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1. Introduction

Throughout this paper, we assume that the set of n-dimensional row vector on the real
number field by Rn. Let

Rn+ = {x = (x1, x2, ...xn) : xi ≥ 0, i = 1, 2...n},

By Holders inequality [2], we have

n∑
l=1

rlsl ≤
( n∑
l=1

rul

) 1
u
( n∑
l=1

svl

) 1
v

(1)
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∫ s

r
φ(x)ψ(x)dx ≤

(∫
r

s(
φ(x)

)u
dx

) 1
u
(∫

r

s(
ψ(x)

)v
dx

) 1
v

(2)

Here rl ≥ 0, sl ≥ 0, u > 1, 1u + 1
v = 1.

The Schur convexity of functions relating to special means is a very significant research
subject and has attracted the interest of many mathematicians.There are numerous ar-
ticles written on this topic in recent years; (see [3] , [6]) and the references therein. As
supplements to the Schur convexity of functions, the Schur geometrically convex functions
and Schur harmonically convex functions were investigated by Zhang and Yang ([15], [13]),
Chu, Zhang and Wang [14], Shi and Zhang ([8], [7]) , Meng, Chu and Tang [4] , Zheng,
Zhang and Zhang [17]. These properties of functions have been found to be useful in
discovering and proving the inequalities for special means (see [1] - [2], [11],[12]).

Dong-Sheng Wang, Chun - Ru Fu and Huan-Nan Sh [10] investigated the Schur convex-
ity about related function of Holders inequality by using majorization inequality theory .
This result gives a full essential condition of Schur convexity for Holders inequality related
function, reached sharpen type of Holders inequality Under certain conditions and new
inequalities for Stolarsky mean estabilsihed. This paper motivates us to investigate Schur
geometric convexity about related function of Holders inequality by using majorization
inequality theory.

2. Preliminaries

To estabilish our main results, we need the following definitions and lemmas.

Definition 1. [[3], [9]] .Consider two arbitrary n-tuple elements λ, µ ∈ Rn

λ = (λ1, λ2, ..., λn) and µ = (µ1, µ2, ..., µn) ∈ Rn .

(i) For the arrangements of λ and µ in descending order of the form if

t∑
p=1

λ[p] ≤
t∑

p=1

µ[p]

for 1 ≤ t ≤ n− 1, λ is said to by majorized by µ, (in icon λ ≺ µ) and

n∑
p=1

λ[p] =

n∑
p=1

µ[p],

where λ[1] ≥ · · · ≥ λ[n] and µ[1] ≥ · · · ≥ µ[n]

(ii) Let Ψ ⊆ Rn (n ≥ 2) p = 1, 2, · · · , n λ ≥ µ means λp ≥ µp .
The function ω : Ψ→R is declining if and just if −ω is escalating.
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(iii) For ζ, η ∈ [0, 1] with ζ+η = 1, Ψ ⊆ Rn is a convex set, if (ζλ1 + ηµ1, · · · , ζλn + ηµn) ∈
Ψ for all λ and µ.

(iv) the function ω : Ψ → R is considered to be Schur-convex whenever λ ≺ µ on Ψ
implies ω(λ) ≤ ω(µ). ω is Schur concave on Ψ if −ω is Schur convex.

Lemma 1. [5]. Let ω : Ψ→ R be differentiable in Ψ0 and continuous on Ψ and Ψ ⊆ Rn
be symmetric with non-empty interior Ψ0, then ω is Schur convex on Ψ if and only if ω
is symmetric on Ψ and

(p− q)
(
∂ω

∂p
− ∂ω

∂q

)
≥ 0(≤ 0) (3)

Definition 2. [8]. If (λζ1µ
η
1, ...., λ

ζ
nµ

η
n)∈ Ψ for all λ and µ ∈ Ψ and λ = (λ1, λ2, ..., λn)

and µ = (µ1, µ2, ..., µn) ∈ Rn+, then Ψ ⊆ Rn is identified as geometrically convex set,
where ζ, η ∈ [0, 1] with ζ + η = 1.

If (lnλ1, ..., lnλn) ≺ (lnµ1, ..., lnµn) on Ψ implies ω(λ) ≤ ω(µ) and Ψ ⊆ Rn+, then the
function ω : Ψ→ R+ is called as Schur geometrically convex function on Ψ.

Lemma 2. [8]. Let ω : Ψ→ R be differentiable in Ψ0 and continuous on Ψ and Ψ ⊆ Rn

be symmetric with non-empty interior Ψ0, then ω is Schur Schur-geometrically convex
(Schur-geometrically concave) function. If ω is symmetric on Ψ and

(ln p− ln q)

(
p
∂ω

∂p
− q∂ω

∂q

)
≥ 0(≤ 0). (4)

Lemma 3. [16]. (Chebyshev’s inequality) If progressions rn ≥ 0, sn ≥ 0 we have

(i) When rn, sn have opposite monotonicity, then

n∑
l=1

r1

n∑
l=1

sl ≥ n
n∑
l=1

slrl (5)

(ii) When rn, sn have same monotonicity, then

n∑
l=1

rl

n∑
l=l

s1 ≤ n
n∑
l=1

slrl (6)

Lemma 4. [16]. If φ(x) is the convex (concave) function on the interval then

φ

(
r + s

2

)
≤ (≥)

1

s− r

∫ r

s
φ(x)dx ≤ (≥)

(
φ(r) + φ(s)

2

)
(7)

Lemma 5. [9]. Let x = (x1, x2, x3...xn) ∈ Rn and An(x) = 1
n

∑n
i=1 xi. then

u = (An(x), An(x), ..., An(x))︸ ︷︷ ︸ < (x1, x2, ...xn) = x

n
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Lemma 6. [2]. (Young’s inequality) Suppose r, s ≥ 0, u ≥ 1, 1u + 1
v = 1 then

1

u
ru +

1

v
su ≥ rs (8)

Lemma 7. Suppose r, s ≥ 0, u ≥ 1, 1u + 1
v = 1 then

rs ≤ 1

u
(ru + su) +

1

v
(rv + sv)− r2 + s2

2
(9)

Lemma 8. when 1 ≥ r ≥ s ≥ 0, u ≥ v ≥ 1 then

1

u
ru +

1

v
sv ≤ 1

u
su +

1

v
rv (10)

3. Main Results

In this paper, by using the principle of majorization as an example, combined with
majorization inequality, the Schur-geometrically convexity of Related Function for Holder’s
Inequality gives sharpening inequality of the Holders under certain conditions.
Our primary outcome is as follows:

Theorem 1. Let rn ≥ 0 and sn ≥ 0 be any two progressions and let u and v be two
non-zero arbitrary real numbers. Let

H1(r) =
n∑
l=1

rlsl ≤
( n∑
l=1

rul

) 1
u
( n∑
l=1

svl

) 1
v

(11)

If u ≥ 1, then H1(r) is Schur-geometric convex on R+ with r1, ..., rn and if u < 1, then
H1(r) is Schur-geometric concave on R+ with r1, ..., rn.

Proof. : Here H1(r) is obviously symmetric with r = r1, ..., rn on R+.
Let us assume r1 > r2.
Now by differentiating (11) partially with respect to r1 and r2, we get

∂H1

∂r1
=

( n∑
l=1

rul

) 1
u
−1( n∑

l=1

svl

) 1
v

ru−1
1

and

∂H1

∂r2
=

( n∑
l=1

rul

) 1
u
−1( n∑

l=1

svl

) 1
v

ru−1
2

Consider,

41 = (ln r1 − ln r2)
(
r1
∂H1

∂r1
− r2

∂H1

∂r2

)
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⇒ 41 = (ln r1 − ln r2)

( n∑
l=1

rul

) 1
u
−1( n∑

l=1

svl

) 1
v (
ru1 − ru2

)
It is easy to see that, when u ≥ 1, then 41 ≥ 0 and when u ≤ 1, then 41 ≤ 0.

Hence, by Lemma 2, if u ≥ 1, then H1(r) is Schur-geometric convex on R+ with
r1, ..., rn and if u ≤ 1, then H1(r) is Schur-geometric concave on R+ with r1, ..., rn.

This completes proof of Theorem 1.

Theorem 2. Let rn ≥ 0 and sn ≥ 0 be any two progressions and let u and v be two
non-zero arbitrary real numbers. Let

H2(s) = n
1
uAn,r

( n∑
l=1

svl

) 1
v

(12)

If v ≥ 1, then H2(s) is Schur-geometric convex on R+ with s1, ..., sn and

if v ≤ 1, H2(s) is Schur-geometric concave on R+ with s1, ..., sn. Here An,r = 1
n

n∑
l=1

rl.

Proof. : Here H2(r) is obviously symmetric with s = s1, ..., sn on R+.
Let us assume s1 > s2.
Now by differentiating (12) partially with respect to s1 and s2, we get

∂H2

∂s1
= n

1
uAn,r

( n∑
l=1

svl

) 1
v

sv−1
1

and

∂H2

∂s2
= n

1
uAn,r

( n∑
l=1

svl

) 1
v

sv−1
2

Consider,

42 = (ln s1 − ln s2)
(
s1
∂H1

∂s1
− s2

∂H1

∂s2

)

⇒ 42 = (ln s1 − ln s2)n
1
uAn,r

( n∑
l=1

svl

) 1
v

(sv1 − sv2)
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It is easy to see that,when v ≥ 1, then 42 ≥ 0 and when v ≤ 1, then 42 ≤ 0.

Hence, by Lemma 2, if v ≥ 1 , then H2(s) is Schur-geometric convex on R+ with
s1, ..., sn and if v ≤ 1, then H2(s) is Schur-geometric concave on R+ with s1, ..., sn.
This completes proof of Theorem 2.

Theorem 3. Let φ(x) and ψ(x) be two continuous functions with φ(x) > 0, ψ(x) > 0 and
let
∫ s
r φ(x)ψ(x)dx 6= 0,

∫
r
s(
φ(x)

)u
dx 6= 0,

∫ s
r

(
ψ(x)

)v
dx 6= 0,

where u and v are arbitrary real numbers. Let

H3

(
r, s
)

=


[ ∫ s

r

(
ψ(x)

)v
dx∫ s

r φ(x)ψ(x)dx

]u [ ∫ s
r

(
φ(x)

)u
dx∫ s

r φ(x)ψ(x)dx

]v
, if r 6= s

(
φ(x)ψ(x)

)uv−u−v
, if r = s

(13)

Then H3

(
r, s
)

is Schur- geometric concave(convex) with r, s if and only if:

v
(
φu(s) + φu(r)

)∫ s
r φ

u(x)dx
+
u
(
ψv(s) + ψv(r)

)∫ s
r ψ

v(x)dx
≤ (≥)

(
φ(s)ψ(s) + φ(r)ψ(r)

)
(u+ v)∫ s

r φ(x)ψ(x)dx
(14)

Proof. : HereH3

(
r, s
)

is obviously symmetric with r = r1, r2, ..., rn and s = s1, s2, ..., sn
on R+.
Let us assume s > r.
From (13), we have

H3

(
r, s
)

=

[ ∫ s
r

(
ψ(x)

)v
dx∫ s

r φ(x)ψ(x)dx

]u [ ∫ s
r

(
φ(x)

)u
dx∫ s

r φ(x)ψ(x)dx

]v

⇒ H3

(
r, s
)

=

(∫ s
r φ

u(x)dx

)v(∫ s
r ψ

v(x)dx

)u
(∫ s

r φ(x)ψ(x)dx

)u+v
Now by differentiating this partially with respect to s and r, we get

∂H3

∂s
=

v

(∫ s
r φ

u(x)dx

)v−1

φu(s)
∫ s
r

(
ψv(x)dx

)u ∫ s
r

(
φ(x)ψ(x)dx

)u+v
(∫ s

r φ(x)ψ(x)dx

)2(u+v)
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+

u

(∫ s
r ψ

v(x)dx

)u−1

ψv(s)
∫ s
r

(
φv(x)dx

)u ∫ s
r

(
φ(x)ψ(x)dx

)u+v
(∫ s

r φ(x)ψ(x)dx

)2(u+v)

−
(u+ v)

(∫ s
r φ(x)ψ(x)dx

)(u+v−1)

φ(s)ψ(s)

(∫ s
r φ

u(x)dx

)v(∫ s
r ψ

v(x)dx

)u
(∫ s

r φ(x)ψ(x)dx

)2(u+v)

∂H3

∂r
=

v

(∫ s
r φ

u(x)dx

)v−1

φu(r)
∫ s
r

(
ψv(x)dx

)u ∫ s
r

(
φ(x)ψ(x)dx

)u+v
(∫ s

r φ(x)ψ(x)dx

)2(u+v)

−
u

(∫ s
r ψ

v(x)dx

)u−1

ψv(r)
∫ s
r

(
φv(x)dx

)v ∫ s
r

(
φ(x)ψ(x)dx

)u+v
(∫ s

r φ(x)ψ(x)dx

)2(u+v)

+

(u+ v)

(∫ s
r φ(x)ψ(x)dx

)(u+v−1)

φ(r)ψ(r)

(∫ s
r φ

u(x)dx

)v(∫ s
r ψ

v(x)dx

)u
(∫ s

r φ(x)ψ(x)dx

)2(u+v)

Consider,

43 = (ln s− ln r)

(
s
∂H3

∂s
− r∂H3

∂r

)
This implies that,

43 =
(ln s− ln r)(∫ s

r φ(x)ψ(x)dx

)2(u+v)

[
v

(∫ s

r
φu(x)dx

)v−1(∫ s

r
ψv(x)dx

)u

×
(∫ s

r
φ(x)ψ(x)dx

)u+v(
sφu(s) + rφu(x)

)
+ u

(∫ s

r
ψv(x)dx

)u−1

×
(∫ s

r
φu(x)dx

)v ∫ s

r

(
φ(x)ψ(x)dx

)u+v(
sψv(s) + rψv(r)

)
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−(u+v)

∫ s

r

(
φ(x)ψ(x)dx

)u+v−1(∫ s

r
φu(x)dx

)v(∫ s

r
ψv(x)dx

)u
×
(
sφ(s)ψ(s)+rφ(r)ψ(r)

)]

=
(ln s− ln r)(∫ s

r φ(x)ψ(x)dx

)2(u+v)

[
v

∫ s

r

(
φ(x)ψ(x)dx

)u+v−1(∫ s

r
φu(x)dx

)v−1

×
(∫ s

r
ψv(x)dx

)u{∫ s

r
φ(x)ψ(x)dx

(
sφu(s)+rφu(r)

)
−
(∫ s

r
φu(x)dx

)
×
(
sφ(s)ψ(s)+rφ(r)ψ(r)

)}

+u

∫ s

r

(
φ(x)ψ(x)dx

)u+v−1(∫ s

r
φu(x)dx

)v
×
(∫ s

r
ψv(x)dx

)u−1{∫ s

r
φ(x)ψ(x)dx

(
sψv(s)+rψu(r)

)
−
(∫ s

r
ψu(x)dx

)
×
(
sφ(s)ψ(s)+rφ(r)ψ(r)

)}]

=
(ln s− ln r)(∫ s

r φ(x)ψ(x)dx

)2(u+v)

(∫ s

r
φ(x)ψ(x)dx

)u+v−1(∫ s

r
φu(x)dx

)v−1(∫ s

r
ψv(x)dx

)u−1

{
v

∫ s

r
ψv(x)dx

[∫ s

r
φ(x)ψ(x)dx

(
sφu(s) + rφu(r)

)
−
∫ s

r
φu(x)dx

(
sφ(s)ψ(s)

)
+ rφ(r)ψ(r)

]
+ u

∫ s

r
φu(x)dx

[∫ s

r
φ(x)ψ(x)dx

(
sψu(s)+rψu(r)

)
−
∫ s

r
ψv(x)dx

(
sφ(s)ψ(s)

)
+rφ(r)ψ(r)

]}
Since

(ln s− ln r)(∫ s
r φ(x)ψ(x)dx

)2(u+v)

(∫ s

r
φ(x)ψ(x)dx

)u+v−1(∫ s

r
φu(x)dx

)v−1(∫ s

r
ψv(x)dx

)u−1

≥ 0

So 43 and

v

∫ s

r
ψv(x)dx

[∫ s

r
φ(x)ψ(x)dx

(
sφu(s) + rφu(r)

)
−
∫ s

r
φu(x)dx

(
sφ(s)ψ(s)

)
+ rφ(r)ψ(r)

]
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+ u

∫ s

r
φu(x)dx

[∫ s

r
φ(x)ψ(x)dx

(
sψu(s)+rψu(r)

)
−
∫ s

r
ψv(x)dx

(
sφ(s)ψ(s)

)
+rφ(r)ψ(r)

]
=

∫ s

r
φ(x)ψ(x)dx

[
v

∫ s

r
ψv(x)dx

(
sφu(s) + rφu(r)

)
+ u

∫ s

r
φv(x)dx

(
sφv(s) + rψv(r)

)]

−
∫ s

r
φu(x)dx

∫ s

r
ψv(x)dx

(
sφ(s)ψ(s) + rφ(r)ψ(r)

)(
u+ v

)
have the same symbol.

Hence, we have H3

(
r, s
)

is Schur- Geometric concave (convex) with r, s, if and only if:∫ s

r
φ(x)ψ(x)dx

[
v

∫ s

r
ψv(x)dx

(
sφu(s) + rφu(r)

)
+ u

∫ s

r
φv(x)dx

(
sφv(s) + rψv(r)

)]

≤ (≥)

∫ s

r
φu(x)dx

∫ s

r
ψv(x)dx

(
sφ(s)ψ(s) + rφ(r)ψ(r)

)(
u+ v

)

⇔
v
∫ s
r ψ

v(x)dx
(
sφu(s) + rφu(r)

)
+ u

∫ s
r φ

v(x)dx
(
sφv(s) + rψv(r)

)∫ s
r φ

u(x)dx
∫ s
r ψ

v(x)dx

≤ (≥)

(
sφ(s)ψ(s) + rφ(r)ψ(r)

)(
u+ v

)∫ s
r φ(x)ψ(x)dx

⇔
v
(
sφu(s) + rφu(r)

)∫ s
r φ

u(x)dx
+
u
(
sψv(s) + rψv(r)

)∫ s
r ψ

v(x)dx
≤ (≥)

(
sφ(s)ψ(s) + rφ(r)ψ(r)

)
(u+ v)∫ s

r φ(x)ψ(x)dx

This completes proof of Theorem 3.

Corollary 1. Let φ(x) and ψ(x) be two continuous functions and let their second order
derivatives exists with

φ(x > 0, ψ(x) > 0),

∫ s

r
φ(x)ψ(x)dx 6= 0,

∫ r

s
(φ(x))udx 6= 0,

∫ r

s
ψ(x)udx 6= 0.

If u, v > 1 and φ(x), ψ(x) are convex functions of opposite monotonicity and

φppψ + ψppφ+ 2φpψp < 0

then H3(r, s) is Schur-geometric convex with r = r1, r2, ..., rn, and s = s1, s2, ...sn on R+.
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Corollary 2. Let φ(x) and ψ(x) be two continuous functions and let their second order
derivatives exists with

φ(x > 0), ψ(x) > 0,

∫ s

r
φ(x)ψ(x)dx 6= 0,

∫ r

s
(φ(x))udx 6= 0,

∫ r

s
ψ(x)udx 6= 0.

If u, v < 0 and φ(x), ψ(x) are concave functions of opposite monotonicity then H3(r, s) is
Schur-geometric concave with r = r1, r2, ..., rn, and s = s1, s2, ...sn on R+.

Corollary 3. Let φ(x) and ψ(x) be two continuous functions and let their second order
derivatives exists with

φ(x > 0), ψ(x) > 0,

∫ s

r
φ(x)ψ(x)dx 6= 0,

∫ r

s
(φ(x))udx 6= 0,

∫ r

s
ψ(x)udx 6= 0.

If −1 < u < 0, 0 < v < 1, u+v > 0 and φ(x), ψ(x) are concave functions of opposite mono-
tonicity then H3(r, s) is Schur-geometric convex with r = r1, r2, ..., rn, and s = s1, s2, ...sn
on R+.

4. Application

The following applications are established by using our main results.

Theorem 4. Let rn ≥ 0 and sn ≥ 0 be any two progressions and let u and v be two
non-zero arbitrary real numbers. Then

(i) if u ≥ 1, v ≥ 1 then( n∑
i=1

rul

) 1
u
( n∑
i=1

rvl

) 1
v

≥
(
n

1
u +

1

v

)
An,r An,s .

(ii) if u ≤ 1, v ≤ 1 then( n∑
i=1

rul

) 1
u
( n∑
i=1

rvl

) 1
v

≤
(
n

1
u +

1

v

)
An,r An,s .

Here

An,r =

∑n
l=1(rl)

n
,

An,s =

∑n
l=1(sl)

n

Proof. : (i) By Lemma 7 has a majorization inequality:

(r1, r2, ..., rn) �
(
r1 + r2 + r3 + ...+ rn

n
, ...,

r1 + r2 + r3 + ...+ rn
n

)



S. R. Perla, S. Padmanabhan, V. Lokesha / Eur. J. Pure Appl. Math, 13 (5) (2020), 1199-1211 1209

and by Theorem 1 and by definition 1, we have

if u ≥ 1, then H1(r) ≥ H1(An, r), that is( n∑
l=1

rul

) 1
u
( n∑
l=1

svl

) 1
v

≥
(
n(An,r)

u

) 1
u
( n∑
l=1

svl

) 1
v

= n
1
uAn,r

(
n(An,s )v

) 1
v

By majorization inequality, we have

(s1, s2, ..., sn) �
(
s1 + s2 + s3 + ...+ sn

n
, ...,

s1 + s2 + s3 + ...+ sn
n

)
and by Theorem 2 and Definition 1, we have
if v ≥ 1, then H2(s) ≥ H2(An, s), that is

n
1
uAn,r

( n∑
l=1

svj

) 1
v

≥ n
1
uAn,r

(
n(An,s)

v

) 1
v

= n

(
1
u
+ 1

v

)
An,r An,s

From the above relations, we have

( n∑
l=1

rul

) 1
u
( n∑
l=1

svj

) 1
v

≥ n

(
1
u
+ 1

v

)
An,r An,s

exactness.
By Similar method the following inequality is also established,

( n∑
l=1

rul

) 1
u
( n∑
l=1

svj

) 1
v

≤ n

(
1
u
+ 1

v

)
An,r An,s (15)

The proof of Theorem 4 is complete.

Theorem 5. Let rn ≥ 0 and sn ≥ 0 be any two progressions and let u and v be two
non-zero arbitrary real numbers . Then

(i) When u > 1, if
1

u
+

1

v
= 1 and {rn}, {sn} have the opposite of monotonicity, then

( n∑
l=1

rul

) 1
u
( n∑
l=1

svj

) 1
v

≥ nAn,r An,s≥
n∑
l=1

r1s1

(ii) When 0 < u < 1, if
1

u
+

1

v
= 1 and {rn},{sn} have the opposite of monotonicity, then

( n∑
l=1

rul

) 1
u
( n∑
l=1

svj

) 1
v

≤ nAn,r An,s≥
n∑
l=1

r1s1
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Proof. : (i) When u > 1, if
1

u
+

1

v
= 1 and by Theorem 1, we have

( n∑
l=1

rul

) 1
u
( n∑
l=1

svj

) 1
v

≥ nAn,r An,s = An,r An,s

and by Lemma 5, we have

nAn,r An,s = n

∑n
l=1(r1)

n

∑n
l=1(s1)

n
=

∑n
l=1(r1)

∑n
l=1(s1)

n
≥ n

∑n
l=1 r1s1
n

=
n∑
l=1

r1s1

From the above relations, we have( n∑
l=1

rul

) 1
u
( n∑
l=1

svj

) 1
v

≥ nAn,r An,s≥
n∑
l=1

r1s1

exactness.
By Similar method the following inequality is also established( n∑

l=1

rul

) 1
u
( n∑
l=1

svj

) 1
v

≤ nAn,r An,s≥
n∑
l=1

r1s1

The proof of Theorem 5 is complete.

5. Conclusion

In this paper, by using of majorization inequality theory we investigated the Schur
geometrically convex about related functions of Holders Inequality, giving a complete
critical condition of Schur geometrically convex function to Holders Inequality and some
applications were established. Despite of these results, the authors are also interested to
investigate the results of Schur harmonically convex and m-power convexity about related
functions of Holders inequality in future research work.
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