On Various Formulas with q-integralsand Their Applications to q-hypergeometric Functions
DOI:
https://doi.org/10.29020/nybg.ejpam.v13i5.3755Keywords:
q-Taylor formulas with q-integral remainder, q-hypergeometric function, q-Eulerian integral, fractional q-integralAbstract
We present three q-Taylor formulas with q-integral remainder. The two last proofs
require a slight rearrangement by a well-known formula. The first formula has been given in different form by Annaby and Mansour. We give concise proofs for q-analogues of Eulerian integral formulas for general q-hypergeometric functions corresponding to Erd Ìelyi, and for two of Srivastavas triple hypergeometric functions and other functions. All proofs are made in a similar style by using q-integration. We find some new formulas for fractional q-integrals including a series expansion. In the same way, the operator formulas by Srivastava and Manocha find a natural generalization.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.