EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 13, No. 4, 2020, 1035-1054 ;
ISSN 1307-5543 — www.ejpam.com
Published by New York Business Global

Optimized Cramer’s rule in WZ factorization and applications

Olayiwola Babarinsa!2-*, Azfi Zaidi Mohammad Sofi%, Mohd Asrul Hery Ibrahim?,
Hailiza Kamarulhaili?

' Department of Mathematical Sciences, Federal University Lokoja, 1154 Kogi State, Nigeria

2 Faculty of Bioengineering & Technology, Universiti Malaysia Kelantan, 16100 Kota Bharu,

Kelantan, Malaysia
3 School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Abstract. In this paper, WZ factorization is optimized with a proposed Cramer’s rule and compared with
classical Cramer’s rule to solve the linear systems of the factorization technique. The matrix norms and
performance time of WZ factorization together with LU factorization are analyzed using sparse matrices
on MATLAB via AMD and Intel processor to deduce that the optimized Cramer’s rule in the factoriza-
tion algorithm yields accurate results than LU factorization and conventional WZ factorization. In all, the
matrix group and Schur complement for every Zgyg.m (2 X 2 block triangular matrices from Z-matrix) are
established.

2020 Mathematics Subject Classifications: 65F05, 65F35, 15A23
Key Words and Phrases: WZ factorization, LU factorization, Linear systems, Cramer’s rule, MATLAB

1. Introduction

Evans and Hatzopoulos [24] first posited WZ factorization or quadrant interlocking factoriza-
tion of nonsingular matrix. The factorization decomposes matrices into block forms which are
then regrouped and solved as sub-blocks [32]. In WZ factorization of nonsingular matrix B, W-
matrix (bow-tie matrix) and Z-matrix (hourglass matrix) - which are also known as interlocking
quadrant factors of B - coexist in the form [6]

and Z =

cC e e o o o o —
® O O O mm
[]
—_
—_
— ® O O O

® O O e O O O e
® O O O e O O e

— @& & o o o o O

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v13i4.3838

Email addresses: olayiwola@umk.edu.my; olayiwola.babarinsa@fulokoja.edu.ng (O. Babarinsa),
azfi.msQumk.edu.my (A.Z. Sofi), hery.iQumk.edu.my (M.A. Ibrahim), hailiza@usm.my (H. Kamarulhaili)

https://www.ejpam.com 1035 © 2020 EJPAM All rights reserved.

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1036

such that
B=WZ. (D

The factorization exists for every nonsingular matrix due to its uniqueness, often with pivoting [33,
37]. Pivoting improves the numerical stability of WZ factorization [34]. Even without pivoting
or reordering, WZ factorization will not fail if the matrix is real symmetric, positive definite or
diagonally dominant, see [21, 43]. The factorization has been applied in scientific computing
- especially in science and engineering - see also [10, 19, 21, 25, 39]. Other variations of WZ
factorization are detailed in [15, 20, 23, 36, 38], but block WZ factorization (or its Zysem) i8
discussed in [7, 9, 26]. The newest and alternative form of WZ factorization with applications is

n-||B||
factorization depends on the matrix size but more on the matrix norms [11]. The matrix norm
of WZ factorization is the Frobenius norm [28]. The Frobenius norm of WZ factorization from
Equation (1) is given as

the WH factorization, see [4, 6]. In addition, the numerical accuracy (—logm HB*WZH) of WZ

1
2

HB*WZ”F: <ZZ|b,‘JW,‘JZ[7/"> . 2)

i=1j=1

Furthermore, WZ factorization proves to be better on Intel processors than on Advanced Micro
Devices (AMD) processors [11]. Even though WZ factorization and LU factorization have sim-

ilar computational complexity with LU factorization - (%n3 + %nz — %n) and WZ factorization -

(%n3 — %n — 3), the WZ factorization still shown to be better than LU factorization (except block
LU factorization) irrespective of the version of MATLAB or the number of processors used [22].
However, for a uniprocessor, WZ factorization does not exhibit any advantage over LU factoriza-
tion since every step performed is in serial [32]. For sparse matrices, LU and WZ factorization
generate approximately similar number of nonzero elements. LU factorization relies on leading
principal submatrices, whereas WZ factorization relies on nonsingular central submatrices. WZ
factorization simultaneously computes two matrix elements (two columns at a time), unlike LU
factorization which computes one column at a time [12]. While LU factorization performs elimi-
nation in serial with n — 1 steps, WZ factorization executes components in parallel with 5 steps if
n is even or % steps if n is odd. LU factorization is often known to be implemented in LAPACK
library to exploit the standard software library architectures [17]. WZ factorization offers paral-
lelization in solving both sparse and dense linear system to enhance performance using OpenMP,
CUDA, BLAS or EDK HW/SW codesign architecture [1, 14]. Then, Yalamov [42] presented
that WZ factorization is faster on computer with a parallel architecture than any other matrix fac-
torization methods. Therefore, WZ factorization has the adaptability to solve linear systems on
Single Instruction, Multiple Data (SIM D) or Multiple Instruction, Multiple Data (MIMD) shared
memory parallel computers or mesh multiprocessors, see [3, 27, 30] and the references therein.
The efficiency of WZ factorization depends on an efficacious use of the memory echelon because
computational cost often relies not only on the total number of arithmetic operations used but also

the data transferring time between different memory levels [9].
121

In WZ factorization, there are Z (n—2k) of 2 x 2 linear systems to be solved which account
k=1

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1037

for the elements in W-matrix and Z-matrix, for k = 1,2, ..., L%J The direct solver of linear sys-
tems in WZ factorization algorithm solely depends on a classical method called Cramer’s rule.
Cramer’s rule solves the 2 x 2 linear systems of WZ factorization under the nonsingularity con-
straint presumed for their determinants [8]. Though Cramer’s rule is assumed to be less practical
due to its setbacks, many modifications have been made on Cramer’s rule to solve simple and
large linear systems, see [5, 29, 41]. Due to round off errors which may become significant on
problems with non-integer coefficients, Moler [35] then demonstrated that Cramer’s rule is inade-
quate even for 2 x 2 linear systems. However, Dunham [18] gave a counter example of 2 x 2 linear
system to show that Cramer’s rule is sufficient. Linear systems, especially 2 x 2 linear equations,
solved by Cramer’s rule can be forward stable or backward stable depending on the conditioning
of the system [31, 40]. Cramer’s rule and Gaussian elimination requires about the same amount
of arithmetic operations for finding the solution of 2 x 2 linear systems, but Cramer’s rule yields
a highly accuracy and stability than Gaussian elimination even with pivoting [16, 29]. For this
reason, Cramer’s rule has been applied to solve the linear systems in WZ factorization for over
three decades. Therefore, in Section 2, we proposed a method to optimize Cramer’s rule. While
in Section 3, we apply the proposed method in WZ factorization on sparse matrices via MATLAB
R2017b and R2019b respectively. Then, the performance time and the matrix norm of optimized
Cramer’s rule and classical Cramer’s rule in WZ factorization and LU factorization are compared
on AMD Ryzen 5 1500X and Intel Core i5-7500 processor each having four cores and 16GB
RAM with standard hardware. Furthermore, we relate Schur complement and matrix group to the
partition of Z-matrix into 2 X 2 block triangular matrices.

2. Solving simple linear systems with optimized Cramer’s rule

A linear system is defined by
Bx =c, 3)

where
det(B) #0, x = [x1,x2,....,x,]T, ¢ =[c1,¢2y...,cn]T, BERY" x,ccR"

Theorem 1. [31][Cramer’s rule] Let Bx = ¢ be an n x n system of linear equation and B ann x n
nonsingular matrix, then the unique solution x = [x,xy, ...,x,|! to the linear system is given by
. det(B,|c)

Xi = W; “4)

where Bj|. is the matrix obtained from coefficient matrix B by substituting the column vector c to
the ith column of B, fori=1,2,...,n.

Let c; be the row sum of matrix B. If the ith column of matrix B is replaced with ¢ to obtain a
new matrix B;., with all other columns in B and B;|., remain the same, for i = 1,2,...,n. Then,

det(B) = det(Bjy.,). (%)

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1038

It is a well-established theorem that if the ith column of matrix B is the difference of the ith
column of matrix D; and the ith column of matrix E;, and all other columns in D and E are equal
to the corresponding columns in B, fori = 1,2, ...,n [2]. Then

det(B) =det(D) —det(E). (6)

Corollary 1. Let Bx = c be an n x n system of linear equation and B an n X n nonsingular matrix
of x, then the ith entry x; of the unique solution x = [x1,x2,...,x,|! to the linear system is given by

L det(Bi—(c+cl))

Xi = W7 (N

where B;_ (.., is the matrix obtained by subtracting the sum of column vector ¢ and c the row
sum of the coefficient matrix from the ith column of B, fori=1,2,....n.

Proof. Let ¢ = c+ ¢y, where c is the column vector and ¢; the row sum of matrix B. If ¢; is
subtracted from the ith column of matrix B, then we can re-write Equation (6) as

det(Bj_,) = det(B) —det(Bj,). (8)

But
det(Bi|cz) - det(Bi|(c+c1)) = det(Bi\c) +d€t(Bi\cl)' ©))

Substitute Equation (5) in Equation (9) to get

det(Bj.,) = det(B;.) +det(B). (10)

Therefore,

det(B;_.,) = det(B) — (det(B;.) +det(B)).
Now,
. det(B;_ ...
X = det(BhCQ) _ e (i—(c+ 1)) (11)
det(B) det(B)

O

The flowchart in Figure 1, the step by step in Algorithm 1, and the MATLAB code of the
algorithm in Listing 1 show the computational steps of Corollary 1.

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1039

Let B be coefficient matrix, ¢ the column vector and x; the set of linear solutions

l

No
Optimized Cramer’s rule cannot be used [«—Is B a square matrix?

Yes

Let ¢; = row sum of B

Compute ¢ =c+cy

Let D; be the ith column of B, for
i=1,2,...,n

Compute E; =D;—c;

Compute x; = — ‘Zf:,((g';

Display x;

Figure 1: Flowchart of an optimized Cramer's rule

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1040

Algorithm 1 An optimized Cramer’s rule

1: procedure
2: B < n x n coefficient matrix
3: ¢ < column vector
4: X; < solutions of linear system
5: foridoln
6: c1 + row sum of B
7 Cr 4—c+
8: D, < ith row of B
9: E; < D;,—c
10: det(E) < determinant of E;
11: det(B) + determinant of B
12: x; < —(det(E)/det(B))
13: end for
14: end procedure
Listing 1: MATLAB code of optimized Carmer's rule.
1 function x=Optimized Cramer's rule(B,c)
2 B=input('matrix B =");
3 c=input('column vector =");
4 n=size(B,1);
5 m=size(B,2);
6 if n"=m
7 Error('The matrix is not square.');
8 x=[1];
9 else
10 detB=det(B);
11 if det(B) =0
12 x=zeros(n,1);
13 cl=sum(B,2) ;
14 c2=c+cl;
15 for j=I:n
16 if j7=1 && j"=n
17 E=[B(:,1:j—1) B(:,j)—c2 B(:,j+1:n)];
18 elseif j==
19 E=[B(:,1)—c2 B(:,2:n)];
20 elseif j==n
21 E=[B(:,1:n—1) B(:,n)—c2];
22 end
23 detE=det(E);
24 x(j)=—(det(E)/detB);
25 end
26 else
27 Error('Matrix B is singular.');
28 x=[];
29 end
30 end

Proposition 1. Let Bx = ¢ be an n X n system of linear equation where B is an n X n non-singular

del(B,-‘C)

matrix of x for the distinct solution of x = [x1,x2,...,x,]T and c the column vector. If x; = et (B)

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1041

det(Bi_(cyc
and x; = —et(d;ti((B;')), then
. det(Bif(c+cl)) o det(Bi\c)
det(B) det(B) ’
where Bj. is the matrix obtained from matrix B by substituting the column vector ¢ to the ith
column of B and B;_ . ., is the matrix obtained by subtracting the sum of column vector ¢ and c\
the row sum of coefficient matrix from the ith column of B, fori =1,2,...,n.

Proof. We begin by substituting Equation (8) to the numerator of Equation (11) to obtain

[det(B) —det (By,,)]

M= det(B)
. [det(B) — det(Bi‘clJrc)]
det(B)
B [det(B) — (det(Bi|Cl) —i—det(B,-‘C))]
B det(B)
Recall that det (B,) = det(B).
Thus,
. det(B,-|C)
YT T der(B)

O

Corollary 1 as well as Theorem 1 indicates if a system is inconsistent or indeterminate with-
out completely solving the systems, unlike other direct solvers. Notwithstanding, the optimized
Cramer’s rule use a few more arithmetic operations than classical Cramer’s rule for higher linear
systems. However, based on our background analysis, the optimized Cramer’s rule, especially for
examples of 2 x 2 well and ill-conditioned linear systems lower than the relative residual mea-
surements of Cramer’s rule. This distinct advantage makes optimized Cramer’s rule suitable for
solving the 2 x 2 linear systems of WZ factorization.

3. Application of optimized Cramer’s rule in WZ factorization

For the WZ factorization algorithm, we obtain the the ith to the (n — 1)th element of the

(i—1)th and (n — i+ 1)th column of W-matrix by computing wl(lz) and wgi)_ ji1 from
(k=1) (k) | (k=1) (k) _ _ k=1
Zeke Wik T Z—igt fWin—k+1 = ik 12
(1)) (-1) ® (12)
Lt 1Wik T Zn—trtpk1Win—k+1 = ~Zin—k+1
which update the elements of Z-matrix from
(k) _ (k=1) (k) _(k=1) = (k) (k—1)
Zij =% Wik T Wink1Zeke) (13)

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1042

and we then proceed similarly for the central submatrices of size (n — 2k) and so on, where k =
1,2,..,|5], i,j=k+1,..,n—k and zg{j) € R, see [9]. We can now re-write Equation (12) in
matrix form as

B w c
(k=1) (k=1) (k) (k=1)
Lk Ln—k+1k Wik | TRk 14
(k=1) (k=1) (k) = (K=1) (14)
hn—k+1 Zn—k+1n—k+1 Win—k+1 “Zin—k+1
If we apply Theorem 1 to derive W-matrix by computing wl(];() and wfl;)_ 1 (from Bw = ¢) with

respect to first and second column of B from Equation (14), we will obtain

k) det (Bl|c)

det (B,
Wl — amd) det(Ba)
b det (B)

: = 15
in—k+1 det (B) ()

The factorization obtained using Cramer’s rule when we grouped and ordered the scalar operations
into matrix-vector operation is the vectorized WZ factorization (VW Z factorization), see [13] for
its MATLAB code.

Furthermore, if Corollary 1 is applied to compute wl(lz) and w' in Equation (14). Then,

in—k+1
_ (k=1) (k=1) _(k=1) _(k=1)
det (B) =2, i {1 yi1%k — Inttb L kZkon—ict 1
_ =1 (k1) (k=1) (k=1) _ _(k=1) _(k=1)
det (Blf(chq)) = = k1 kot t—kt1 T Tkl n—k 1%k Cn—hg | ket 1

+ Zl(ckk_ I)Zik—_kllm—kﬂ + Zg;?l,kzl(c]fn_—l/Lrl + Zfzk—_kl-gl,szlk—_kl-zl,n—k-&-l
Zlei_klﬁl,kzz(iilkLI - Zl(ckk_ I)Z,gli_klll,nfkﬂ
=- Zfzk:k?l,kzz(i;—lk)—s-l + Zr(lk—;l-‘ZI ,n—k-‘rlzl(,];:l)
det (By-(cre1)) = =7k Tkl — Ikt hhom ket T 2k Hh
- Zl(ckl: I)Z;(zk:kl—zl,n—k—«—l - Zi(cl,(;—IIZHZE,I?I) + Zl(ckl: 1)Z§i:1]()+1
+ Ziﬁﬁl,ﬂ/ﬁﬁiﬁﬂ + Z/(ckl: ”foi}lﬁ k41
=z e a Ve

where
o __det (Bieren) W __det(Brerep)
ik det (B) bn—k+1 det (B)
The W°Z° factorization is the factorization obtained from using Corollary 1, where the W-matrix
obtained is referred to as W?-matrix and its Z-matrix as Z°-matrix. The complete MATLAB code
of W°Z°factorization is given in Listing 2.

and w (16)

Listing 2: MATLAB code of W°Z° factorization.

1 function optimizedWZfactorization (B,W,Z)
2 %steps of elimination — from B to Z

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1043

3 B=input('matrix B =");

4 n = size(B, 1);

5 W= zeros(n);

6 for k = 1:ceil ((n—1)/2)

7 k2 =n — k + 1;

8 determinant = B(k,k) = B(k2,k2) — B(k2,k) = B(k,k2);
9

if determinant == 0
10 exitflag = 0;
11 for il = k:k2
12 for i2 = il:k2
13 determinant = B(il ,k) * B(i2,k2) — B(i2,k) = B(il ,k2);
14 if determinant "= 0
15 disp('input matrix cannot be factorized to Z—matrix ")
16 tmp = B(il ,k:k2);
17 B(il ,k:k2) = B(k,k:k2);
18 B(k,k:k2) = tmp;
19 tmp = B(i2,k:k2);
20 B(i2 ,k:k2) = B(k2,k:k2);
21 B(k2,k:k2) = tmp;
22 exitflag = 1;
23 break
24 end
25 end
26 end
27 if exitflag == 0
28 Z = B;
29 return
30 end
31 end
32 %finding elements of W
33 % To compute ith to the (n—1)th element of (i—1)th column of W
34 W(k+1:k2—-1,k)=—(—B(k2,k)*B(k+1:k2—1,k2)+B(k2,k2)«B(k+1:k2—1,k))/determinant;
35 % To compute ith to the (n—1)th element of (n—i+1)th column of W

36 W(k+1:k2—-1,k2)=—(—B(k,k2)*«B(k+1:k2—1,k)+B(k,k)«B(k+1:k2—1,k2))/determinant;
37 for m=1:n

38 W(m,m)=1;
39 W(m, n+l-m) ;
40 end

41 % updating B

42 B(k+1:k2—-1,k) = 0;

43 B(k+1:k2—1,k2) = 0;

44 B(k+1:k2—-1,k+1:k2—-1) = B(k+1:k2—-1,k+1:k2—-1) + W(k+1:k2—-1,k)* B(k,k+1:k2—-1)
45 + W(k+1:k2—-1,k2) = B(k2,k+1:k2—-1);

46 Z = B;

47 end

Besides, if there is no regrouping or ordering of scalar operations into matrix-vector operation then
the factorization is a sequential WZ factorization. For the MATLAB code of WZ factorization, we
replace line 32 to line 44 in Listing 2 with line 1 to line 9 of Listing 3.

Listing 3: MATLAB code of sequential WZ factorization.

1 % finding elements of W

2 % To compute ith to the (n—1)th element of (i—1)th column of W
3 for i=k+1:k2—1

4 W(i k)= (B(k2,k2)*B(i,k)-B(k2,k)*B(i,k2))/determinant;

5 9% To compute ith to the (n—1)th element of (n—i+1)th column of W
6 W(i,k2)=(B(k,k)*B(i,k2)-B(k,k2)=*B(i,k))/determinant;

7 % updating B

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054

8 for j=k+1:k2-1

9 B(i,j)= B(i.,j) + W(i.k)+B(k,j) + W(i,k2)*B(k2,j);

1044

For the computation and analysis, the square sparse matrices used to investigate LU, WZ, VWZ
and W°Z° factorization, in Table 1, 2 and 3, are obtained from The SuiteSparse Matrix Collection.
Table 1 gives the basic information about the sparse matrices, Table 2 and Table 3 illustrate the
performance time and matrix norm of LU, WZ, VWZ and W°Z? factorization on Intel and AMD
processor via MATLAB R2017b and R2019b respectively.

Table 1: Basic information of the sparse matrices.

Matrix name | Matrix size | Nonzero entries Group Year kind
Trefethen_500 500 3,996 JGD_Trefethen 2008 Combinatorial problem
tub1000 1000 97,645 Bai 1994 | Computational fluid dynamic problem
comsol 1500 7,996 Langemyr 2002 Structural problem
0lm2000 2000 12,349 Bai 1994 | Computational fluid dynamic problem
cryg2500 2500 174,296 Bai 1996 Materials problem
nasa2910 2910 66,528 Nasa 1995 Structural problem
thermal 3456 28,505 Brunetiere 2000 Thermal problem
ACT1V §g2000 4000 219,024 TAMU _SmartGridCenter | 2018 Power network problem
bcsstk28 4410 29,600 HB 1984 Structural problem
rdb5000 5000 262,943 Bai 1994 | Computational fluid dynamic problem
s3rmg4m1 5489 54,471 Cylshell 1997 Structural problem
Cc-32 5975 51,480 Schenk IBMNA 2006 Optimization problem
n3c6 —b7 6435 340,200 JGD_Homology 2008 Combinatorial problem
Kuu 7102 834,226 MathWorks 2006 Structural problem
fp 7548 834,226 MKS 2006 Electromagnetics problem
besstk38 8032 355,460 Boeing 1995 Structural problem
Kaufhold 8765 42,471 MathWorks 2006 Counter example problem
nd3k 9000 3,279,690 ND 2003 2D\ 3D problem
nemethl9 9506 818,302 Nemeth 1999 Quantum chemistry problem
cryg10000 10000 818,302 Bai 1996 Materials problem
bundlel 10581 818,302 Lourakis 2006 Computer graphics problem
wing_nodal 10937 15,0976 DIMACS10 2000 Undirected graph

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1045
Table 2: Performance time of LU, WZ, VWZ and W?Z° factorization on Intel and on AMD processor.
MATLAB R2017b MATLAB R2019b
Matrix name Intel I AMD Intel AMD
LU wzZ VWZ weze LU WZ VWZ weze LU wzZ VWZ weze LU WZ VWZ weze
Trefethen500 | 8.62 746 701 852 1946 1142 590 852 475 756 275 378 862 746 401 622
1ub1000 1555 1364 7.04 1543 3972 2175 1342 1543 8.37 7.85 528 593 1555 1364 7.04 10.45
comsol 4502 3908 2002 3533 7375 5920 2842 3533 | 2923 2346 1282 1584 4512 3908 2002 28581
0lm2000 10372 8982 3451 7905 13264 113014 4341 7905 | 5515 4664 2157 3473 10372 8982 3451 5873
cryg2500 188.78 158.3 53.22 144.15 263.13 213.23 69.87 144.15 117.23 87.15 40.86 56.55 188.78 158.3 53.22 121.18
nasa2910 | 48257 40315 20518 36312 63957 53832 27652 363.02 | 39042 23205 15565 18642 48257 40315 20518 318.87
thermal 920.17 85785 31261 813.50 132455 102913 47045 81350 | 72243 47342 281.64 33153 929.17 857.85 31261 629.45
ACTIVSg2000 1431.20 1125.16 506.07 1796.92 2569.15 2183.07 876.19 1796.92 1438.57 937.45 419.76 623.53 1431.20 1125.16 506.07 981.01
besstk28 | 266112 1836.67 59937 2062.15 401345 285811 71992 206215 | 1927.61 112335 58645 813.09 266112 183667 59937 113584
/dbS000 | 345922 265992 783.84 229248 S63151 393291 93934 229248 | 207375 1937.15 7675 123630 345922 2659.92 783.84 1689.98
s3rmg4m1 4832.34 3832.18 950.92 4354.84 7937.43 6122.84 2295.32 4354.84 4132.98 2786.10 823.72 1454.84 4832.34 3832.18 950.92 2006.14
c-32 6489.65 5389.14 127351 396515 900358 720477 213484 3965.15 | 524742 3927.54 120731 2153.65 6489.65 5380.14 127351 251575
M3c6—b7 | 812671 698175 189301 460321 1036948 8112.60 3025.18 460321 | 662145 413273 186256 286352 812671 698175 1893.01 363171
Kuu 10265.34 8265.48 2973.15 7331.64 12698.81 10249.27 4297.12 7331.64 8457.54 5891.14 2793.18 3936.61 10265.34 8265.48 2973.15 5713.94
fp 1282335 10523.83 4789.81 939345 1673916 1333205 662094 9393.45 | 11023.35 911351 5227.07 613701 1282335 1052383 4789.81 770327
besstk38 | 1409662 120965 552745 1076270 1813461 1559949 6819.17 1076270 | 1238920 986425 586755 6935.55 14096.62 120965 5527.45 9124.52
Kaufhold 17917.45 1561731 8534.12 14297.41 21260.27 17917.44 9389.54 14297.41 | 17016.72 13983.48 7098.30 9214.53 1791745 15617.31 8534.12 12885.85
nd3k 2468545 2068548 12387.52 2029753 2835127 2500771 15235.02 20297.53 | 22707.63 18573.15 1105345 13847.45 2468545 2068548 12387.52 16813.89
nemeth19 | 25034.62 2203434 13087.82 18897.14 2648215 23917.64 13683.88 18897.14 | 23025.75 1898747 11353.52 1428234 2503462 2203434 13087.82 17147.86
crygl0000 | 2881828 2531819 1643045 20297.84 2863451 25637.24 1502685 20297.84 | 25463.54 2198445 1344825 1715722 2881828 2531819 1643945 19884.64
bundlel | 3172422 2872446 1933435 2503150 3512877 3107254 18843.52 2503150 | 30784.45 27738.55 1739571 21912.56 3172422 28724.46 1933435 2274655
wing_nodal 34465.18 3146575 22135.19 27815.14 39581.06 36685.84 22348.11 27815.14 | 31263.52 28149.16 17981.03 22101.33 34465.18 31465.75 22135.19 26698.74
Table 3: Matrix norms of LU, WZ, VWZ and W°Z° factorization on MATLAB R2019b.
MATLAB R2017b MATLAB R2019b
Matrix name | Frobenius norm Tntel AMD Tntel T AMD
[B—LUT [B—Wz] [B—VWZ] [B—WZ] [B—LU| [B—WZ[[B—VWZ] [B—W'Z'[| [B—LU] [B-WZ|] [B—VWZ] [B—W'Z'[[B—LU] [B—WZ] [B_VWZ] [B—WZ
Tre fethen_500 4.39E+04 1.96E-20 1.83E-20 1.14E-20 0.98E-20 1.63E-19 1.13E-19 1.49E-19 0.82E-19 1.46E-21 0.63E-21 0.16E-21 0.08E-21 1.98E-20 1.62E-20 1.24E-20 1.01E-20
1ub1000 3.86E+06 2.68E-20 2.31E-20 1.79E-20 1.72E-20 2.65E-19 2.37E-19 1.94E-19 1.48E-19 2.23E-21 2.01E-21 1.46E-21 1.08E-21 4.56E-20 4.23E-20 3.81E-20 3.51E-20
comsol 11.02 3.75E-20 3.53E-20 2.94E-20 2.19E-20 3.62E-19 3.27E-19 2.31E-19 2.24E-19 2.84E-21 2.56E-21 2.32E-21 2.12E-21 6.67E-20 6.23E-20 5.91E-20 5.57E-20
0lm2000 T.12E+06 5.62E-20 5.40E-20 5.03E-20 4.31E-20 5.752E-18 5.43E-18 5.15E-18 4.33E-18 4.92E-21 4.11E-21 4.03E-21 3.91E-21 8.75E-20 5.43E-20 5.15E-20 4.33E-20
cryg2500 4.29E+04 8.51E-20 8.32E-20 7.27E-20 6.36E-20 8.54E-18 8.25E-18 7.28E-18 6.41E-18 6.72E-21 6.31E-21 6.01E-21 5.79E-21 1.54E-19 0.25E-19 0.28E-19 0.41E-19
nasa2910 3.60E+08 9.79E-20 9.48E-20 8.96E-20 8.48E-20 9.93E-18 9.25E-18 8.15E-18 8.73E-18 8.69E-21 8.19E-21 791E-21 7.75E-21 3.93E-19 2.25E-19 1.15E-19 0.73E-19
thermal 40.03 1.02E-19 0.98E-19 0.82E-19 0.25E-19 1.13E-18 0.78E-18 0.63E-18 0.41E-18 1.52E-20 1.30E-20 1.89E-20 0.68E-20 8.13E-19 8.78E-19 7.63E-19 6.41E-19
ACTIV §g2000 2.64E+04 2.57E-19 2.29E-19 1.08E-19 0.30E-19 3.25E-18 2.74E-18 1.27E-18 0.69E-18 3.27E-20 2.95E-20 1.72E-20 1.30E-20 9.25E-19 9.74E-19 8.27E-19 8.69E-19
besstk28 1.05E+09 4.92E-19 4.53E-19 291E-19 2.22E-19 5.19E-17 4.63E-17 2.84E-17 2.07E-17 4.52E-20 4.11E-20 3.87E-20 3.52E-20 1.39E-18 0.61E-18 0.29E-18 0.02E-18
rdb5000 5.28E+03 6.21E-19 6.06E-19 4.17E-19 3.19E-19 7.35E-17 6.782E-17 4.15E-17 3.26E-17 6.24E-20 5.68E-20 5.57E-20 5.02E-20 3.75E-18 3.43E-18 3.11E-18 2.76E-18
s3rmgdm1 1.12E+05 8.79E-19 8.53E-19 7.42E-19 6.61E-19 8.87E-17 8.24E-17 7.53E-17 6.55E-17 7.39E-20 6.87E-20 6.42E-20 5.81E-20 7.2E-18 6.93E-18 6.73E-18 6.21E-18
Cc-32 5.72E+04 8.47E-19 B8.27E-19 6.68E-19 6.03E-19 8.75E-17 8.31E-17 6.82E-17 6.31E-17 9.07E-20 8.24E-20 7.98E-20 6.53E-20 8.82E-18 8.24E-18 7.82E-18 6.67E-18
n3c6 — b7 226.89 9.98E-19 9.74E-19 8.83E-19 8.06E-19 9.92E-17 9.51E-17 8.91E-17 8.69E-17 9.58E-20 9.13E-20 8.38E-20 7.73E-20 9.13E-18 8.76E-18 8.43E-18 8.01E-18
Kuu 1.38E+03 1.13E-18 1.01E-18 0.98E-18 0.77E-18 1.93E-16 1.71E-16 1.44E-16 0.68E-16 1.76E-19 1.49E-19 1.11E-19 0.83E-19 9.97E-18 9.45E-18 8.99E-18 8.84E-18
fr 3.41E+10 2.29E-18 2.05E-18 1.59E-18 1.37E-18 2.82E-16 2.12E-16 1.82E-16 1.47E-16 2.56E-19 2.17E-19 1.76E-19 1.27E-19 0.92E-17 0.58E-17 0.35E-17 0.07E-17
besstk38 5.69E+11 3.36E-18 3.11E-18 2.71E-18 2.36E-18 4.32E-16 3.20E-16 2.98E-16 2.73E-16 3.63E-19 3.41E-19 2.91E-19 248E-19 1.67E-17 1.23E-17 1.11E-17 0.88E-17
Kaufhold 6.84E+16 4.28E-18 4.06E-18 3.13E-18 2.75E-18 5.17E-16 4.62E-16 3.47E-16 2.57E-16 5.38E-19 5.12E-19 4.82E-19 4.67E-19 3.10E-17 2.81E-17 2.52E-17 2.03E-17
nd3k 5.01E+03 6.12E-18 5.98E-18 5.21E-18 4.84E-18 6.64E-16 5.841E-16 5.31E-16 4.68E-16 5.60E-19 5.35E-19 5.29E-19 5.07E-19 4.81E-17 4421E-17 421E-17 4.09E-17
nemeth19 63.50 7.02E-18 6.86E-18 6.12E-18 5.77E-18 7.78E-16 6.67E-16 6.29E-16 5.08E-16 6.82E-19 6.54E-19 6.09E-19 5.81E-19 6.23E-17 6.01E-17 5.79E-17 5.53E-17
cryg10000 3.42E+05 7.54E-18 7.32E-18 6.71E-18 6.16E-18 7.38E-16 7.15E-16 6.94E-16 6.74E-16 8.76E-19 8.42E-19 7.81E-19 7.37E-19 T.67E-17 7.18E-17 6.92E-17 6.68E-17
bundlel 2.36E+13 9.01E-18 8.83E-18 8.11E-18 7.71E-18 9.26E-16 8.21E-16 8.52E-16 7.82E-16 9.86E-19 9.26E-19 8.82E-19 8.51E-19 8.54E-17 8.24E-17 8.07E-17 7.81E-17
wing_nodal 388.56 9.54E-18 9.24E-18 8.31E-18 8.08E-18 1.81E-15 1.70E-15 1.34E-15 1.11E-15 1.64E-18 1.34E-18 1.21E-18 1.08E-18 9.86E-17 9.68E-17 9.37E-17 9.12E-17

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1046

it MATLAB R2017b on AMD 10t MATLAB R201%b on AMD
T T ? T
-
251 -z
Ol B
o 9, —byr
£ £
iIh
Ih
05 05)
Pa— | U |
il an an) an 0 ey il m n 0 o o 0
Warix sze (N) Mai size (N)
MATLAB R2017b on AMD processor. MATLAB R2019b on AMD processor.
L MATLAB R20{7b on el " MATLAB R20185 on el
T T T

U

25l -
iR o=z
B vz B
2o H
E : -y
fup 8
¢ i
i
i
05)
[0S
) 1 s — I
0 200 40 6000 B0 10000 12000 0 200 40 6000 B0 10000 12000
Matrnsize (N] Matrnsize (N]
MATLAB R2017b on Intel processor. MATLAB R2019b on Intel processor.

Figure 2: Performance time of LU, WZ, VWZ and W°Z? factorization on AMD and Intel processor via MATLAB
R2017b and R2019b respectively.

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054

=0T AD- LU

—+—RBAID-LU

RolTIe-LU

—— %LU

Parformance time ()

05 7
1
0 20 A 6000 8000 10000 12000
Matix size (N)
LU on AMD and Intel processor.
1ot
== ROTAD- W 3
/
2 / ol
I —
_ —
sk 4
e
£
;
: E—
f
¢
51 1
:
05 1
0 200 4000 8000 8000 10000 12000

Mari size (N)

on AMD and Intel processor.

via MATLAB R2017b and R2019b.

Performance time (8)

Parformance time ()

W

—=RATAID-WE

—+RUIBAID-Z

RO -HE

—— R0t

2 0

20
Veticsize (N)

L

1000

120

WZ on AMD and Intel processor.

W2 factorizaion on AND & el via MATLAB R2017b and R015b.
T T

—RAD-WE

R A0z

RO ie-WZ

S Rispine- W2

a0 4

6000
Matixsize (N)

a0

10000

12000

W°Z° on AMD and Intel processor.
Figure 3: Combined performance time of LU, WZ, VWZ and W°Z° factorization on AMD and Intel processor

1047

VWZ

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020),

1 Norm on Intel via MATLAB R2018b
T T
B
186
—
14
|Bwz|
12|
gz
£
:
s
08
4
02
U — 1 L 1
0 200 A 6000 8000 10000 12000
Matix size (N)
Norms on Intel via MATLAB R2019b.
, Norm on AMD via MATLAB R2013b
T T
)
09
ul |
-z
e iz
x05
H
-
(K] g
(Al
>
P -y W " L L L
200 400 6000 8000 10000 12000
Matixsize (N}

Norms on AMD via MATLAB R2019b.

1035-1054

[BLU|
09}
k- -
07 18w
08
E itz
g
:
x 05|
i
3
04]
03
02
ol
PN S W W w—
0 200 400 000 8000 10000 12000
Matix size (N)
Norms on Intel via MATLAB R2017b.
10 Norm on AMD via MATLAB R2017h
° T T
B
181
18 —— BWZ|
|Bwz|
gz
=
08
05
ul
02F
R e

200 400 6000 8000 10000 12000
Matisize)

Norms on AMD via MATLAB R2017b.

1048

Figure 4: Matrix norms of LU, WZ, VWZ and W°Z° factorization on AMD and Intel processor via MATLAB
R2017b and R2019b respectively.

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1049

In Figure 2, the sequential WZ factorization, on average for both MATLAB R2017b and
2019b, is about 22% faster than LU factorization on Intel processor and about 17% times on
AMD processor. The most preferred factorization algorithm according to the performance time is
VWZ factorization while LU factorization is the worst. However, W°Z° factorization in general is
about 28% faster than WZ factorization and 41% than LU factorization. The performance time of
W?Z° factorization approaches WZ factorization as the version of MATALB improves. The per-
formance time of all the factorization algorithms increase exponentially with increase in matrix
size. The version of MATLAB has minimal influence on the algorithms but the performance time
significantly depends on the size of the matrix and architecture of the algorithm. Nevertheless,
the higher the version of MATLAB the better the result on performance time. Kuu and n3c6 — b7
have the highest matrix dimension difference of 667. Even though Kaufhold and nd3k have the
least matrix dimension difference of 235, Kaufhold has 1.3% nonzero elements of nd3k. The
surge in performance time of nd3k is due to the number of nonzero elements in the matrix for the
factorization to utilize. nd3k has more than 4% of nonzero elements while other sparse matrices
in Table 1 have less than 2% nonzero elements.

Now, Figure 3 shows that the improved version of MATLAB contributes to better performance
time of each algorithm. The algorithms on MATLAB R2017b spend more time in execution than
on MATLAB R2019b irrespective of the type of processor used. The figure also shows that the the
time to execute the algorithms via MATLAB R2017b and MATLAB R2019b on AMD processor
is longer than on Intel processor.

Figure 4 displays the matrix norms for AMD and Intel on MATLAB R2017b and R2019b
respectively. Our background analysis shows that the matrix norms of LU, WZ, VWZ and W°Z°
factorization are influenced by the architecture of the algorithm used. Due to minimal round-off
error, the matrix norms of W°Z? factorization are better than LU, WZ and VW Z factorization. The
LU factorization has the worst algorithm for matrix norm. The matrix norms of all the factoriza-
tion algorithms increase as the size of their matrices increase. Furthermore, the accuracy of our
algorithms based on the relative residual depends more on the Frobenius norm than the matrix
size. In Table 3, comsol, thermal, n3c6 — b7, nemethl9 and wing_nodal have their Frobenius
norms below 500 and their numerical accuracy below 25. Kaufhold with 0.06% nonzero entries
has the highest Frobenius norm among the given matrices.

Proposition 2. Schur complement exists for every Zgysem-

Proof. For the existence of Z-matrix, the necessary and sufficient condition for WZ factoriza-
tion is that matrix B must be centro-nonsingular (see [37]). First, let Z-matrix of even order being

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1050

factorized from nonsingular matrix B be

O =+ -+ ak’% Bk,%+l Bk,n
Zi P zZis
Ok - Bk,l
Z=1| 17
Yik - Oy
Zon P o,
I Yoj oo 'ym% 5n,%+1 5}17” |

where k =1,2, ..., %; [l =n—k+ 1. Then, the determinant of Z-matrix is

Ok - Bk,l
det(Z) = det :
Yk o O 1<k< s I=n—k+1
5
=11 (6ui0s—YiaBrs);—p_si1 7O (18)
k=1

Next, partition Equation (17) into Zgyem of 2 X 2 triangular block matrices ([Z,~7 j]?j:1> with each

block containing 5 X 5 matrix to have

V4 Z
Zsystem: |: Ll 12 :| .

2oy Zop

If each 2 x 2 triangular block matrix is singular (i.e Z; 12 > = Z1 273 1), then Zy e 18 not invertible
which contradicts Equation (18). Hence, there exists at least two nonsingular triangular block
matrices in Zyenm. If Z; 1 is invertible as well as Z; », then the Schur complement of the block Z; ;
N Zgysrem 18 given as

/%) _ZZ,IZ;IZIQ- (19)

The determinant of Equation (19) is nonsingular because Z; » — Z271Z[}Z1,2 is a lower triangular
invertible matrix (see [9]) and

det(Zzyz — ZZ71Z1_7;Z172)
det(ZLl)

£0

This implies

del‘(ZSyS,em) = del‘(ZlJ)del‘(Zz?z — Z27lzl_7112172).

O. Babarinsa et al. / Eur. J. Pure Appl. Math, 13 (4) (2020), 1035-1054 1051

Hence, the Schur complement of Zjy.,, depends on the existence of nonsingular Z-matrix.]

Corollary 2. Z.nn is a matrix group of degree 2 over R.

Proof. Let GL(n,R) be the matrix group of order n over R satisfying matrix multiplication
and M, (R) the size of the matrix. Let the matrix group of Zy.n be GLz (2,R) of degree 2 over
R defined as

Zi1 Z
GLz (2,R) = {zs: [Z“ Z“ } s det(Zs) = 211200 — Z1270, ;éo}
2.1 422

Since GLz (2,R) is an invertible matrix based on Proposition 2, then there exists an inverse
such that its identity is I, (that is LhZ, = Z;). To see that GLz (2,R) is closed under matrix
multiplication, we let Zs(k)vzs(m)azs(n) € M>(R) = Z; such that Zs(k) = {ki’j}, Zs(m) = {m,’J} and
Zy(n) = {nij}. Then the associativity holds as

(Z() * Zs(m)) * Zy(ny = ((ki) * (mi ;) * (ni)

O]

Corollary 3. If GLz,(2,R) is the matrix group of Zsygem with degree 2 over R, then GLz(n,R) is
the matrix group of Z-matrix with degree n over R .

Proof. Let GLz(n,R) be a matrix group of Z-matrix of order n over R and GLz (2,R) be the
matrix group of Zyge, of order 2 over R. From Proposition 2, Zy., is the 2 x 2 triangular block
matrices partitioned from Z-matrix of order n. Since Zgy., is a matrix group, based on Corollary
2, in which Zgy.m 1s a subset Z-matrix. Conspicuously Z-matrix has axioms of a matrix group
which is invertible and closed under matrix multiplication with property of associativity. O

4. Conclusions

The advantage of optimized Cramer’s rule over classical Cramer’s rule to solve 2 x 2 linear
systems in WZ factorization is to obtain good floating points and to minimize round-off error
without loss of generality in the coefficient matrix of linear systems. Although, the optimized

REFERENCES 1052

Cramer’s rule has high performance time than VWZ factorization and low performance time than
WZ factorization, the method produces better matrix norms than all other factorization algorithms,
irrespective of the processors used. We passionately advocate that W°Z factorization should be
compared with LU, WZ and VWZ factorization on shared memory parallel computers or mesh
multiprocessors.

Acknowledgements

This research is funded by Ministry of Higher Education Malaysia (FRGS RACE), Grant
number R/FRGS/A0100/01258 A/003/2019/00670.

References

[1] D. Ahmed and N. Askar. Parallelize and analysis lu factorization and quadrant interlocking
factorization algorithm in openmp. Journal of Duhok University, 20(1):46-53, 2018.

[2] A. Aitken. Determinants and matrices. Interscience Publishers, New York, 1956.

[3] R. Asenjo, M. Ujaldon, and E. Zapata. Parallel wz factorization on mesh multiprocessors.
Microprocessing and Microprogramming, 38(5):319-326, 1993.

[4] O. Babarinsa, M. Arif, and H. Kamarulhaili. Potential applications of hourglass matrix and
its quadrant interlocking factorization. ASM Science Journal, 12(5S):28-38, 2019.

[5] O. Babarinsa and H. Kamarulhaili. Modified cramer’s rule and its application to solve linear
systems in wz factorization. MATEMATIKA, 35(1):25-38, 2018.

[6] O. Babarinsa and H. Kamarulhaili. Quadrant interlocking factorization of hourglass matrix.
In AIP Conference Proceedings, volume 1974, pages 030009:1-9. AIP Publishing, 2018.

[7]1 A. Benaini and D. Laiymani. Generalized wz factorization on a reconfigurable machine.
Farallel Algorithms Appl., 3(4):261-269, 1994.

[8] M. Brunetti and A. Renato. Old and new proofs of cramer’s rule. Appl. Math. Sci.,
8(133):6689-6697, 2014.

[9] B. Bylina. The block wz factorization. J. Comput. Appl. Math., 331:119-132, 2018.

[10] B. Bylina and J. Bylina. Influence of preconditioning and blocking on accuracy in solving
markovian models. Int. J. Appl. Math. Comput. Sci., 19(2):207-217, 2009.

[11] B. Bylina and J. Bylina. Mixed precision iterative refinement techniques for the wz fac-
torization. In Federated Conference on Computer Science and Information Systems, pages
425-431. IEEE, 2013.

[12] B. Bylina and J. Bylina. The wz factorization in matlab. Federated Conference on Computer
Science and Information Systems, pages 561-568. IEEE, 2014.

REFERENCES 1053

[13] Beata Bylina and JarosLaw Bylina. Gpu-accelerated wz factorization with the use of the

cublas library. In Federated Conference on Computer Science and Information System, pages
509-515. IEEE, 2012.

[14] Beata Bylina and JarosLaw Bylina. The parallel tiled wz factorization algorithm for multi-
core architectures. Int. J. Appl. Math. Comput. Sci, 29(2):407-419, 2019.

[15] M. Chawla and R. Khazal. A new wz factorization for parallel solution of tridiagonal sys-
tems. Int. J. Comput. Math., 80(1):123-131, 2003.

[16] L. Debnath. A brief historical introduction to matrices and their applications. Infternat. J.
Math. Ed. Sci. Tech., 45(3):360-377, 2013.

[17] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek. Achieving numerical accuracy and high
performance using recursive tile lu factorization with partial pivoting. Concurr. Comp-Pract.
E., 26(7):1408-1431, 2014.

[18] C. Dunham. Cramer’s rule reconsidered or equilibration desirable. ACM SIGNUM Newslet-
ter, 15(4):9-9, 1980.

[19] O.Efremides, M. Bekakos, and D. Evans. Implementation of the generalized wz factorization
on a wavefront array processor. Int. J. Comput. Math., 79(7):807-815, 2002.

[20] D. Evans. The choleski qif algorithm for solving symmetric linear systems. Int. J. Comput.
Math., 72(3):283-288, 1999.

[21] D. Evans. The qif singular value decomposition method. Int. J. Comput. Math., 79(5):637—
645, 2002.

[22] D. Evans and R. Abdullah. The parallel implicit elimination (pie) method for the solution of
linear systems. Parallel Algorithms Appl., 4(1):153-162, 1994.

[23] D. Evans and A. Hadjidimos. A modification of the quadrant interlocking factorisation par-
allel method. Int. J. Comput. Math., 8(2):149-166, 1980.

[24] D. Evans and M. Hatzopoulos. A parallel linear system solver. Int. J. Comput. Math.,
7(3):227-238, 1979.

[25] D. Evans and G. Oksa. Parallel solution of symmetric positive definite toeplitz systems.
Farallel Algorithms Appl., 12(4):297-303, 1997.

[26] E. Golpar-Raboky. A new approach for computing wz factorization. Appl. Appl. Math.,
7(2):571-584, 2012.

[27] E. Golpar-Raboky. Abs algorithms for integer wz factorization. Malaysian J. Math. Sci.,
8(1):69-85, 2014.

[28] Golub Gene H and Van Loan Charles F. Matrix computations. Johns Hopkins University
Press, Baltimore MD., 1996.

REFERENCES 1054

[29] K. Habgood and I. Arel. A condensation-based application of cramer’s rule for solving
large-scale linear systems. J. Discrete Algorithms, 10:98-109, 2012.

[30] M. Hatzopoulos and N. Missirlis. Advantages for solving linear systems in an asynchronous
environment. J. Comput. Appl. Math., 12:331-340, 1985.

[31] N. Higham. Accuracy and stability of numerical algorithms. Siam, New York, 2002.

[32] P. Huang, A. MacKay, and D. Teng. A hardwaresoftware codesign of wz factorization to
improve time to solve matrices. In Canadian Conference on Electrical and Computer Engi-
neering, pages 1-5. IEEE, 2010.

[33] M. Kaps and M. Schlegl. A short proof for the existence of the wz-factorisation. Parallel
Comput., 4(2):229-232, 1987.

[34] R. Khazal. Existence and stability of choleski qif for symmetric linear systems. Int. J.
Comput. Math., 79(9):1013-1025, 2002.

[35] C. Moler. Cramer’s rule on 2-by-2 systems. ACM SIGNUM Newsletter, 9(4):13-14, 1974.

[36] S. Rao. Parallel solution of the linear systems by an alternate quadrant interlocking factor-
ization method. Parallel Algorithms Appl., 4(2):1-20, 1994.

[37] S. Rao. Existence and uniqueness of wz factorization. Parallel Comput., 23(8):1129-1139,
1997.

[38] S. Rao and R. Kamra. A hybrid parallel algorithm for large sparse linear systems. Numer.
Linear Algebra Appl., 25(6):¢2210, 2018.

[39] K. Rhofi, M. Ameur, and A. Radid. Double power method iteration for parallel eigenvalue
problem. Int. J. Pure Appl. Math., 108(4):945-955, 2016.

[40] F Stummel. Perturbation theory for evaluation algorithms of arithmetic expressions. Math.
Comput., 37(156):435-473, 1981.

[41] O.Ufuoma. A new and simple method of solving large linear systems based on cramer’s rule
but employing dodgson’s condensation. In Proceedings of the World Congress on Engineer-
ing and Computer Science, volume I, pages 23-25, 2013.

[42] P. Yalamov and D. Evans. The wz matrix factorisation method. Parallel Comput.,
21(7):1111-1120, 1995.

[43] Y. Zhong, F. Wu, and Z. Luo. Wz factorization for a kind of special structured matrix.
Journal of National University of Defense Technology, 32(4):157-164, 2010.

