Figure 8: Effect of Eckert number Ec on
temperature profile.

Figure 9: The effect of Prandtl number on (Pr)
temperature profile.

L(u) +N(u)− f(r) = 0. (A3)

The homotopy technique begins by defining v(r, p) : Ω× [0, 1]→ R, such that

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, (A4)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation of Eq.
(A1) that satisfies boundary conditions (A2). Evidently, Eq.(A4) implies that

H(v, 0) = L(v)− L(u0) = 0, (A5)

H(v, 1) = A(v)− f(r) = 0. (A6)

As p changes from 0 to 1, v(r, p) changes from u0 to ur, a process known as a homotopy.
The solution of Eq. (A4) may be expressed in terms of a power series in the form:

v = v0 + pv1 + p2v2 + · · · . (A7)
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Figure 10: The effect of Prandtl number
(Pr) concentration profile.

Figure 11: The effect of Schmidt number on
(Sc) concentration profile.
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Figure 12: Sensitive analysis of parameters on velocity profile

With p = 1, an approximate solution to Eq. (A4) is given by:

u = lim
p→1

v = v0 + v1 + v2 + · · · . (A8)
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