EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 4, 2020, 779-793
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

On Semitotal k-Fair and Independent k-Fair Domination in Graphs

Marivir M. Ortega ${ }^{1, *}$, Rowena T. Isla 1,2
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
${ }^{2}$ Center for Graph Theory, Algebra, and Analysis, Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

In this paper, we introduce and investigate the concepts of semitotal k-fair domination and independent k-fair domination, where k is a positive integer. We also characterize the semitotal 1 -fair dominating sets and independent k-fair dominating sets in the join, corona, lexicographic product, and Cartesian product of graphs and determine the exact value or sharp bounds of the corresponding semitotal 1 -fair domination number and independent k-fair domination number.

2020 Mathematics Subject Classifications: 05C69, 05C76
Key Words and Phrases: Semitotal domination, Independent domination, k-Fair domination, Join, Corona, Lexicographic product, Cartesian product

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph and $v \in V(G)$. The open neighborhood of v in G is the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood of v is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. For $X \subseteq V(G)$, the open neighborhood of X in G is the set $N_{G}(X)=N(X)=\bigcup_{v \in X} N_{G}(v)$ and its closed neighborhood is the the set $N_{G}[X]=N[X]=N(X) \cup X$. A set $D \subseteq V(G)$ is a dominating set in G if for every $v \in V(G) \backslash D$, there exists $u \in D$ such that $u v \in E(G)$, that is, $N[D]=V(G)$. The minimum cardinality of a dominating set in G, denoted by $\gamma(G)$, is the domination number of G. Any dominating set in G of cardinality $\gamma(G)$ is referred to as γ-set in G.

The theory of independent domination was formalized by Berge [1] and Ore [9] in 1962. The independent domination number and the notation $i(G)$ were introduced by Cockayne and Hedetnieme [2]. Let G be a connected graph. A dominating set S in G is

[^0]Email addresses: marivir.ortega@g.msuiit.edu.ph (M. Ortega), rowena.isla@g.msuiit.edu.ph (R.Isla)
an independent dominating set of G if no two vertices in S are adjacent, that is, S is an independent set. The independent domination number $i(G)$ of a graph G is the minimum cardinality of an independent dominating set.

A domination parameter called fair domination was introduced by Caro, Hansberg, and Henning [4] in 2012. For an integer $k \geq 1$, a k-fair dominating set ($k f d$-set) is a dominating set $S \subseteq V(G)$ such that $|N(u) \cap S|=k$ for every $u \in V(G) \backslash S$. The k-fair domination number of G, denoted by $\gamma_{k f d}(G)$, is the minimum cardinality of a $k f d$-set. Clearly, $k \leq \gamma_{k f d}(G) \leq|V(G)|$.

In 2014, Maravilla, Isla, and Canoy [6] characterized the k-fair dominating sets in the join, corona, lexicographic product, and Cartesian product of graphs and determined the bounds or exact values of the k-fair domination numbers of these graphs. Two variants of k-fair domination, namely connected k-fair domination and neighborhood connected k-fair domination, were studied by Bent-Usman, Gomisong, and Isla [3] in 2018 and by Bent-Usman, Isla, and Canoy [7] in 2019, respectively.

Another domination parameter is the semitotal domination of graphs introduced by Goddard, Henning, and McPillan [5] in 2014. For a graph G with no isolated vertices, a set $S \subseteq V(G)$ is a semitotal dominating set in G if S is a dominating set in G such that for every $x \in S$ there exists $y \in S \backslash\{x\}$ such that $d_{G}(x, y) \leq 2$. In 2019, Aniversario, Canoy, and Jamil [8] characterized the semitotal dominating sets in the join, corona, and lexicographic product of graphs.

Let G be a graph without isolated vertices. A set $S \subseteq V(G)$ is a semitotal k-fair dominating set in G, if S is a k-fair dominating set in G and for every $x \in S$, there exists $y \in S \backslash\{x\}$ such that $d(x, y) \leq 2$. The semitotal k-fair domination number of G, denoted by $\gamma_{k f}^{t 2}(G)$, is the minimum cardinality of a semitotal k-fair dominating set. A semitotal k-fair dominating set of cardinality $\gamma_{k f}^{t 2}(G)$ is called a minimum semitotal k-fair dominating set or a $\gamma_{k f}^{t 2}$-set.

Let G be a connected graph. A set $S \subseteq V(G)$ is an independent k-fair dominating set in G if S is a k-fair dominating set in G and if no two vertices in S are adjacent. The independent k-fair domination number of G, denoted by $\gamma_{k f}^{i}(G)$, is the minimum cardinality of an independent k-fair dominating set. An independent k-fair dominating set of cardinality $\gamma_{k f}^{i}(G)$ is called a minimum independent k-fair dominating set or a $\gamma_{k f}^{i}$-set.

The join $G+H$ of two graphs G and H is the graph with vertex-set $V(G+H)=$ $V(G) \cup V(H)$ and edge-set $E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G), v \in V(H)\}$. The corona of two graphs G and H, denoted by $G \circ H$, is the graph obtained by taking one copy of G of order n and n copies of H, and then joining the i-th vertex of G to every vertex in the i-th copy of H. For every $v \in V(G)$, we denote by H^{v} the copy of H whose vertices are joined or attached to the vertex v. For each $v \in V(G)$, the subgraph $\langle v\rangle+H^{v}$ of $G \circ H$ will be denoted by $v+H^{v}$. The lexicographic product of two graphs G and H, denoted by $G[H]$, is the graph with vertex set $V(G[H])=V(G) \times V(H)$ and edge set $E(G[H])$ satisfying the following conditions: $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E(G[H])$ if and only if either $u_{1} u_{2} \in E(G)$ or $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$. The Cartesian product of two graphs
G and H, denoted by $G \square H$, is the graph with vertex-set $V(G \square H)=V(G) \times V(H)$ and edge-set $E(G \square H)$ satisfying the following conditions: $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E(G \square H)$ if and only if either $u_{1} u_{2} \in E(G)$ and $v_{1}=v_{2}$ or $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$.

2. Preliminary Results

Remark 1. Any semitotal $k f d$-set is a $k f d$-set, where k is a positive integer.
Theorem 1. Let G be a nontrivial connected graph. Then $\gamma_{1 f}^{t 2}(G)=2$ if and only if there exist adjacent vertices a and b such that $N_{G}(a) \cap N_{G}(b)=\varnothing$ and $V(G) \backslash N_{G}[a]=$ $N_{G}(b) \backslash\{a\}$.

Proof. Suppose $\gamma_{1 f}^{t 2}(G)=2$. Let $S=\{a, b\}$ be a $\gamma_{1 f}^{t 2}$-set of G. Since S is a $1 f d$-set, no vertex $v \in V(G) \backslash S$ with $v \in N_{G}(a) \cap N_{G}(b)$ exists, i.e., $N_{G}(a) \cap N_{G}(b)=\varnothing$. This implies that $a b \in E(G)$ because S is a semitotal dominating set. Moreover, $V(G) \backslash N_{G}[a]=$ $N_{G}(b) \backslash\{a\}$ (or $\left.V(G) \backslash N_{G}[b]=N_{G}(a) \backslash\{b\}\right)$ because S is a dominating set.

The converse is clear.
Corollary 1. $\gamma_{1 f}^{t 2}\left(K_{2}\right)=\gamma_{1 f}^{t 2}\left(K_{1}+\left(K_{1} \cup H\right)\right)=\gamma_{1 f}^{t 2}\left(K_{2} \circ H\right)=2$ for any graph H.
Lemma 1. [6] Let G be a connected graph of order $n \geq 1$ and let k be a positive integer such that $k \leq n$. Then:
(i) $k \leq \gamma_{k f d}(G) \leq n$.
(ii) $\gamma_{k f d}(G)=k$ if and only if G has a $k f d$-set S with $|S|=k$.
(iii) If $\gamma_{k f d}(G)=n$, then G has no vertex of degree k.

Theorem 2. Let G be a connected graph of order $n \geq 2$ and let k be a positive integer with $2 \leq k \leq n$. Then $\gamma_{k f}^{t 2}(G)=k$ if and only if $n=k$ or $G=H_{1}+H_{2}$ for some graphs H_{1} and H_{2} with $\left|V\left(H_{1}\right)\right|=k$.

Proof. Suppose $\gamma_{k f}^{t 2}(G)=k$. Suppose further that $k<n$. Let S be a $\gamma_{k f}^{t 2}$-set of G. Then $|S|=k$. Set $H_{1}=\langle S\rangle$ and $H_{2}=\langle V(G) \backslash S\rangle$. Since S is a k-fair dominating set of G, it follows that $V(G) \backslash S \subseteq N_{G}(v)$ for each $v \in S$. Hence, $G=H_{1}+H_{2}$.

For the converse, suppose that $G=H_{1}+H_{2}$ where $\left|V\left(H_{1}\right)\right|=k$. Then clearly, $S=V\left(H_{1}\right)$ is a k-fair dominating set of G. Let $x, y \in S$ with $x \neq y$. Suppose $x y \notin$ $E(G)$. Pick any $z \in V\left(H_{2}\right)$. Then $z \in N_{G}(x) \cap N_{G}(y)$. This implies that $d_{G}(x, y)=2$. Therefore, S is a semitotal $k f d$-set of G. By Lemma $1(i i), S$ is a $\gamma_{k f}^{t 2}$-set of G, that is, $\gamma_{k f}^{t 2}(G)=|S|=k$.

Corollary 2. Let G be a connected graph of order $n \geq 3$. Then $\gamma_{2 f}^{t 2}(G)=2$ if and only if $G=K_{2}+H$ or $G=\overline{K_{2}}+H$ for some graph H.

Proof. Suppose $\gamma_{2 f}^{t 2}(G)=2$, say $S=\{a, b\}$ is a $\gamma_{2 f}^{t 2}$-set of G. Let $H=\langle V(G) \backslash S\rangle$. Since S is a 2-fair dominating set, $V(H)=V(G) \backslash S \subseteq N_{G}(a) \cap N_{G}(b)$. Since S is a semitotal 2-fair dominating set, either $a b \in E(G)$ or $d_{G}(a, b)=2$. Thus, $G=K_{2}+H$ or $G=\overline{K_{2}}+H$.

For the converse, suppose $G=K_{2}+H$ or $G=\overline{K_{2}}+H$. Then clearly, $\gamma_{2 f}^{t 2}(G)=2$.
Theorem 3. Let G be a connected graph of order $n \geq 2$ and let $k \geq 2$. Then $S \subseteq V(G)$ is a semitotal $k f d$-set if and only if it is a $k f d$-set. In particular, $\gamma_{k f}^{t 2}(G)=\gamma_{k f d}(\bar{G})$.

Proof. Suppose S is a semitotal $k f d$-set. Then S is a $k f d$-set by Remark 1. For the converse, suppose S is a $k f d$-set. Let $x \in S$. If $N_{G}(x) \cap S \neq \varnothing$, then there exists $w \in S$ such that $d_{G}(x, w)=1$. Suppose $N_{G}(x) \cap S=\varnothing$. Let $v \in N_{G}(x)$. Then $v \in V(G) \backslash S$. Since S is a $k f d$-set and $k \geq 2$, there exists $u \in S \backslash\{x\}$ such that $u v \in E(G)$. Hence, $d_{G}(x, u)=2$. Thus, $d_{G}(x, z) \leq 2$ for some $z \in S$. Therefore, S is a semitotal $k f d$-set of G. Accordingly, $\gamma_{k f}^{t 2}(G)=\gamma_{k f d}(G)$.

Remark 2. Not every connected graph of order n admits an independent $k f d$-set, where k is a positive integer and $1 \leq k \leq \alpha(G)$, where $\alpha(G)$ is the independence number of G.

To see this, consider $C_{4} . \gamma_{1 f d}\left(C_{4}\right)=2$ but C_{4} has no independent $1 f d$-set.
Theorem 4. Let G be a connected graph of order n and let k be a positive integer with $1 \leq k \leq \alpha(G)$. Then G admits an independent $k f d$-set (and hence, $\gamma_{k f}^{i}(G)=k$) if and only if $G=\overline{K_{k}}+H$ for some graph H.

Proof. Suppose G admits an independent $k f d$-set, say $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. Let $H=$ $\langle V(G) \backslash S\rangle$. Since S is a $k f d$-set, $V(H)=V(G) \backslash S \subseteq N_{G}\left(a_{i}\right) \cap N_{G}\left(a_{j}\right)$ for all $i, j=$ $1,2, \ldots, k$ and $i \neq j$. Since S is an independent $k f d$-set of $G,\left|N_{G}(S) \cap S\right|=\varnothing$. Thus, $G=\overline{K_{k}}+H$.

For the converse, suppose $G=\overline{K_{k}}+H$ for some graph H. Then clearly, $S=V\left(\overline{K_{k}}\right)$ is an independent $k f d$-set of G and $\gamma_{k f}^{i}(G)=k$.

Theorem 5. Let G be a connected graph and suppose G admits an independent 1 fd-set. Then $1 \leq \gamma_{1 f}^{i}(G) \leq \alpha(G)$. Moreover,
(i) $\gamma_{1 f}^{i}(G)=1$ if and only if $G=K_{1}+H$ for some graph H, and
(ii) $\gamma_{1 f}^{i}(G)=\alpha(G) \geq 2$ if and only if G has a maximum independent set such that $d_{G}(x, y) \geq 3$ for each pair of vertices $x, y \in S$ with $x \neq y$, and no other independent set satisfies this property.

Proof. Let S be a $\gamma_{1 f}^{i}$-set. Since S is an independent set, $1 \leq|S|=\gamma_{1 f}^{i}(G) \leq \alpha(G)$.
(i) is an immediate consequence of Theorem 4.
(ii) Suppose $\gamma_{1 f}^{i}(G)=\alpha(G) \geq 2$. Let S be a $\gamma_{1 f}^{i}$-set of G. Then S is a maximum independent set of G. Let $x, y \in S$ with $x \neq y$. Since S is an independent $1 f d$-set, $d_{G}(x, y) \geq 3$.

For the converse, suppose that G has a maximum independent set S such that $d_{G}(x, y) \geq$ 3 for all $x, y \in S$ with $x \neq y$, and that no other independent set satisfies this property. Then S is a dominating set of G. Let $z \in V(G) \backslash S$. Then there exists $v \in S \cap N_{G}(z)$. Since $d_{G}(v, y) \geq 3$ for all $y \in S \backslash\{v\}, N_{G}(z) \cap S=1$. Thus, S is an independent $1 f d$-set of G. Hence, $\gamma_{1 f}^{i}(G) \leq|S|=\alpha(G)$. By the additional property, $\gamma_{1 f}^{i}(G)=\alpha(G)$.

Since $K_{n}=K_{1}+K_{n-1}$ and $\alpha\left(K_{n}\right)=1$, the next result immediately follows.
Corollary 3. For any positive integer $n \geq 1, \gamma_{1 f}^{i}\left(K_{n}\right)=1$.
Remark 3. Any independent $k f d$-set is a $k f d$-set, where k is a positive integer.
Theorem 6. Let G be a connected graph with $|V(G)| \geq 4$ and suppose G admits an independent 1 fd-set. Then $\gamma_{1 f}^{i}(G)=2$ if and only if there exist non-adjacent vertices a and b of G satisfying the following conditions:
(i) $N_{G}[a] \cup N_{G}[b]=V(G)$
(ii) $N_{G}[a] \cap N_{G}[b]=\varnothing$

Proof. Suppose $S=\{a, b\}$ is a $\gamma_{1 f}^{i}$-set of G. Since S is a dominating set, Condition (i) holds. Suppose there exists $y \in N_{G}[a] \cap N_{G}[b]$. Then $d_{G}(a, b)=2$, contrary to the fact that $d_{G}(a, b) \geq 3$ since S is an independent $1 f d$-set. Thus, Condition (ii) holds.

For the converse, suppose that $S=\{a, b\}$ satisfies Conditions (i) and (ii). Then clearly, $\gamma_{1 f}^{i}(G)=2$.

Theorem 7. For any positive integer $n \geq 1, \gamma_{1 f}^{i}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Proof. Let $P_{n}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. Clearly, $\gamma_{1 f}^{i}\left(P_{1}\right)=\gamma_{1 f}^{i}\left(P_{2}\right)=\gamma_{1 f}^{i}\left(P_{3}\right)=1$. Let $n>3$ and consider the following cases:
Case 1: $n=3 r$
Group the first $3 r$ vertices of P_{n} into r disjoint subsets

$$
\begin{aligned}
S_{1} & =\left\{v_{1}, v_{2}, v_{3},\right\} \\
S_{2} & =\left\{v_{4}, v_{5}, v_{6}\right\} \\
\vdots & \\
S_{r-1} & =\left\{v_{3 r-5}, v_{3 r-4}, v_{3 r-3}\right\} \\
S_{r} & =\left\{v_{3 r-2}, v_{3 r-1}, v_{3 r}\right\} .
\end{aligned}
$$

For every induced subgraph $\left\langle v_{i}, v_{i+1}, v_{i+2}\right\rangle$ of P_{n}, where $i=1,4, \ldots, 3 r-2$, the vertices v_{i+1} form an independent 1-fair dominating set of P_{n}. Thus, the set $T=\left\{v_{2}, v_{5}, \ldots, v_{3 r-4}, v_{3 r-1}\right\}$ is an independent 1-fair dominating set of P_{n}. Since $|T|=r, \gamma_{1 f}^{i}\left(P_{n}\right) \leq r$. Note that every three adjacent vertices in P_{n} can be dominated by a single vertex. Thus, every independent 1 -fair dominating set of P_{n} contains at least $\left\lceil\frac{n}{3}\right\rceil$ vertices. Hence, $\gamma_{1 f}^{i}\left(P_{n}\right) \geq\left\lceil\frac{n}{3}\right\rceil=r$. Thus, $\gamma_{1 f}^{i}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.

Case 2: $n=3 r+2$
In Case 1 , the set T is a $\gamma_{1 f}^{i}$-set of the induced subgraph $\left\langle v_{1}, v_{2}, \ldots, v_{3 r}\right\rangle$ of P_{n}. Since $n=3 r+2$, the set $T \cup\left\{v_{3 r+2}\right\}$ is a $\gamma_{1 f}^{i}$-set of P_{n}. Thus, $\gamma_{1 f}^{i}\left(P_{n}\right)=r+1=\left\lceil\frac{3 r+2}{3}\right\rceil=\left\lceil\frac{n}{3}\right\rceil$. Case 3: $n=3 r+1$

Consider the grouping of the first $3 r$ vertices of P_{n} given in Case 1 . The set $S=$ $\left\{v_{1}, v_{4}, \ldots, v_{3 r-2}\right\} \cup\left\{v_{3 r+1}\right\}$ is an independent 1-fair dominating set of P_{n}. Thus, $\gamma_{1 f}^{i}\left(P_{n}\right) \leq$ $|S|+1=r+1=\left\lceil\frac{3 r+1}{3}\right\rceil=\left\lceil\frac{n}{3}\right\rceil$. Note that each of the first $r-1$ induced subgraph $\left\langle v_{i}, v_{i+1}, v_{i+2}\right\rangle$ can be dominated by a single vertex, while the induced subgraph $\left\langle v_{3 r-2}\right.$, $\left.v_{3 r-1}, v_{3 r}, v_{3 r+1}\right\rangle$ can be dominated by the vertices $v_{3 r-2}$ and $v_{3 r+1}$. Thus, every independent 1-fair dominating set of P_{n} contains at least $(r-1)+2=r+1=\left\lceil\frac{3 r+1}{3}\right\rceil=\left\lceil\frac{n}{3}\right\rceil$ vertices. Hence, $\gamma_{1 f}^{i}\left(P_{n}\right) \geq\left\lceil\frac{n}{3}\right\rceil$. Therefore, $\gamma_{1 f}^{i}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.

Corollary 4. For any positive integer $n \equiv 0(\bmod 3)$, $\gamma_{1 f}^{i}\left(C_{n}\right)=\frac{n}{3}$.
Proof. Immediately follows from Case 1 of Theorem 7.
The following results are used in the succeeding sections.
Theorem 8. [6] Let G and H be nontrivial connected graphs of orders m and n, respectively, and k a positive integer with $1 \leq k \leq \max \{m, n\}$. Then $S \subseteq V(G+H)$ is a $k f d$-set in $G+H$ if and only if one of the following holds:
(a) $S=V(G+H)$.
(b) $S \subseteq V(G),|S|=k$ and S is a $k f d$-set in G.
(c) $S \subseteq V(H),|S|=k$ and S is a $k f d$-set in H.
(d) $S=S_{G} \cup S_{H}$, where S_{G} is a $\left(k-\left|S_{H}\right|\right) f d$-set in G and S_{H} is a $\left(k-\left|S_{G}\right|\right) f d$-set in H.
(e) $S=V(G) \cup T$, where $|V(G)|=m<k$ and T is a $(k-m) f d$-set in H.
(f) $S=D \cup V(H)$, where $|V(H)|=n<k$ and D is $a(k-n) f d$-set in G.

Theorem 9. [6] Let G and H be nontrivial connected graphs and let k be a positive integer with $k \leq|V(H)|$. Then $C \subseteq V(G \circ H)$ is a $k f d$-set in $G \circ H$ if and only if one of the following holds:
(a) $C=V(G) \cup B$, where $B=\varnothing$ or $B=\bigcup_{v \in V(G)} S_{v}$, where each S_{v} is a $(k-1) f d$-set in H^{v}.
(b) $C=\bigcup_{v \in V(G)} S_{v}$, where each S_{v} is a $k f d$-set in H^{v} and $\left|S_{v}\right|=k$.

Theorem 10. [6] Let G and H be nontrivial connected graphs. Then $C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right) \subseteq$ $V(G[H])$ is a $k f d$-set in $G[H]$ if and only if the following hold:
(i) S is a dominating set in G.
(ii) For each $x \in S \cap N_{G}(S), T_{x}=V(H)$ and $|V(H)|=r \leq k$ whenever $C \neq V(G[H])$ or T_{x} is an $r f d$-set and $\sum_{z \in N_{G}(x) \cap S}\left|T_{z}\right|=k-r$.
(iii) For each $x \in S \backslash N_{G}(S), T_{x}=V(H)$ and $|V(H)| \leq k$ or $\left|T_{x}\right|=k$ and T_{x} is a $k f d$-set in H.
(iv) For each $y \in V(G) \backslash S, \sum_{v \in N_{G}(y) \cap S}\left|T_{v}\right|=k$.

Corollary 5. [6] Let G and H be nontrivial connected graphs. Then $C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right) \subseteq$ $V(G[H])$ is a $1 f d$-set in $G[H]$ if and only if S is a $1 f d$-set in $G, S \cap N_{G}(S)=\varnothing, T_{x}$ is a dominating set of H, and $\left|T_{x}\right|=1$ for each $x \in S$.

Theorem 11. [6] Let G and H be nontrivial connected graphs of orders m and n, respectively, and k a positive integer with $1 \leq k \leq \min \{m, n\}$. Then $C=\bigcup_{x \in V(G)}[\{x\} \times$ $\left.T_{x}\right] \subseteq V(G \square H)$ is a kfd-set in $G \square H$ if and only if
(i) $V(H) \backslash T_{x} \subseteq N_{H}\left(T_{x}\right) \cup\left(\bigcup_{z \in N_{G}(x)} T_{z}\right)$ for each $x \in V(G)$, and
(ii) For each $x \in V(G), T_{x}=V(H)$ or for each $a \in V(H) \backslash T_{x}$, either $\left|N_{H}(a) \cap T_{x}\right|=k$ and $\left|\left\{z: z \in N_{G}(x), a \in T_{z}\right\}\right|=0$ or $\left|N_{H}(a) \cap T_{x}\right|=r<k$ and $a \in \bigcap_{i=1}^{k-r} T_{x_{i}}$, where $x_{i} \in N_{G}(x)$ for $i=1,2, \ldots, k-r$.

Corollary 6. [6] Let G and H be nontrivial connected graphs of orders m and n, respectively, and k a positive integer with $k \leq \min \{m, n\}$. Then

$$
\gamma_{k f d}(G \square H) \leq \min \left\{n \cdot \gamma_{k f d}(G), m \cdot \gamma_{k f d}(H)\right\} .
$$

3. Semitotal 1-Fair Domination

In view of Theorem 3, which shows that the concept of semitotal k-fair dominatioin coincides with the notion of k-fair domination when $k \geq 2$, this section investigates semitotal k-fair domination in graphs only for $k=1$.

The following remark is an immediate consequence of Remark 1 for $k=1$.
Remark 4. For any connected graph G of order $n \geq 2, \gamma_{1 f d}(G) \leq \gamma_{1 f}^{t 2}(G)$ and $\gamma_{1 f}^{t 2}(G) \geq 2$.
The succeeding two results are easy to verify.

Proposition 1. Let n and r be positive integers where $n \geq 2$ and $r \geq 1$. Then

$$
\gamma_{1 f}^{t 2}\left(P_{n}\right)= \begin{cases}2, & 2 \leq n \leq 4 \\ 2 r, & n=4 r \\ 2 r+1, & n=4 r+1 \\ 2 r+2, & n=4 r+2,4 r+3\end{cases}
$$

Proposition 2. Let n and r be positive integers where $n \geq 3$ and $r \geq 1$. Then

$$
\gamma_{1 f}^{t 2}\left(C_{n}\right)= \begin{cases}3, & n=3 \\ 2 r, & n=4 r \\ 2 r+1, & n=4 r+1 \\ 2 r+2, & n=4 r+2 \\ 2 r+3, & n=4 r+3\end{cases}
$$

Theorem 12. Let a and b be positive integers such that $2 \leq a \leq b$. Then there exists a connected graph G such that $\gamma_{1 f d}(G)=a$ and $\gamma_{1 f}^{t 2}(G)=b$.

Proof. Consider the following cases:
Case 1. $a=b$
Let $G=G_{1}$ be the graph shown in Figure 1.

Figure 1: A graph G with $\gamma_{1 f d}(G)=a=\gamma_{1 f}^{t 2}(G)=b$
It is clear that the set $A=\left\{x_{1}, x_{2}, \ldots, x_{a-1}, x_{a}\right\}$ is both a $\gamma_{1 f d}$-set and a $\gamma_{1 f^{-}}^{t 2}$ set in G_{1}. It follows that $\gamma_{1 f d}(G)=a=\gamma_{1 f}^{t 2}(G)=b$.
Case 2. $a<b$
Let $G=G_{2}$ be the graph shown in Figure 2.

Figure 2: A graph G with $\gamma_{1 f d}(G)=a<\gamma_{1 f}^{t 2}(G)=b$
Let $A=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$. It is clear that the set A is a $\gamma_{1 f d}$-set and the set $B=$ $\left(A \backslash\left\{x_{a}\right\}\right) \cup\{v\} \cup\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{b-a}\right\}$ is a $\gamma_{1 f}^{t 2}$-set in G. It follows that $\gamma_{1 f d}(G)=|A|=a$ and $\gamma_{1 f}^{t 2}(G)=|B|=(a-1)+1+(b-a)=b$.

Corollary 7. $\gamma_{1 f}^{t^{2}}-\gamma_{1 f d}$ can be made arbitrarily large.
We now characterize the semitotal 1-fair dominating sets in the join, corona, lexicographic product, and Cartesian product of graphs in this section. We also establish the exact value or sharp bounds of the corresponding semitotal 1 -fair domination number.

Theorem 13. Let G and H be any two graphs of orders m and n, respectively. A set $C \subseteq V(G+H)$ is a semitotal $1 f d$-set of $G+H$ if and only if $C=V(G+H)$ or $C=\{v, w\}$ for some isolated vertices v and w of G and H, respectively.

Proof. Immediately follows from $\gamma_{1 f}^{t 2}(G+H) \geq 2$ and Theorem 8 .
Corollary 8. Let G and H be any graphs of orders m and n, respectively. Then $\gamma_{1 f}^{t 2}(G+$ $H)=2$ if G and H both contain isolated vertices and $\gamma_{1 f}^{t 2}(G+H)=m+n$ otherwise.

Theorem 14. Let G be a nontrivial connected graph and H be any graph. Then $C \subseteq$ $V(G \circ H)$ is a semitotal $1 f d$-set in $G \circ H$ if and only if $C=V(G)$ or $C=V(G \circ H)$.

Proof. Suppose $C \subseteq V(G \circ H)$ is a semitotal $1 f d$-set in $G \circ H$. Then C is a $1 f d$-set in $G \circ H$. It now follows by Theorem 9 that $C=V(G)$ or $C=V(G \circ H)$.

The converse is obvious.

Corollary 9. Let G be a nontrivial connected graph and H be any graph. Then

$$
\gamma_{1 f}^{t 2}(G \circ H)=|V(G)| .
$$

Theorem 15. Let G and H be nontrivial connected graphs. A set $C \subseteq V(G[H])$ is a semitotal 1 fd -set of $G[H]$ if and only if $C=V(G[H])$.

Proof. Suppose $C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)$ is a semitotal $1 f d$-set of $G[H]$. Then S is a 1 fd -set of $G, S \cap N_{G}(S)=\varnothing, T_{x}$ is a dominating set of H, and $\left|T_{x}\right|=1$ for each $x \in S$, by Corollary 5. Suppose $C \neq V(G[H])$, say there exists $(y, a) \in V(G[H]) \backslash C$. If $y \notin S$, then $\left|N_{G}(y) \cap S\right|=1$ because S is a $1 f d$-set of G. Let $N_{G}(y) \cap S=\{z\}$ and let $T_{z}=\{b\}$. Since C is a semitotal $1 f d$-set of $G[H]$, there exists $(w, c) \in C$ such that $d_{G[H]}((z, b),(w, c)) \leq 2$. Now, since $S \cap N_{G}(S)=\varnothing$ and $w \in S \backslash\{z\}$, it follows that $d_{G}(z, w)=2$ (that is, $\left.d_{G[H]}((z, b),(w, c))=2\right)$. Let $u \in N_{G}(z) \cap N_{G}(w)$. Then $u \in V(G) \backslash S$. Since $z, w \in N_{G}(u) \cap S, S$ is not a $1 f d$-set, a contradiction. Suppose $y \in S$. Then $\left|T_{y}\right|=1$. Again, since C is a semitotal $1 f d$-set of $G[H], S \cap N_{G}(S)=\varnothing$, and $\left|T_{y}\right|=1$, there exists $p \in N_{G}(y) \cap S$ such that $d_{G}(y, p)=2$. This implies that there exists $q \in V(G) \backslash S\left(q \in N_{G}(y) \cap N_{G}(p)\right)$ such that $\left|N_{G}(q) \cap S\right| \geq 2$, contrary to the fact that S is a $1 f d$-set of G. Thus, $C=V(G[H])$.

The converse is clear.
Corollary 10. Let G and H be nontrivial connected graphs of orders m and n, respectively. Then $\gamma_{1 f}^{t 2}(G[H])=m \cdot n$.

Theorem 16. Let G and H be nontrivial connected graphs. Then $C=\bigcup_{x \in V(G)}\left[\{x\} \times T_{x}\right] \subseteq$ $V(G \square H)$ is a semitotal 1 fd -set of $G \square H$ if and only if:
(i) $V(H) \backslash T_{x} \subseteq N_{H}\left(T_{x}\right) \cup\left(\bigcup_{z \in N_{G}(x)} T_{z}\right)$ for each $x \in V(G)$;
(ii) for each $x \in V(G), T_{x}=V(H)$ or for each $a \in V(H) \backslash T_{x}$, either $\left|N_{H}(a) \cap T_{x}\right|=1$ and $\left\{z: z \in N_{G}(x), a \in T_{x}\right\}=\varnothing$, or $N_{H}(a) \cap T_{x}=\varnothing$ and $a \in T_{y}$ for exactly one $y \in N_{G}(x)$; and
(iii) for each $x \in V(G)$ and for each $a \in T_{x}$, there exists $b \in T_{x}$ such that $a b \in E(H)$ or there exists $y \in N_{G}(x)$ such that $a \in T_{y}$.

Proof. Suppose $C=\bigcup_{x \in V(G)}\left[\{x\} \times T_{x}\right] \subseteq V(G \square H)$ is a semitotal $1 f d$-set in $G \square H$.
Since C is a $1 f d$-set in $G \square H$, Conditions (i) and (ii) hold by Theorem 11. Let $x \in$ $V(G)$. Suppose there exists $a \in T_{x}$ such that for all $b \in T_{x}, a b \notin E(H)$ and for all $y \in N_{G}(x), a \notin T_{y}$. Since C is a semitotal dominating set, there exists $(x, c) \in C$ such that $d_{G \square H}((x, a),(x, c))=2$ or there exists $(z, a) \in C$ such that $d_{G \square H}((x, a),(z, a))=2$ or there exist $y \in N_{G}(x)$ and $b \in T_{y}$ such that $d_{G \square H}((x, a),(y, b))=2$, where $(y, b) \in C$. However, in each of these cases, there exists $(w, d) \in V(G \square H) \backslash C$ such that $\mid N_{G \square H}(w, d) \cap$ $C \mid \geq 2$, contrary to the assumption that C is a $1 f d$-set. Hence, Condition (iii) must be satisfied.

For the converse, suppose Conditions (i), (ii), and (iii) hold. By Theorem 11, (i) and (ii) imply that C is a $1 f d$-set in $G \square H$, while (iii) implies that C is a semitotal dominating set. Thus, C is a semitotal 1 fd -set in $G \square H$.

Corollary 11. Let G and H be nontrivial connected graphs. Then $C_{1}=S_{1} \times V(H)$ and $C_{2}=V(G) \times S_{2}$ are semitotal 1 fd -sets in $G \square H$ if and only if S_{1} and S_{2} are 1 fd -sets in G and H, respectively.

The following result is an immediate consequence of Corollary 11.
Corollary 12. Let G and H be nontrivial connected graphs. Then

$$
\gamma_{1 f}^{t 2}(G \square H) \leq \min \left\{|V(H)| \cdot \gamma_{1 f d}(G),|V(G)| \cdot \gamma_{1 f d}(H)\right\} .
$$

Remark 5. The bound given in Corollary 12 is sharp.
To see this, consider the graph shown in Figure 3. The shaded vertices in $P_{4} \square P_{6}$ form a $\gamma_{1 f}^{t 2}$-set. Thus, $\gamma_{1 f}^{t 2}\left(P_{4} \square P_{6}\right)=8=\min \{6 \cdot 2,4 \cdot 2\}=\min \left\{\left|V\left(P_{6}\right)\right| \cdot \gamma_{1 f d}\left(P_{4}\right),\left|V\left(P_{4}\right)\right|\right.$. $\left.\gamma_{1 f d}\left(P_{6}\right)\right\}=\left|V\left(P_{4}\right)\right| \cdot \gamma_{1 f d}\left(P_{6}\right)$.

Figure 3: The graph $P_{4} \square P_{6}$, with $\gamma_{1 f}^{t 2}\left(P_{4} \square P_{6}\right)=8$.

4. Independent k-Fair Domination

We characterize the independent k-fair dominating sets in the join, corona, lexicographic product, and Cartesian product of graphs in this section. We also determine the exact value or sharp bounds of the corresponding independent k-fair domination number.

Theorem 17. Let G and H be nontrivial connected graphs of orders m and n, respectively, and k a positive integer with $1 \leq k \leq \max \left\{\left\lceil\frac{m}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil\right\}$. Then $G+H$ admits an independent $k f d$-set if and only if G or H admits an independent $k f d$-set. Moreover, $S \subsetneq V(G+H)$ is an independent $k f d$-set in $G+H$ if and only if one of the following holds:
(i) $S \subsetneq V(G),|S|=k$ and S is an independent $k f d$-set in G.
(ii) $S \subsetneq V(H),|S|=k$ and S is an independent $k f d$-set in H.

Proof. Suppose $G+H$ admits an independent $k f d$-set, where $1 \leq k \leq \max \left\{\left\lceil\frac{m}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil\right\}$. Suppose further that $S \subsetneq V(G+H)$ is an independent $k f d$-set in $G+H$. If there exist $u, x \in S$ such that $u \in V(G)$ and $x \in V(H)$, then $u x \in E(G+H)$, contrary to the assumption that S is an independent set in $G+H$. Hence, either $S \subsetneq V(G)$ or $S \subsetneq V(H)$. Assume that $S \subsetneq V(G)$. Let $x \in V(H)$. Then $\left|N_{G+H}(x) \cap S\right|=|S|=k$. Since S is a $k f d$-set of $G+H,\left|N_{G}(v) \cap S\right|=\left|N_{G+H}(v) \cap S\right|=k$ for every $v \in V(G) \backslash S$. Hence, S is a $k f d$-set in G. Since S is an independent set by assumption, Statement (i) holds. Similarly, if $S \subsetneq V(H)$, then S is an independent $k f d$-set in H, showing that Statement (ii) holds. Therefore, G or H admits an independent $k f d$-set.

Conversely, suppose that Statement (i) or (ii) holds. Assume that Statement (i) is true. Then $\left|N_{G+H}(v) \cap S\right|=\left|N_{G}(v) \cap S\right|=k$ for each $v \in V(G) \backslash S$. Moreover, $\left|N_{G+H}(x) \cap S\right|=|S|=k$ for every vertex $x \in V(H)$. Thus. S is a $k f d$-set in $G+H$. Therefore, $S \subsetneq V(G+H)$ is an independent $k f d$-set in $G+H$. The same conclusion similarly follows if Statement (ii) holds.

The next result is an immediate consequence of Theorem 17.
Corollary 13. Let G and H be connected nontrivial graphs of orders m and n, respectively, and k a positive integer with $1 \leq k \leq \max \left\{\left\lceil\frac{m}{2}\right\rceil,\left\lceil\frac{n}{2}\right\rceil\right\}$. If G or H has an independent $k f d$-set S with $|S|=k$, then $\gamma_{k f}^{i}(G+H)=k$.
Theorem 18. Let G and H be nontrivial connected graphs, and let k be a positive integer with $k \leq\left\lceil\frac{|V(H)|}{2}\right\rceil$. Then $G \circ H$ admits an independent $k f d$-set if and only if H admits an independent $k f d$-set consisting of k vertices.

Proof. Suppose $G \circ H$ admits an independent $k f d$-set, where $k \leq\left\lceil\frac{|V(H)|}{2}\right\rceil$. Suppose further that $C \subsetneq V(G \circ H)$ is an independent $k f d$-set in $G \circ H$. Suppose $C \cap V(G) \neq \varnothing$, say $v \in C \cap V(G)$. Since C is an independent set, $V\left(H^{v}\right) \cap C=\varnothing$ and $\left|N_{G \circ H}(x) \cap C\right|=1$ for all $x \in V\left(H^{v}\right)$. This implies that $k=1$. Now let $w \in N_{G}(v)$. Then $w \notin C$. Since $\left|N_{G \circ H}(w) \cap C\right|=1, V\left(H^{w}\right) \cap C=\varnothing$. Hence, $V\left(H^{w}\right) \cap N_{G \circ H}[C]=\varnothing$, a contradiction (since C is a dominating set). Thus, $C \cap V(G)=\varnothing$. Then by Theorem $9, C=\bigcup_{v \in V(G)} S_{v}$, where each S_{v} is an independent $k f d$-set in H^{v} and $\left|S_{v}\right|=k$ for each $v \in V(G)$. Therefore, H admits an independent $k f d$-set consisting of k vertices.

Conversely, suppose H admits an independent $k f d$-set consisting of k vertices. Let $C=\bigcup_{v \in V(G)} S_{v}$, where each S_{v} is an independent $k f d$-set in H^{v} and $\left|S_{v}\right|=k$. Then C is an independent $k f d$-set in $G \circ H$ by Theorem 9 .

The next result is an immediate consequence of Theorem 18.
Corollary 14. Let G and H be nontrivial connected graphs of orders m and n, respectively, and let k be a positive integer with $k \leq\left\lceil\frac{n}{2}\right\rceil$. If H has an independent $k f d$-set S with $|S|=k$, then $\gamma_{k f}^{i}(G \circ H)=m k$.
Theorem 19. Let G and H be nontrivial connected graphs and let k be a positive integer with $1 \leq k \leq\left\lceil\frac{|V(H)|}{2}\right\rceil$. If $G[H]$ admits an independent $k f d$-set, then $C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right) \subsetneq$ $V(G[H])$ is an independent $k f d$-set in $G[H]$ if and only if the following hold:
(i) S is an independent 1 fd -set in G,
(ii) for each $x \in S,\left|T_{x}\right|=k$ and T_{x} is an independent $k f d$-set in H.

Proof. Suppose $C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right) \subsetneq V(G[H])$ is an independent $k f d$-set in $G[H]$. Then C is a $k f d$-set in $G[H]$ and by Theorem $10, S$ is a dominating set in G. Moreover, since C is an independent set, $S \cap N_{G}(S)=\varnothing$. Finally, from Statement (iv) of Theorem 10, for each $y \in V(G) \backslash S, \sum_{v \in N_{G}(y) \cap S}\left|T_{v}\right|=k$, hence $\left|N_{G}(y) \cap S\right|=1$. Thus, S is an independent $1 f d$-set in G and Statement (i) holds. Furthermore, for each $x \in\left(S \backslash N_{G}(S)\right)=S,\left|T_{x}\right|=k$ and T_{x} is a $k f d$-set in H by Statement (iii) of Theorem 10, where $k \leq\left\lceil\frac{|V(H)|}{2}\right\rceil$ since C is an independent set. Suppose there is a vertex $a \in T_{x}$ which is adjacent to a vertex $b \in T_{x}$. Then (x, a) is adjacent to (x, b) in C, contrary to assumption. Hence, T_{x} is an independent $k f d$-set in H and Statement (ii) holds.

Conversely, suppose Statements (i) and ($i i$) hold. Then T_{x} is a $k f d$-set in H for each $x \in S$, and $\sum_{v \in N_{G}(y) \cap S}\left|T_{v}\right|=k$ for each $y \in V(G) \backslash S$. Thus, C is a $k f d$-set in $G[H]$ by Theorem 10. Let $(x, a) \in C$. Then $x \in S$ and $a \in T_{x}$. Suppose there exists $(x, b) \in C$ such that $(x, a)(x, b) \in E(G[H])$. Then $b \in T_{x}$ and $a b \in E(H)$, contrary to Statement (ii) that
T_{x} is an independent set. Hence, (x, a) is not adjacent to any $(x, b) \in C$. Next, suppose there exists $(y, d) \in C, y \neq x$, such that $(x, a)(y, d) \in E(G[H])$. Then $y \in N_{G}(x) \cap S$, contrary to the fact that $S \cap N_{G}(S)=\varnothing$. Hence, (x, a) is not adjacent to any $(y, d) \in C$. Therefore, C is an independent $k f d$-set in $G[H]$.

Corollary 15. Let G and H be nontrivial connected graphs with $\gamma_{k f}^{i}(H)=k \leq\left\lceil\frac{|V(H)|}{2}\right\rceil$. If $G[H]$ admits an independent $k f d$-set, then

$$
\gamma_{k f}^{i}(G[H])=k \cdot \gamma_{1 f}^{i}(G) .
$$

Proof. Let S be a $\gamma_{1 f}^{i}$-set of G and let $\left\{a_{1}, \ldots, a_{k}\right\}$ be a $\gamma_{k f}^{i}$-set of H. Let $T_{x}=$ $\left\{a_{1}, \ldots, a_{k}\right\}$ for each $x \in S$. Then $C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)$ is an independent $k f d$-set in $G[H]$ by Theorem 19. Hence, $\gamma_{k f}^{i}(G[H]) \leq|C|=k \cdot \gamma_{1 f}^{i}(G)$.

Now, let C_{0} be a $\gamma_{k f}^{i}$-set of $G[H]$. By Theorem 19, $C_{0}=\bigcup_{x \in S_{0}}\left[\{x\} \times Q_{x}\right]$, where S_{0} is an independent $1 f d$-set and Q_{x} is an independent $k f d$-set of H with $\left|Q_{x}\right|=k$ for each $x \in S_{0}$. Hence, $\gamma_{k f}^{i}(G[H])=\left|C_{0}\right|=k\left|S_{0}\right| \geq k \cdot \gamma_{1 f}^{i}(G)$. This establishes the desired equality.

Theorem 20. Let G and H be nontrivial connected graphs of orders m and n, respectively, and let k be a positive integer with $1 \leq k \leq \min \{m, n\}$. If $G \square H$ admits an independent kfd-set, then $C=\bigcup_{x \in V(G)}\left(\{x\} \times T_{x}\right) \subsetneq V(G \square H)$ is an independent $k f d$-set in $G \square H$ if and only if:
(i) T_{x} is an independent set in H for each $x \in V(G)$,
(ii) for each $x \in V(G)$ and each $a \in T_{x},\left|\left\{z \in V(G): z \in N_{G}(x), a \in T_{z}\right\}\right|=0$,
(iii) $V(H) \backslash T_{x} \subseteq N_{H}\left(T_{x}\right) \bigcup\left(\bigcup_{z \in N_{G}(x)} T_{z}\right)$ for each $x \in V(G)$, and
(iv) for each $b \in V(H) \backslash T_{x}$, either $\left|N_{H}(b) \cap T_{x}\right|=k$ and $\left|\left\{z: z \in N_{G}(x), b \in T_{z}\right\}\right|=0$ or $\left|N_{H}(b) \cap T_{x}\right|=r<k$ and $b \in \bigcap_{i=1}^{k-r} T_{x_{i}}$, where $x_{i} \in N_{G}(x)$ for $i=1,2, \ldots, k-r$.
Proof. Suppose $C=\bigcup_{x \in V(G)}\left(\{x\} \times T_{x}\right) \subsetneq V(G \square H)$ is an independent $k f d$-set in $G \square H$.
Then by Theorem 11, (iii) and (iv) hold. Suppose there is a vertex $a \in T_{x}$ which is adjacent to some vertex b in T_{x}. Then (x, a) is adjacent to (x, b) in C, contrary to assumption. Hence, T_{x} is an independent set in H and (i) holds. Finally, suppose there is a vertex $a \in T_{x}$ such that for some vertex $z \in N_{G}(x), a \in T_{z}$. Then $(z, a) \in C$ and (x, a) is adjacent to (z, a) in C, contrary to assumption. Hence, (ii) holds.

Conversely, suppose (i) to (iv) hold. From (iii) and (iv), C is a $k f d$-set by Theorem
11. By (i) and (ii), C is an independent set in $G \square H$. Thus, C is an independent $k f d$-set in $G \square H$.

The next result immediately follows from Remark 3 and Corollary 6.
Corollary 16. Let G and H be nontrivial connected graphs of orders m and n, respectively, and k a positive integer with $1 \leq k \leq \min \{m, n\}$. If $G \square H$ admits an independent $k f d$-set, then

$$
\gamma_{k f}^{i}(G \square H) \leq \min \left\{m \cdot \gamma_{k f d}(H), n \cdot \gamma_{k f d}(G)\right\} .
$$

Remark 6. The bound given in Corollary 16 is sharp. However, the strict inequality can be attained.

To see this, consider the graphs shown in Figure 4. The shaded vertices in each graph form a $\gamma_{k f}^{i}$-set. Thus, $\gamma_{1 f}^{i}\left(P_{2} \square P_{3}\right)=2=\min \{2 \cdot 1,3 \cdot 1\}=\min \left\{\left|V\left(P_{2}\right)\right| \cdot \gamma_{1 f d}\left(P_{3}\right),\left|V\left(P_{3}\right)\right|\right.$. $\left.\gamma_{1 f d}\left(P_{2}\right)\right\}=\left|V\left(P_{2}\right)\right| \cdot \gamma_{1 f d}\left(P_{3}\right)$ and $\gamma_{3 f}^{i}\left(P_{3} \square P_{3}\right)=5<\min \{3 \cdot 3,3 \cdot 3\}=\min \left\{\left|V\left(P_{3}\right)\right|\right.$. $\left.\gamma_{3 f d}\left(P_{3}\right),\left|V\left(P_{3}\right)\right| \cdot \gamma_{3 f d}\left(P_{3}\right)\right\}$.

Figure 4: The graphs $P_{2} \square P_{3}$ and $P_{3} \square P_{3}$ with $\gamma_{1 f}^{i}\left(P_{2} \square P_{3}\right)=2$ and $\gamma_{3 f}^{i}\left(P_{3} \square P_{3}\right)=5$

Acknowledgements

This research is funded by the Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP) and the Mindanao State University-Iligan Institute of Technology. The authors would like to thank the reviewers for their invaluable comments and suggestions that led to this improved version of the paper.

References

[1] C. Berge. The Theory of Graphs and Applications. Methuen, London, 1962.
[2] E. Cockayne and S. Hedetniemi. Independent Graphs. Congr. Numer., X:471-491, 1974.
[3] W. Bent-Usman. D. Gomisong and R. Isla. Connected k-Fair Domination in the Join, Corona, Lexicographic and Cartesian Product of Graphs. Applied Mathematical Sciences, 12(27):1341-1355, 2018.
[4] Y. Caro. A. Hansberg and M. Henning. Fair Domination in Graphs. Discrete Mathematics, 312(19):2905-2914, 2012.
[5] W. Goddard. M. Henning and C. McPillan. Semitotal Domination in Graphs. Utilitas Mathematica, 94:67-81, 2014.
[6] E. Maravilla. R. Isla and S. Canoy Jr. k-Fair Domination in the Join, Corona, Composition and Cartesian Product of Graphs. Applied Mathematical Sciences, 8(178):8863-8874, 2014.
[7] W. Bent-Usman. R. Isla and S. Canoy Jr. Neighborhood Connected k-Fair Domination Under Some Binary Operations. European Journal of Pure and Applied Mathematics, 12(3):1337-1349, 2019.
[8] I. Aniversario. S. Canoy Jr and F. Jamil. On Semitotal Domination in Graphs. European Journal of Pure and Applied Mathematics, 12(4):1410-1425, 2019.
[9] O. Ore. Theory of Graphs. Amer. Math. Colloq. Publ., 38:206-212, 1962.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v13i4.3812

