EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 13, No. 4, 2020, 873-892
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Self-orthogonal Codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ and $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$

Lucky Erap Galvez ${ }^{1, *}$, Rowena Alma Betty ${ }^{1}$, Fidel Nemenzo ${ }^{1}$
${ }^{1}$ Institute of Mathematics, University of the Philippines Diliman, Quezon City, Philippines

Abstract

In this paper, we establish a mass formula for Euclidean and Hermitian self-orthogonal codes over the finite ring $\mathbb{F}_{q}+u \mathbb{F}_{q}$, where \mathbb{F}_{q} is the finite field of order q and $u^{2}=0$. We also establish a mass formula for Euclidean self-orthogonal codes over the finite ring $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$, with $u^{3}=0$ and characteristic of \mathbb{F}_{q} is odd. These mass formulas are used to give a classification of Euclidean and Hermitian self-orthogonal codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$ and $\mathbb{F}_{3}+u \mathbb{F}_{3}$ of small lengths.

2020 Mathematics Subject Classifications: 94B05
Key Words and Phrases: Codes over rings, self-orthogonal codes, mass formula

1. Introduction

Self-dual codes have rich mathematical theory and are of great interest to researchers because many of the best known codes are self-dual. A fundamental problem in coding theory is the classification of self-dual codes, that is, an enumeration of a complete set of representatives for the equivalence classes of self-dual codes. In the past years, self-dual codes over finite fields have been extensively studied and classified up to various lengths (see [8, 11]). Since the discovery in 1994 [7] that certain non-linear binary codes can be viewed as linear codes over the ring \mathbb{Z}_{4}, there has been much interest in the study of self-dual codes over various finite rings.

A key problem is to establish an explicit formula for the number of distinct self-dual codes of length n over a ring R, given by

$$
\sum_{C} \frac{\left|E_{n}\right|}{|\operatorname{Aut}(C)|}
$$

where C runs through the set of all inequivalent self-dual codes of length n over R, E_{n} is the full group of transformations allowed in defining the equivalence for code C and $\operatorname{Aut}(C)$ is the automorphism group. This is called the mass formula, and is an important computational tool for the classification of such codes. Mass formulas for self-dual codes

[^0]over finite rings rings such as \mathbb{Z}_{4} and $\mathbb{F}_{q}+u \mathbb{F}_{q}$ were given in [6], while [3] gave the mass formula for self-dual codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$.

In this paper, we focus on the more general mass formula for self-orthogonal codes, which will include the mass formula for self-dual codes as a special case. Mass formulas for self-orthogonal codes over $\mathbb{Z}_{p^{2}}$, where p is a prime, were given in [2], while the mass formula for even codes over \mathbb{Z}_{8}, i.e., self-orthogonal codes whose codewords have Euclidean weights divisible by 16 , was computed in [1].

Codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ and $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$ have an invariant called type, denoted by $\left\{k_{0}, k_{1}\right\}$ and $\left\{k_{0}, k_{1}, k_{2}\right\}$, respectively, where k_{0}, k_{1} and k_{2} are nonnegative integers. The type of a code is determined by its residue and torsion codes. To obtain the mass formula, we will determine the number of self-orthogonal codes of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ with given residue and torsion, and compute the number of self-orthogonal codes of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$, for odd q, with given u^{2}-Residue and torsion. We also give a classification of Euclidean and Hermitian self-orthogonal codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$ and $\mathbb{F}_{3}+u \mathbb{F}_{3}$, up to some short lengths.

2. Codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$

We begin with some basic concepts about codes over rings. A linear code C of length n over a ring R is a submodule of the R^{n} module. A generator matrix for C is a matrix $G \in M_{k \times n}(R)$ whose rows generate the code. For a matrix $G \in M_{k \times n}(R)$, we denote by $R^{k} G$ the code $\left\{a G \mid a \in R^{k}\right\}$ of length n over R.

Let q be a power of a prime and \mathbb{F}_{q} denote the finite field of q elements. Let R_{1} be the commutative ring $\mathbb{F}_{q}[u] /\left(u^{2}\right)=\mathbb{F}_{q}+u \mathbb{F}_{q}$, where $u^{2}=0$. This finite chain ring is a local ring with unique maximal ideal (u) and residue field $\mathbb{F}_{q}+u \mathbb{F}_{q} /(u)=\mathbb{F}_{q}$. Every code C of length n over R_{1} is permutation-equivalent to a code with the following generator matrix,

$$
\left[\begin{array}{cc}
I_{k_{0}} & A+u B \tag{1}\\
0 & u D
\end{array}\right],
$$

where $I_{k_{0}}$ is the $k_{0} \times k_{0}$ identity matrix, $A, B \in M_{k_{0} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)$ and $D \in M_{k_{1} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)$. Such a code C is said to be of type $\left\{k_{0}, k_{1}\right\}$. The code C is said to be free if $k_{1}=0$. The type is the analog of the dimension of a code over a finite field. Such a code C contains $q^{2 k_{0}+k_{1}}$ codewords.

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be elements of R_{1}^{n}. Define the Euclidean inner product on R_{1}^{n} as $\langle x, y\rangle_{E}=\sum_{i=1}^{n} x_{i} y_{i}$. Now, let $z=a+u b \in R_{1}$ and define $\bar{z}=a-u b$. The Hermitian inner product on R_{1}^{n} is defined as $\langle x, y\rangle_{H}=\sum_{i=1}^{n} x_{i} \overline{y_{i}}$. The set

$$
C^{\perp}=\left\{x \in R_{1}^{n} \mid\langle x, y\rangle=0 \forall y \in C\right\}
$$

is called the Euclidean or Hermitian dual of C, depending on which inner product $\langle x, y\rangle$ is used. The code C is said to be Euclidean or Hermitian self-orthogonal if $C \subseteq C^{\perp}$. If $C=C^{\perp}$, then we say C is Euclidean or Hermitian self-dual.

Let C be a code over R_{1}. The code $\left\{v \in \mathbb{F}_{q}^{n} \mid \exists w \in \mathbb{F}_{q}^{n}, v+u w \in C\right\}$ is called the residue code of C and is denoted by $\operatorname{res}(C)$. The code $\left\{v \in \mathbb{F}_{q}^{n} \mid u v \in C\right\}$ is called the
torsion code of C and is denoted by tor (C). If C has generator matrix (1), then $\operatorname{res}(C)$ and $\operatorname{tor}(C)$ are $\left[n, k_{0}\right]$ and $\left[n, k_{0}+k_{1}\right]$ codes over \mathbb{F}_{q}, with generator matrices

$$
\left[\begin{array}{ll}
I_{k_{0}} & A
\end{array}\right] \text { and }\left[\begin{array}{cc}
I_{k_{0}} & A \\
0 & D
\end{array}\right]
$$

respectively. Clearly, $\operatorname{res}(C) \subseteq \operatorname{tor}(C)$ and $|C|=q^{2 k_{0}+k_{1}}=|\operatorname{res}(C)||\operatorname{tor}(C)|$.
The following lemma shows the relationship between the residue and torsion codes of a self-orthogonal code over R_{1}. The proof is given in [6].

Lemma 1. Let C be a (Euclidean or Hermitian) self-orthogonal code over R_{1}. Then
(i) $\operatorname{res}(C)$ is self-orthogonal, i.e. $\operatorname{res}(C) \subseteq \operatorname{res}(C)^{\perp}$;
(ii) $\operatorname{tor}(C) \subseteq \operatorname{res}(C)^{\perp}$.

In particular, if C is (Euclidean or Hermitian) self-dual, $\operatorname{tor}(C)=\operatorname{res}(C)^{\perp}$.

3. Codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ with prescribed residue and torsion

Let C_{1} be a code of length n over \mathbb{F}_{q} with dimension k_{0} and generator matrix

$$
\left[\begin{array}{ll}
I_{k_{0}} & A \tag{2}
\end{array}\right]
$$

and C_{2} a code of length n over \mathbb{F}_{q} of dimension $k_{0}+k_{1}$ and has generator matrix

$$
\left[\begin{array}{cc}
I_{k_{0}} & A \tag{3}\\
0 & D
\end{array}\right]
$$

where $A \in M_{k_{0} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)$, and $D \in M_{k_{1} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)$ is of full row rank.
Lemma 2. If C is a code of length n over R_{1} with $\operatorname{res}(C)=C_{1}$ and $\operatorname{tor}(C)=C_{2}$, then there exists a matrix $N \in M_{k_{0} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)$ such that the matrix

$$
\left[\begin{array}{cc}
I_{k_{0}} & A+u N \tag{4}\\
0 & u D
\end{array}\right]
$$

is a generator matrix of C. Such matrix N is unique if C is a free code.
Proof. Since the residue and torsion codes of C are C_{1} and C_{2}, respectively, then for some $M_{1} \in M_{k_{0}}\left(\mathbb{F}_{q}\right)$ and $M_{2} \in M_{k_{0} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)$,

$$
R_{1}^{k_{0}+k_{1}}\left[\begin{array}{cc}
I_{k_{0}}+u M_{1} & A+u M_{2} \\
0 & u D
\end{array}\right] \subseteq C
$$

By an elementary row operation,

$$
\begin{aligned}
C & \supseteq R_{1}^{k_{0}+k_{1}}\left[\begin{array}{cc}
I_{k_{0}}-u M_{1} & 0 \\
0 & I_{k_{1}}
\end{array}\right]\left[\begin{array}{cc}
I_{k_{0}}+u M_{1} & A+u M_{2} \\
0 & u D
\end{array}\right] \\
& =R_{1}^{k_{0}+k_{1}}\left[\begin{array}{cc}
I_{k_{0}} & A+u\left(M_{2}-M_{1} A\right) \\
0 & u D
\end{array}\right] .
\end{aligned}
$$

Taking $N=M_{2}-M_{1} A$, we have

$$
|C| \geq\left|R_{1}^{k_{0}+k_{1}}\left[\begin{array}{cc}
I_{k_{0}} & A+u N \\
0 & u D
\end{array}\right]\right|=q^{2 k_{0}+k_{1}}=\left|C_{1}\right|\left|C_{2}\right|=|C| .
$$

Thus, C has a generator matrix (4).
Suppose C is a free code and there exist $N_{1}, N_{2} \in M_{k_{0} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)$ such that

$$
R_{1}^{k_{0}}\left[\begin{array}{ll}
I & A+u N_{1}
\end{array}\right]=R_{1}^{k_{0}}\left[\begin{array}{ll}
I & A+u N_{2}
\end{array}\right] .
$$

Then $A+u N_{1} \equiv A+u N_{2}\left(u^{2}\right)$, which implies that $N_{1} \equiv N_{2}(u)$.
For the remainder of this section, assume that $C_{1} \subseteq C_{2} \subseteq C_{1}^{\perp}$. Then

$$
\begin{align*}
I_{k_{0}}+A A^{T} & \equiv 0(u), \tag{5}\\
D A^{T} & \equiv 0(u) . \tag{6}
\end{align*}
$$

It follows from (5) that A is of full row rank.
Denote by $\operatorname{Sym}_{k_{0}}\left(\mathbb{F}_{q}\right)$ the set of $k_{0} \times k_{0}$ symmetric matrices, Alt $_{k_{0}}\left(\mathbb{F}_{q}\right)$ the set of $k_{0} \times k_{0}$ alternating matrices, and $\operatorname{Skew}_{k_{0}}\left(\mathbb{F}_{q}\right)$ the set of $k_{0} \times k_{0}$ skew-symmetric matrices over \mathbb{F}_{q}.

Lemma 3. Let $A \in M_{m \times n}\left(\mathbb{F}_{q}\right)$ where rank $A=m$. We define the mappings

$$
\begin{aligned}
\Psi_{A}: M_{m \times n}\left(\mathbb{F}_{q}\right) & \longrightarrow M_{m}\left(\mathbb{F}_{q}\right) \\
N & \longmapsto A N^{T}+N A^{T},
\end{aligned}
$$

and

$$
\begin{aligned}
\Phi_{A}: M_{m \times n}\left(\mathbb{F}_{q}\right) & \longrightarrow M_{m}\left(\mathbb{F}_{q}\right) \\
N & \longmapsto A N^{T}-N A^{T} .
\end{aligned}
$$

Then

$$
\Psi_{A}\left(M_{m \times n}\left(\mathbb{F}_{q}\right)\right)= \begin{cases}\operatorname{Sym}_{m}\left(\mathbb{F}_{q}\right), & \text { if } q \text { is odd } \\ \operatorname{Alt}_{m}\left(\mathbb{F}_{q}\right), & \text { if } q \text { is even },\end{cases}
$$

and the image of the map Φ_{A} is $\operatorname{Skew}_{m}\left(\mathbb{F}_{q}\right)$.

Proof. The image of Ψ_{A} was shown in [2]. Since rank $A=m, A\left(M_{n \times m}\left(\mathbb{F}_{q}\right)\right)=M_{m}\left(\mathbb{F}_{q}\right)$. Indeed,

$$
\begin{aligned}
\Phi_{A}\left(M_{k_{0} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)\right) & =\left\{A N^{T}-N A^{T} \mid N \in M_{k_{0} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)\right\} \\
& =\left\{S-S^{T} \mid S \in M_{k_{0}}\left(\mathbb{F}_{q}\right)\right\} \\
& =\operatorname{Skew}_{k_{0}}\left(\mathbb{F}_{q}\right)
\end{aligned}
$$

Lemma 4. The number of free Euclidean self-orthogonal codes over R_{1} with residue code C_{1} is

$$
q^{k_{0}\left(2 n-3 k_{0}+\epsilon\right) / 2}
$$

where $\epsilon=-1$ if q is odd and $\epsilon=1$ if q is even.
The number of free Hermitian self-orthogonal codes over R_{1} with residue code C_{1} is

$$
q^{k_{0}\left(2 n-3 k_{0}+1\right) / 2}
$$

Proof. If C is a free code with residue code C_{1}, then by Lemma $2, C$ has generator $\operatorname{matrix}\left[\begin{array}{cc}I_{k_{0}} & A+u N\end{array}\right]$, for some unique $N \in M_{k_{0} \times\left(n-k_{0}\right)}\left(\mathbb{F}_{q}\right)$. Observe that C is Euclidean self-orthogonal if and only if

$$
I_{k_{0}}+A A^{T}+u\left(A N^{T}+N A^{T}\right) \equiv 0\left(u^{2}\right)
$$

Hence, the number of free Euclidean self-orthogonal codes C with residue code C_{1} is

$$
\begin{equation*}
\left|\left\{N \in M_{k_{0} \times\left(n-k_{0}\right)} \mid I_{k_{0}}+A A^{T}+u\left(A N^{T}+N A^{T}\right) \equiv 0\left(u^{2}\right)\right\}\right| \tag{7}
\end{equation*}
$$

By (5), we have $A N^{T}+N A^{T} \equiv 0(u)$.Therefore, (7) becomes

$$
\left|\left\{N \in M_{k_{0} \times\left(n-k_{0}\right)} \mid A N^{T}+N A^{T} \equiv 0(u)\right\}\right|=\left|\operatorname{ker} \Psi_{A}\right|=\frac{\left|M_{k_{0} \times\left(n-k_{0}\right)}\right|}{\left|\operatorname{Im} \Psi_{A}\right|}
$$

Thus, we have

$$
\left|\operatorname{ker} \Psi_{A}\right|= \begin{cases}q^{\frac{k_{0}\left(2 n-3 k_{0}-1\right)}{2}}, & \text { if } q \text { is odd } \\ q^{\frac{k_{0}\left(2 n-3 k_{0}+1\right)}{2}}, & \text { if } q \text { is even }\end{cases}
$$

by Lemma 3.
Similarly, C is Hermitian self-orthogonal if and only if

$$
I_{k_{0}}+A A^{T}+u\left(A N^{T}-N A^{T}\right) \equiv 0\left(u^{2}\right)
$$

Hence, by (5) and Lemma 3, the number of free Hermitian self-orthogonal codes C with residue code C_{1} is

$$
\left|\left\{N \in M_{k_{0} \times\left(n-k_{0}\right)} \mid A N^{T}-N A^{T} \equiv 0(u)\right\}\right|=\left|\operatorname{ker} \Phi_{A}\right|=q^{\frac{k_{0}\left(2 n-3 k_{0}+1\right)}{2}}
$$

Define the sets

$$
\begin{aligned}
X & =\left\{C \mid C \subseteq R_{1}^{n}, \text { type }\left\{k_{0}, 0\right\}, C \subseteq C^{\perp}, \operatorname{res}(C)=C_{1}\right\} \text { and } \\
X^{\prime} & =\left\{C^{\prime} \mid C^{\prime} \subseteq R_{1}^{n}, C^{\prime} \subseteq C^{\perp}, \operatorname{res}\left(C^{\prime}\right)=C_{1}, \operatorname{tor}\left(C^{\prime}\right)=C_{2}\right\},
\end{aligned}
$$

where self-orthogonality is either in the Euclidean or Hermitian sense.
Lemma 5. If $C^{\prime} \in X^{\prime}$, then $\left|\left\{C \in X \mid C \subseteq C^{\prime}\right\}\right|=q^{k_{0} k_{1}}$.
Proof. By Lemma 2, C^{\prime} has a generator matrix (4). Consider the map

$$
\begin{aligned}
\psi: M_{k_{0} \times k_{1}}\left(\mathbb{F}_{q}\right) & \longrightarrow\left\{C \in X \mid C \subseteq C^{\prime}\right\} \\
M & \longmapsto R_{1}^{k_{0}}[I \quad A+u(N+M D)]
\end{aligned}
$$

Clearly, ψ is well-defined. We will show that ψ is bijective. If $M_{1}, M_{2} \in M_{k_{0} \times k_{1}}\left(\mathbb{F}_{q}\right)$ such that $\psi\left(M_{1}\right)=\psi\left(M_{2}\right)$, then

$$
R_{1}^{k_{0}}\left[I_{k_{0}} A+u\left(N+M_{1} D\right)\right]=R_{1}^{k_{0}}\left[I_{k_{0}} A+u\left(N+M_{2} D\right)\right]
$$

which means $A+u\left(N+M_{1} D\right) \equiv A+u\left(N+M_{2} D\right)\left(u^{2}\right)$. Therefore $N+M_{1} D \equiv N+$ $M_{2} D(u)$. Since D is of full row rank, we have $M_{1} \equiv M_{2}(u)$. Hence, ψ is injective.

Suppose $C \in X$ and $C \subseteq C^{\prime}$. By Lemma $2, C=R_{1}^{k_{0}}\left[I_{k_{0}} A+u F\right]$, for some matrix F. The inclusion $C \subseteq C^{\prime}$ implies that

$$
A+u F \equiv A+u(N+M D)\left(u^{2}\right)
$$

for some matrix M. So $F \equiv N+M D(u)$, which shows that ψ is surjective, and hence, bijective. Therefore,

$$
\left|\left\{C \in X \mid C \subseteq C^{\prime}\right\}\right|=\left|M_{k_{0} \times k_{1}}\left(\mathbb{F}_{q}\right)\right|=q^{k_{0} k_{1}}
$$

Lemma 6. If $C \in X$, then there exists a unique code $C^{\prime} \in X^{\prime}$ such that $C \subseteq C^{\prime}$.
 by Lemma 2. Let C_{0}^{\prime} be a code with generator matrix

$$
\left[\begin{array}{cc}
I_{k_{0}} & A+u N \\
0 & u D
\end{array}\right]
$$

The code C_{0}^{\prime} satisfies res $\left(C_{0}^{\prime}\right)=C_{1}$ and $\operatorname{tor}\left(C_{0}^{\prime}\right)=C_{2}$.
Clearly, $C \subseteq C_{0}^{\prime}$. Since $C \in X,(6)$ implies C_{0}^{\prime} is self-orthogonal and hence, $C_{0}^{\prime} \in X^{\prime}$. Suppose $C \subseteq C^{\prime}$ for some $C^{\prime} \in X^{\prime}$. Because C^{\prime} has torsion code C_{2}, by Lemma 2, $R_{1}^{k_{1}}[0 u D] \subseteq C^{\prime}$ and so $C_{0}^{\prime} \subseteq C^{\prime}$. Note that $\left|C_{0}^{\prime}\right|=\left|C_{1}\right|\left|C_{2}\right|=q^{2 k_{0}+k_{1}}=\left|C^{\prime}\right|$. Hence, $C_{0}^{\prime}=C^{\prime}$.

Next, we count self-orthogonal codes C with given residue code and torsion code.

Theorem 1. Let C_{1} and C_{2} be codes of length n over \mathbb{F}_{q} where $C_{1} \subseteq C_{2} \subseteq C_{1}^{\perp}$. If $\operatorname{dim} C_{1}=k_{0}$ and $\operatorname{dim} C_{2}=k_{0}+k_{1}$, then
(i) the number of Euclidean self-orthogonal codes C of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ with $\operatorname{res}(C)=C_{1}$ and $\operatorname{tor}(C)=C_{2}$ is

$$
q^{k_{0}\left(2 n-3 k_{0}-2 k_{1}+\epsilon\right) / 2}
$$

where $\epsilon=-1$ if q is odd and $\epsilon=1$ if q is even, and
(ii) the number of Hermitian self-orthogonal codes C of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ with $\operatorname{res}(C)=C_{1}$ and $\operatorname{tor}(C)=C_{2}$ is

$$
q^{k_{0}\left(2 n-3 k_{0}-2 k_{1}+1\right) / 2}
$$

Proof. We may assume without loss of generality that C_{1} and C_{2} are codes with generator matrices (2) and (3), respectively. Then we have to compute $\left|X^{\prime}\right|$. By Lemma 5 and Lemma 6, we have

$$
\begin{aligned}
q^{k_{0} k_{1}}\left|X^{\prime}\right| & =\sum_{C^{\prime} \in X^{\prime}}\left|\left\{C \in X \mid C \subseteq C^{\prime}\right\}\right| \\
& =\sum_{C \in X}\left|\left\{C^{\prime} \in X^{\prime} \mid C \subseteq C^{\prime}\right\}\right| \\
& =\sum_{C \in X} 1 \\
& =|X|
\end{aligned}
$$

The results follow from Lemma 4.

4. Mass formula for self-orthogonal codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$

Let $\sigma_{q}\left(n, k_{0}\right)$ denote the number of distinct self-orthogonal codes over \mathbb{F}_{q} of length n and dimension $k_{0}($ see $[9,10])$. We define the Gaussian coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ for $k \leq n$ as

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)}
$$

which gives the number of subspaces of dimension k contained in an n-dimensional vector space over \mathbb{F}_{q}.

We now have the following mass formula for self-orthogonal codes over R_{1}.

Theorem 2. Let $M_{q}\left(n, k_{0}, k_{1}\right)_{E}$ and $M_{q}\left(n, k_{0}, k_{1}\right)_{H}$ denote the number of distinct Euclidean and Hermitian self-orthogonal codes of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ of type $\left\{k_{0}, k_{1}\right\}$, respectively. We have

$$
M_{q}\left(n, k_{0}, k_{1}\right)_{E}=\sigma_{q}\left(n, k_{0}\right)\left[\begin{array}{c}
n-2 k_{0} \\
k_{1}
\end{array}\right]_{q} q^{k_{0}\left(2 n-3 k_{0}-2 k_{1}+\epsilon\right) / 2}
$$

where $\epsilon=-1$ if q is odd and $\epsilon=1$ if q is even, and

$$
M_{q}\left(n, k_{0}, k_{1}\right)_{H}=\sigma_{q}\left(n, k_{0}\right)\left[\begin{array}{c}
n-2 k_{0} \\
k_{1}
\end{array}\right]_{q} q^{k_{0}\left(2 n-3 k_{0}-2 k_{1}+1\right) / 2} .
$$

Proof. If C is a self-orthogonal code of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ of type $\left\{k_{0}, k_{1}\right\}$, then by setting $C_{1}=\operatorname{res}(C)$ and $C_{2}=\operatorname{tor}(C)$, we see that C_{1} and C_{2} satisfies Lemma 1. There are $\sigma_{q}\left(n, k_{0}\right)$ self-orthogonal codes C_{1} of length n over \mathbb{F}_{q}. Given C_{1}, there are $\left[\begin{array}{c}n-2 k_{0} \\ k_{1}\end{array}\right]_{q}$ codes C_{2} such that $C_{1} \subseteq C_{2} \subseteq C_{1}^{\perp}$. Then the result follows from Theorem 1 .

We have the following mass formula for self-dual codes over R_{1} as a direct consequence of the previous theorem.

Corollary 1. The number of distinct Euclidean self-dual codes of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ is given by

$$
\begin{equation*}
\sum_{0 \leq k_{0} \leq\left\lfloor\frac{n}{2}\right\rfloor} \sigma_{q}\left(n, k_{0}\right) q^{k_{0}\left(k_{0}+\epsilon\right) / 2} \tag{8}
\end{equation*}
$$

where $\epsilon=-1$ if q is odd and $\epsilon=1$ if q is even, and the number of distinct Hermitian self-dual codes of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ is given by

$$
\begin{equation*}
\sum_{0 \leq k_{0} \leq\left\lfloor\frac{n}{2}\right\rfloor} \sigma_{q}\left(n, k_{0}\right) q^{k_{0}\left(k_{0}+1\right) / 2} . \tag{9}
\end{equation*}
$$

Proof. Note that the number of distinct Euclidean self-dual codes and the number of distinct Hermitian self-dual codes of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ are given by

$$
\sum_{0 \leq k_{0} \leq\left\lfloor\frac{n}{2}\right\rfloor} M_{q}\left(n, k_{0}, n-2 k_{0}\right)_{E}, \text { and } \sum_{0 \leq k_{0} \leq\left\lfloor\frac{n}{2}\right\rfloor} M_{q}\left(n, k_{0}, n-2 k_{0}\right)_{H},
$$

respectively.
In [6, Theorem 3], Gaborit establishes the mass formula for Hermitian self-dual codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$, but gives the formula for Euclidean self-dual codes instead. The formula (9) corrects this.

Next, we establish another formula for the number of distinct Euclidean self-orthogonal codes when the given torsion is self-orthogonal.

Corollary 2. Suppose q is odd. The number of distinct Euclidean self-orthogonal codes of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ of type $\left\{k_{0}, k_{1}\right\}$ with self-orthogonal torsion is

$$
\tilde{M}_{q}\left(n, k_{0}, k_{1}\right)_{E}=\left[\begin{array}{c}
k_{0}+k_{1} \\
k_{0}
\end{array}\right]_{q} \sigma_{q}\left(n, k_{0}+k_{1}\right) q^{k_{0}\left(2 n-3 k_{0}-2 k_{1}-1\right) / 2}
$$

Proof. Let C_{1} and C_{2} be self-orthogonal codes where $\operatorname{dim} C_{1}=k_{0}, \operatorname{dim} C_{2}=k_{0}+k_{1}$ and $C_{1} \subseteq C_{2}$. By Theorem 2, we have

$$
\begin{aligned}
\tilde{M}_{q}\left(n, k_{0}, k_{1}\right)_{E} q^{-k_{0}\left(2 n-3 k_{0}-2 k_{1}-1\right) / 2} & =\sum_{C_{2} \subseteq C_{2}^{\perp}}\left|\left\{C_{1} \mid C_{1} \subseteq C_{2}\right\}\right| \\
& =\left[\begin{array}{c}
k_{0}+k_{1} \\
k_{0}
\end{array}\right]_{q}\left|\left\{C_{2} \mid C_{2} \subseteq C_{2}^{\perp}\right\}\right| \\
& =\left[\begin{array}{c}
k_{0}+k_{1} \\
k_{0}
\end{array}\right]_{q} \sigma_{q}\left(n, k_{0}+k_{1}\right) .
\end{aligned}
$$

This corollary will be useful in our mass formula computations on later chapters.

5. Classification of self-orthogonal codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}$

Using Theorem 2, we classify Euclidean and Hermitian self-orthogonal codes over $\mathbb{F}_{2}+$ $u \mathbb{F}_{2}$ and $\mathbb{F}_{3}+u \mathbb{F}_{3}$, of given type for small lengths. Note that two codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$ are equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) multiplying certain coordinates by $1+u$. On the other hand, two Euclidean self-orthogonal codes over $\mathbb{F}_{3}+u \mathbb{F}_{3}$ are equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) multiplying certain coordinates by 2 , and two Hermitian self-orthogonal codes over $\mathbb{F}_{3}+u \mathbb{F}_{3}$ are equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) multiplying certain coordinates by r, where $r \in\{2,1+u, 1+2 u, 2+u, 2+2 u\}$.

To illustrate, we classify Euclidean self-orthogonal codes over $\mathbb{F}_{3}+u \mathbb{F}_{3}$ of length 4 and type $\{2,0\}$. Let C_{1} and C_{2} be inequivalent Euclidean self-orthogonal codes over $\mathbb{F}_{3}+u \mathbb{F}_{3}$ of length 4 and type $\{2,0\}$ with generator matrices

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 2 \\
0 & 1 & 2 & 1
\end{array}\right] \text { and }\left[\begin{array}{cccc}
1 & 0 & 2+2 u & 2+u \\
0 & 1 & 2+u & 1+u
\end{array}\right],
$$

respectively. The order of their automorphism groups are 48 and 24, respectively. Hence,

$$
\sum_{j=1}^{2} \frac{\left|E_{4}\right|}{\left|\operatorname{Aut}\left(C_{j}\right)\right|}=\frac{2^{4} \cdot 4!}{48}+\frac{2^{4} \cdot 4!}{24}=8+16=24 .
$$

From Theorem 2,

$$
M_{3}(4,2,0)_{E}=\sigma_{3}(4,2)\left[\begin{array}{c}
4-2 \cdot 2 \\
0
\end{array}\right]_{3} 3^{2(8-6-0-1) / 2}=8 \cdot 1 \cdot 3=24 .
$$

Therefore, there are two Euclidean self-orthogonal codes of length 4 and type $\{2,0\}$ over $\mathbb{F}_{3}+u \mathbb{F}_{3}$, up to equivalence.

We note that Euclidean self-orthogonal and Hermitian self-orthogonal codes coincide over $\mathbb{F}_{2}+u \mathbb{F}_{2}$, as well as in codes over $\mathbb{F}_{3}+u \mathbb{F}_{3}$ of type $\left\{0, k_{1}\right\}$.

Table 1 gives the number of inequivalent Euclidean self-orthogonal codes over $\mathbb{F}_{2}+$ $u \mathbb{F}_{2}$ of lengths 2 up to 7 , while Table 2 gives the number of inequivalent Euclidean and Hermitian self-orthogonal codes over $\mathbb{F}_{3}+u \mathbb{F}_{3}$ of lengths 2 up to 6 , for each type. Note that the code of length 1 with generator matrix $[u]$ is a Euclidean self-orthogonal and Hermitian self-orthogonal code over $\mathbb{F}_{q}+u \mathbb{F}_{q}$. Therefore, there is a self-orthogonal code for any length n, since one can just form a direct sum of this length 1 code. Our classification of selforthogonal codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$ agrees with the enumeration in [5] for self-dual codes (codes of type $\left\{k_{0}, n-2 k_{0}\right\}$) up to length $n=7$. Generators and the order of the automorphism group of each code in Table 1 and Table 2 may be requested by the interested reader from the authors. All computer calculations in this paper were done with the help of Magma[4].

Table 1: The number of inequivalent self-orthogonal codes of lengths $2 \leq n \leq 7$ over $\mathbb{F}_{2}+u \mathbb{F}_{2}$

$\left\{n, k_{0}, k_{1}\right\}$	Number of Codes	$\left\{n, k_{0}, k_{1}\right\}$	Number of Codes	$\left\{n, k_{0}, k_{1}\right\}$	Number of Codes
$\{2,1,0\}$	1	$\{5,2,1\}$	2	$\{6,0,6\}$	1
$\{2,0,1\}$	2	$\{5,0,1\}$	5	$\{7,1,0\}$	12
$\{2,0,2\}$	1	$\{5,0,2\}$	10	$\{7,1,1\}$	54
$\{3,1,0\}$	2	$\{5,0,3\}$	10	$\{7,1,2\}$	100
$\{3,1,1\}$	1	$\{5,0,4\}$	5	$\{7,1,3\}$	73
$\{3,0,1\}$	3	$\{5,0,5\}$	1	$\{7,1,4\}$	24
$\{3,0,2\}$	3	$\{6,1,0\}$	9	$\{7,1,5\}$	3
$\{3,0,3\}$	1	$\{6,1,1\}$	29	$\{7,2,0\}$	43
$\{4,1,0\}$	4	$\{6,1,2\}$	36	$\{7,2,1\}$	74
$\{4,1,1\}$	5	$\{6,1,3\}$	16	$\{7,2,2\}$	40
$\{4,1,2\}$	2	$\{6,1,4\}$	3	$\{7,2,3\}$	5
$\{4,2,0\}$	2	$\{6,2,0\}$	19	$\{7,3,0\}$	22
$\{4,0,1\}$	4	$\{6,2,1\}$	18	$\{7,3,1\}$	5
$\{4,0,2\}$	6	$\{6,2,2\}$	5	$\{7,0,1\}$	7
$\{4,0,3\}$	4	$\{6,3,0\}$	4	$\{7,0,2\}$	23
$\{4,0,4\}$	1	$\{6,0,1\}$	6	$\{7,0,3\}$	43
$\{5,1,0\}$	6	$\{6,0,2\}$	16	$\{7,0,4\}$	43
$\{5,1,1\}$	13	$\{6,0,3\}$	22	$\{7,0,5\}$	23
$\{5,1,2\}$	10	$\{6,0,4\}$	16	$\{7,0,6\}$	7
$\{5,1,3\}$	2	$\{6,0,5\}$	6	$\{7,0,7\}$	1
$\{5,2,0\}$	6				

Table 2: The number of inequivalent Euclidean and Hermitian self-orthogonal codes of lengths $2 \leq n \leq 6$ over $\mathbb{F}_{3}+u \mathbb{F}_{3}$

$\left\{n, k_{0}, k_{1}\right\}$	Number of Codes Euclidean		$\left\{n, k_{0}, k_{1}\right\}$	Number of Codes	
Euclidean	Hermitian				
$\{2,1,0\}$	0	0	$\{5,2,1\}$	2	1
$\{2,0,1\}$	2	2	$\{5,0,1\}$	5	5
$\{2,0,2\}$	1	1	$\{5,0,2\}$	12	12
$\{3,1,0\}$	2	1	$\{5,0,3\}$	12	12
$\{3,1,1\}$	1	1	$\{5,0,4\}$	5	5
$\{3,0,1\}$	3	3	$\{5,0,5\}$	1	1
$\{3,0,2\}$	3	3	$\{6,1,0\}$	12	5
$\{3,0,3\}$	1	1	$\{6,1,1\}$	57	27
$\{4,1,0\}$	4	2	$\{6,1,2\}$	64	34
$\{4,1,1\}$	6	4	$\{6,1,3\}$	20	13
$\{4,1,2\}$	1	1	$\{6,1,4\}$	2	2
$\{4,2,0\}$	2	1	$\{6,2,0\}$	22	8
$\{4,0,1\}$	4	4	$\{6,2,1\}$	18	9
$\{4,0,2\}$	7	7	$\{6,2,2\}$	4	3
$\{4,0,3\}$	4	4	$\{6,3,0\}$	0	0
$\{4,0,4\}$	1	1	$\{6,0,1\}$	6	6
$\{5,1,0\}$	6	3	$\{6,0,2\}$	20	20
$\{5,1,1\}$	19	11	$\{6,0,3\}$	31	31
$\{5,1,2\}$	10	7	$\{6,0,4\}$	20	20
$\{5,1,3\}$	1	1	$\{6,0,5\}$	6	6
$\{5,2,0\}$	4	2	$\{6,0,6\}$	1	1

6. Codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$, where q is odd

For the rest of this paper, let R_{2} be the commutative $\operatorname{ring} \mathbb{F}_{q}[u] /\left(u^{3}\right)=\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$, where $u^{3}=0$ and q is odd. We will only consider Euclidean inner product.

A code C of length n over R_{2} is permutation-equivalent to a code with generator matrix

$$
\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} B_{2} \tag{10}\\
0 & u I_{k_{1}} & u D_{1}+u^{2} D_{2} \\
0 & 0 & u^{2} F_{2}
\end{array}\right]
$$

where $F_{2} \in M_{k_{2} \times\left(n-k_{0}-k_{1}\right)}\left(\mathbb{F}_{q}\right)$ and $A_{0}, B_{0}, B_{1}, B_{2}, D_{1}, D_{2}$ are matrices of appropriate sizes over \mathbb{F}_{q}. We define the torsion codes of C as follows:

$$
\begin{gathered}
\operatorname{tor}_{0}(C)=\left\{v \in \mathbb{F}_{q}^{n} \mid \exists w, z \in \mathbb{F}_{q}^{n}, v+u w+u^{2} z \in C\right\} \text { and } \\
\operatorname{tor}_{i}(C)=\left\{v \in \mathbb{F}_{q}^{n} \mid u^{i} v \in C\right\}, \text { for } i=1,2
\end{gathered}
$$

The code $\operatorname{tor}_{0}(C)$ is also called the residue code of C. Observe that $\operatorname{tor}_{0}(C) \subseteq \operatorname{tor}_{1}(C) \subseteq$ $\operatorname{tor}_{2}(C)$. If C has generator matrix (10), then the residue code $\operatorname{tor}_{0}(C)$ has dimension k_{0} and generator matrix

$$
\left[\begin{array}{lll}
I_{k_{0}} & A_{0} & B_{0} \tag{11}
\end{array}\right],
$$

tor $_{1}(C)$ has dimension $k_{0}+k_{1}$ and generator matrix

$$
\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0} \tag{12}\\
0 & I_{k_{1}} & D_{1}
\end{array}\right]
$$

and $\operatorname{tor}_{2}(C)$ has dimension $k_{0}+k_{1}+k_{2}$ and generator matrix

$$
\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0} \tag{13}\\
0 & I_{k_{1}} & D_{1} \\
0 & 0 & F_{2}
\end{array}\right]
$$

where F_{2} is of full row rank. The code C is of type $\left\{k_{0}, k_{1}, k_{2}\right\}$ and

$$
|C|=\left|\operatorname{tor}_{0}(C)\right|\left|\operatorname{tor}_{1}(C)\right|\left|\operatorname{tor}_{2}(C)\right|=q^{3 k_{0}+2 k_{1}+k_{2}} .
$$

Suppose C is self-orthogonal. Then

$$
\begin{aligned}
I_{k_{0}}+A_{0} A_{0}^{T}+B_{0} B_{0}^{T}+u\left(B_{0} B_{1}^{T}+B_{1} B_{0}^{T}\right) & \\
+u^{2}\left(B_{0} B_{2}^{T}+B_{1} B_{1}^{T}+B_{2} B_{0}^{T}\right) & \equiv 0\left(u^{3}\right) \\
u\left(A_{0}+B_{0} D_{1}^{T}\right)+u^{2}\left(B_{1} D_{1}^{T}+B_{0} D_{2}^{T}\right) & \equiv 0\left(u^{3}\right) \\
u^{2}\left(B_{0} F_{2}^{T}\right) & \equiv 0\left(u^{3}\right) \\
u^{2}\left(I_{k_{1}}+D_{1} D_{1}^{T}\right) & \equiv 0\left(u^{3}\right)
\end{aligned}
$$

which give the following:

$$
\begin{align*}
I_{k_{0}}+A_{0} A_{0}^{T}+B_{0} B_{0}^{T} & \equiv 0(u) \tag{14}\\
B_{0} B_{1}^{T}+B_{1} B_{0}^{T} & \equiv 0(u) \tag{15}\\
B_{0} B_{2}^{T}+B_{1} B_{1}^{T}+B_{2} B_{0}^{T} & \equiv 0(u) \tag{16}\\
A_{0}+B_{0} D_{1}^{T} & \equiv 0(u) \tag{17}\\
B_{1} D_{1}^{T}+B_{0} D_{2}^{T} & \equiv 0(u) \tag{18}\\
F_{2} B_{0}^{T} & \equiv 0(u) \tag{19}\\
I_{k_{1}}+D_{1} D_{1}^{T} & \equiv 0(u) . \tag{20}
\end{align*}
$$

From (14), $\operatorname{tor}_{0}(C)$ is self-orthogonal and by (14), (17) and (20), we have

$$
\operatorname{tor}_{1}(C) \subseteq \operatorname{tor}_{1}(C)^{\perp},
$$

that is, $\operatorname{tor}_{1}(C)$ is self-orthogonal. Moreover, by (14), (17) and (19) we have

$$
\operatorname{tor}_{0}(C) \subseteq \operatorname{tor}_{2}(C)^{\perp}
$$

We will introduce another type of residue for a code over R_{2}.
Definition 1. Let C be a code over R_{2}. The code over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ obtained from C by reduction modulo u^{2} is called the u^{2}-Residue of C and will be denoted by $\operatorname{Res}(C)$.

It is easy to see that a generator matrix for $\operatorname{Res}(C)$ is

$$
\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1} \\
0 & u I_{k_{1}} & u D_{1}
\end{array}\right] .
$$

It is also clear that $\operatorname{res}(\operatorname{Res}(C))=\operatorname{tor}_{0}(C), \operatorname{tor}(\operatorname{Res}(C))=\operatorname{tor}_{1}(C)$, and $\operatorname{Res}(C)$ is of type $\left\{k_{0}, k_{1}\right\}$.

If C is self-orthogonal, by (14), (15) and (17) we have

$$
\operatorname{Res}(C) \subseteq \operatorname{Res}(C)^{\perp},
$$

that is, $\operatorname{Res}(C)$ is self-orthogonal of type $\left\{k_{0}, k_{1}\right\}$. Also, since

$$
\operatorname{tor}(\operatorname{Res}(C))=\operatorname{tor}_{1}(C) \subseteq \operatorname{tor}_{2}(C)
$$

and

$$
\operatorname{tor}_{2}(C) \subseteq \operatorname{tor}_{0}(C)^{\perp}=\operatorname{res}(\operatorname{Res}(C))^{\perp}
$$

we have

$$
\operatorname{tor}(\operatorname{Res}(C)) \subseteq \operatorname{tor}_{2}(C) \subseteq \operatorname{res}(\operatorname{Res}(C))^{\perp}
$$

which gives the following lemma.
Lemma 7. Let C be a self-orthogonal code over R_{2} of type $\left\{k_{0}, k_{1}, k_{2}\right\}$ and let $C_{1}=\operatorname{Res}(C)$ and $C_{2}=\operatorname{tor}_{2}(C)$. Then
(i) $C_{1} \subseteq C_{1}^{\perp}$,
(ii) $\operatorname{tor}\left(C_{1}\right) \subseteq \operatorname{tor}\left(C_{1}\right)^{\perp}$, and
(iii) $\operatorname{tor}\left(C_{1}\right) \subseteq C_{2} \subseteq \operatorname{res}\left(C_{1}\right)^{\perp}, \operatorname{dim} C_{2}=k_{0}+k_{1}+k_{2}$.

7. Codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$ with prescribed u^{2}-Residue and torsion

For the rest of this chapter, we let C_{1} be a self-orthogonal code over R_{1} of type $\left\{k_{0}, k_{1}\right\}$ such that $\operatorname{tor}\left(C_{1}\right)$ is self-orthogonal. We assume without loss of generality that C_{1} has generator matrix

$$
G_{1}=\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1} \\
0 & u I_{k_{1}} & u D_{1}
\end{array}\right] .
$$

Since C_{1} is self-orthogonal, we have

$$
\begin{aligned}
I_{k_{0}}+A_{0} A_{0}^{T}+B_{0} B_{0}^{T}+u\left(A_{0} A_{1}^{T}+A_{1} A_{0}^{T}+B_{0} B_{1}^{T}+B_{1} B_{0}^{T}\right) & \equiv 0\left(u^{2}\right) \\
u\left(A_{0}+B_{0} D_{1}^{T}\right) & \equiv 0\left(u^{2}\right)
\end{aligned}
$$

which are equivalent to (14), (15) and (17). Moreover, since $\operatorname{tor}\left(C_{1}\right)$ is self-orthogonal, we have

$$
I_{k_{0}}+A_{0} A_{0}^{T}+B_{0} B_{0}^{T} \equiv 0(u)
$$

$$
\begin{aligned}
A_{0}+B_{0} D_{1}^{T} & \equiv 0(u) \\
I_{k_{1}}+D_{1} D_{1}^{T} & \equiv 0(u)
\end{aligned}
$$

which are equivalent to (14), (17) and (19).
Now, notice that from (17), we have

$$
A_{0} \equiv-B_{0} D_{1}^{T}(u)
$$

By (14), we have

$$
\begin{aligned}
I_{k_{0}}+B_{0} D_{1}^{T} D_{1} B_{0}^{T}+B_{0} B_{0}^{T} & \equiv 0(u) \\
I_{k_{0}}+B_{0}\left(D_{1}^{T} D_{1} B+I_{k_{0}}\right) B_{0}^{T} & \equiv 0(u)
\end{aligned}
$$

which implies B_{0} is of full row rank.
We start by counting the number of self-orthogonal codes C of type $\left\{k_{0}, k_{1}, 0\right\}$ such that $\operatorname{Res}(C)=C_{1}$. Similar to what we did in the previous chapter, we first exhibit the generator matrix of such code C.

Lemma 8. If C is a code over R_{2} of type $\left\{k_{0}, k_{1}, 0\right\}$ and $\operatorname{Res}(C)=C_{1}$, then there exist matrices $N_{0} \in M_{k_{0} \times\left(n-k_{0}-k_{1}\right)}\left(\mathbb{F}_{q}\right)$ and $N_{1} \in M_{k_{1} \times\left(n-k_{0}-k_{1}\right)}\left(\mathbb{F}_{q}\right)$ such that

$$
\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} N_{0} \tag{21}\\
0 & u I_{k_{1}} & u D_{1}+u^{2} N_{1}
\end{array}\right]
$$

is a generator matrix for C. The matrices N_{0} and N_{1} are unique.
Proof. If C is a code over R_{2} of type $\left\{k_{0}, k_{1}, 0\right\}$ such that $\operatorname{Res}(C)=C_{1}$, then for some matrices $M_{1}, M_{2}, M_{3}, M_{4}$ and M_{5} over \mathbb{F}_{q} of appropriate sizes,

$$
R_{2}^{k_{0}+k_{1}}\left[\begin{array}{ccc}
I_{k_{0}}+u^{2} M_{1} & A_{0}+u^{2} M_{2} & B_{0}+u B_{1}+u^{2} M_{3} \\
0 & I_{k_{1}}+u^{2} M_{4} & D_{1}+u^{2} M_{5}
\end{array}\right] \subseteq C .
$$

Applying elementary row operations,

$$
\begin{gathered}
{\left[\begin{array}{cc}
I_{k_{0}}-u^{2} M_{1} & 0 \\
0 & I_{k_{1}}-u^{2} M_{4}
\end{array}\right]\left[\begin{array}{ccc}
I_{k_{0}}+u^{2} M_{1} & A_{0}+u^{2} M_{2} & B_{0}+u B_{1}+u^{2} M_{3} \\
0 & I_{k_{1}}+u^{2} M_{4} & D_{1}+u^{2} M_{5}
\end{array}\right]=} \\
{\left[\begin{array}{ccc}
I_{k_{0}} & A_{0}+u^{2}\left(M_{2}-M_{1} A_{0}\right) & B_{0}+u B_{1}+u^{2}\left(M_{3}-M_{1} B_{0}\right) \\
0 & I_{k_{1}} & D_{1}+u^{2}\left(M_{5}-M_{4} D_{1}\right)
\end{array}\right]}
\end{gathered}
$$

and

$$
\begin{gathered}
{\left[\begin{array}{cc}
I_{k_{0}} & -u^{2}\left(M_{2}-M_{1} A_{0}\right) \\
0 & I_{k_{1}}
\end{array}\right]\left[\begin{array}{ccc}
I_{k_{0}} & A_{0}+u^{2}\left(M_{2}-M_{1} A_{0}\right) & B_{0}+u B_{1}+u^{2}\left(M_{3}-M_{1} B_{0}\right) \\
0 & I_{k_{1}} & D_{1}+u^{2}\left(M_{5}-M_{4} D_{1}\right)
\end{array}\right]} \\
=\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2}\left(M_{3}-M_{1} B_{0}-M_{2} D_{1}+M_{1} A_{0} D_{1}\right) \\
0 & I_{k_{1}} & D_{1}+u^{2}\left(M_{5}-M_{4} D_{1}\right)
\end{array}\right] .
\end{gathered}
$$

Letting

$$
\begin{aligned}
& N_{0}=M_{3}-M_{1} B_{0}-M_{2} D_{1}+M_{1} A_{0} D_{1} \\
& N_{1}=M_{5}-M_{4} D_{1},
\end{aligned}
$$

we have

$$
R_{2}^{k_{0}+k_{1}}\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} N_{0} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} N_{1}
\end{array}\right] \subseteq C
$$

Therefore,

$$
\begin{aligned}
|C| & \geq\left|R_{2}^{k_{0}+k_{1}}\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} N_{0} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} N_{1}
\end{array}\right]\right| \\
& =q^{k_{0}+k_{1}} q^{2 k_{0}+k_{1}} \\
& =q^{3 k_{0}+2 k_{1}} \\
& =|C|
\end{aligned}
$$

and hence, (21) is a generator matrix for C.
Next, we show uniqueness of the matrices N_{0} and N_{1} over \mathbb{F}_{q}. Suppose there exist matrices $N_{0}^{\prime} \in M_{k_{0} \times\left(n-k_{0}-k_{1}\right)}\left(\mathbb{F}_{q}\right)$ and $N_{1}^{\prime} \in M_{k_{1} \times\left(n-k_{0}-k_{1}\right)}\left(\mathbb{F}_{q}\right)$ such that

$$
\begin{aligned}
& R_{2}^{k_{0}+k_{1}}\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} N_{0}^{\prime} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} N_{1}^{\prime}
\end{array}\right]= \\
& R_{2}^{k_{0}+k_{1}}\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} N_{0} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} N_{1} .
\end{array}\right] .
\end{aligned}
$$

This means that

$$
\begin{aligned}
B_{0}+u B_{1}+u^{2} N_{0}^{\prime} & \equiv B_{0}+u B_{1}+u^{2} N_{0}\left(u^{3}\right) \\
u D_{1}+u^{2} N_{1}^{\prime} & \equiv u D_{1}+u^{2} N_{1}\left(u^{3}\right)
\end{aligned}
$$

which imply that

$$
\begin{aligned}
N_{0}^{\prime} & \equiv N_{0}(u) \\
N_{1}^{\prime} & \equiv N_{1}(u)
\end{aligned}
$$

and hence, N_{0} and N_{1} are unique.
This shows that the number of self-orthogonal codes C over R_{2} of type $\left\{k_{0}, k_{1}, 0\right\}$ with $\operatorname{Res}(C)=C_{1}$ is determined by the number of such matrices N_{0} and N_{1}, which will be given in the next lemma.

Lemma 9. The number of self-orthogonal codes C of type $\left\{k_{0}, k_{1}, 0\right\}$ over R_{2} such that $\operatorname{Res}(C)=C_{1}$ is

$$
q^{\left(k_{0}+k_{1}\right)\left(n-k_{0}-k_{1}\right)-k_{0}\left(k_{0}+1\right) / 2-k_{0} k_{1}} .
$$

Proof. By Lemma 8, C has generator matrix

$$
\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} N_{0} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} N_{1}
\end{array}\right]
$$

for some matrices N_{0}, N_{1} over \mathbb{F}_{q}. From this, C is self-orthogonal if and only if

$$
\begin{align*}
I_{k_{0}}+A A_{0}^{T}+B B_{0}^{T}+u\left(B_{0} B_{1}^{T}+B_{1} B_{0}^{T}\right) & \\
+u^{2}\left(B_{1} B_{1}^{T}+B_{0} N_{0}^{T}+N_{0} B_{0}^{T}\right) & \equiv 0\left(u^{3}\right) \tag{22}\\
u\left(A_{0}+B_{0} D_{1}^{T}\right)+u^{2}\left(B_{1} D_{1}^{T}+B_{0} N_{1}^{T}\right) & \equiv 0\left(u^{3}\right) \tag{23}
\end{align*}
$$

We want to count the number of such matrices N_{0} and N_{1} satisfying the above equivalences. First, consider the map

$$
\begin{aligned}
\Phi_{B_{0}}: M_{k_{0} \times\left(n-k_{0}-k_{1}\right)}\left(\mathbb{F}_{q}\right) & \longrightarrow M_{k_{0}}\left(\mathbb{F}_{q}\right) \\
N_{0} & \longmapsto B_{0} N_{0}^{T}+N_{0} B_{0}^{T}
\end{aligned}
$$

as defined in the previous chapter. By (14) and (15), (22) becomes

$$
B_{1} B_{1}^{T}+B_{0} N_{0}^{T}+N_{0} B_{0}^{T} \equiv 0(u)
$$

Hence,

$$
\begin{aligned}
\mid\left\{N_{0} \in M_{k_{0} \times\left(n-k_{0}-k_{1}\right)} \mid N_{0} \text { satisfies }(22)\right\} \mid & =\left|\left\{\Phi_{B_{0}}^{-1}\left(-B_{1} B_{1}^{T}\right)\right\}\right| \\
& =\left|\operatorname{ker} \Phi_{B_{0}}\right| \\
& =\frac{\left|M_{k_{0} \times\left(n-k_{0}-k_{1}\right)}\right|}{\left|\operatorname{Sym}_{k_{0}}\left(\mathbb{F}_{q}\right)\right|} \\
& =q^{k_{0}\left(n-k_{0}-k_{1}\right)-k_{0}\left(k_{0}+1\right) / 2} .
\end{aligned}
$$

Define another map

$$
\begin{aligned}
\beta: M_{k_{1} \times\left(n-k_{0}-k_{1}\right)}\left(\mathbb{F}_{q}\right) & \longrightarrow M_{k_{0} \times k_{1}}\left(\mathbb{F}_{q}\right) \\
N_{1} & \longmapsto B_{0} N_{1}^{T} .
\end{aligned}
$$

This map is surjective because B_{0} is of full row rank. Therefore by (17),

$$
\begin{aligned}
\mid\left\{N_{1} \in M_{k_{1} \times\left(n-k_{0}-k_{1}\right)} \mid N_{1} \text { satisfies }(23)\right\} \mid & =\left|\left\{\beta^{-1}\left(-B_{1} D_{1}^{T}\right)\right\}\right| \\
& =|\operatorname{ker} \beta| \\
& =\frac{\left|M_{k_{1} \times\left(n-k_{0}-k_{1}\right)}\left(\mathbb{F}_{q}\right)\right|}{\left|M_{k_{0} \times k_{1}}\left(\mathbb{F}_{q}\right)\right|} \\
& =q^{k_{1}\left(n-k_{0}-k_{1}\right)-\left(k_{0} k_{1}\right)} .
\end{aligned}
$$

Finally, the number of self-orthogonal codes C of type $\left\{k_{0}, k_{1}, 0\right\}$ over R_{2} such that $\operatorname{Res}(C)=C_{1}$ is the number of such matrices N_{0} satisfying (22) multiplied to the number of such matrices N_{1} satisfying (23) which is

$$
q^{k_{0}\left(n-k_{0}-k_{1}\right)-k_{0}\left(k_{0}+1\right) / 2} q^{k_{1}\left(n-k_{0}-k_{1}\right)-k_{0} k_{1}} .
$$

The result follows by simplifying the above expression.
For the rest of this chapter, let C_{2} be a code over \mathbb{F}_{q} with dimension $k_{0}+k_{1}+k_{2}$ and has a generator matrix

$$
G_{2}=\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0} \\
0 & I_{k_{1}} & D_{1} \\
0 & 0 & F_{2}
\end{array}\right]
$$

where F_{2} is of full row rank. We assume that $\operatorname{tor}\left(C_{1}\right) \subseteq C_{2} \subseteq \operatorname{res}\left(C_{1}\right)^{\perp}$. Hence,

$$
\begin{aligned}
I_{k_{0}}+A_{0} A_{0}^{T}+B_{0} B_{0}^{T} & \equiv 0(u) \\
A_{0}+B_{0} D_{1}^{T} & \equiv 0(u) \\
F_{2} B_{0}^{T} & \equiv 0(u)
\end{aligned}
$$

which are equivalent to (14), (17) and (19), respectively.
Consider the following sets of codes over R_{2} :

$$
\begin{aligned}
Y & =\left\{C \mid C \text { is self-orthogonal of type }\left\{k_{0}, k_{1}, 0\right\}, \operatorname{Res}(C)=C_{1}\right\} ; \\
Y^{\prime} & =\left\{C^{\prime} \mid C^{\prime} \text { is self-orthogonal, } \operatorname{Res}\left(C^{\prime}\right)=C_{1}, \operatorname{tor}_{2}\left(C^{\prime}\right)=C_{2}\right\}
\end{aligned}
$$

Note that $|Y|$ is already given in Lemma 9. Our next goal is to compute for $\left|Y^{\prime}\right|$. This will be done in the same way as in the previous chapter.

Lemma 10. If $C \in Y$, then there exists a unique $C^{\prime} \in Y^{\prime}$ such that $C \subseteq C^{\prime}$.
Proof. Since $C \in Y, C$ has generator matrix (21) for some matrices N_{0} and N_{1}. Suppose $C \subseteq C^{\prime}$ for some $C^{\prime} \in Y^{\prime}$ and there exists a code $C^{\prime \prime}$ with generator matrix

$$
\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} N_{0} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} N_{1} \\
0 & 0 & u^{2} F_{2}
\end{array}\right] .
$$

Clearly, $C \subseteq C^{\prime \prime}$. Note that $C^{\prime \prime}$ satisfies $\operatorname{Res}\left(C^{\prime \prime}\right)=C_{1}$ and $\operatorname{tor}_{2}\left(C^{\prime \prime}\right)=C_{2}$. Using (19), we conclude that $C^{\prime \prime}$ is self-orthogonal. Hence, $C^{\prime \prime} \in Y^{\prime}$.

Next, notice that $R_{2}^{k_{2}}\left[00 u^{2} F_{2}\right] \subseteq C^{\prime}$. This, together with the fact that $C \subseteq C^{\prime}$, forces $C^{\prime \prime} \subseteq C^{\prime}$. But

$$
\begin{aligned}
\left|C^{\prime \prime}\right| & =\left|C_{1}\right|\left|C_{2}\right| \\
& =q^{2 k_{0}+k_{1}} q^{k_{0}+k_{1}+k_{2}} \\
& =q^{3 k_{0}+2 k_{1}+k_{2}} \\
& =\left|C^{\prime}\right|
\end{aligned}
$$

and therefore, $C^{\prime}=C^{\prime \prime}$.
Lemma 11. Let $C^{\prime} \in Y^{\prime}$. Then $\left|\left\{C \in Y \mid C \subseteq C^{\prime}\right\}\right|=q^{\left(k_{0}+k_{1}\right) k_{2}}$.

Proof. Let $C^{\prime} \in Y^{\prime}$ whose generator matrix is

$$
\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} N_{0} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} N_{1} \\
0 & 0 & u^{2} F_{2}
\end{array}\right]
$$

Define the map $\Psi: M_{k_{0} \times k_{2}}\left(\mathbb{F}_{q}\right) \times M_{k_{1} \times k_{2}}\left(\mathbb{F}_{q}\right) \longrightarrow\left\{C \in Y \mid C \subseteq C^{\prime}\right\}$ as

$$
\Psi\left(M^{\prime}, M^{\prime \prime}\right)=R_{2}^{k_{0}+k_{1}}\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2}\left(N_{0}+M^{\prime} F_{2}\right) \\
0 & u I_{k_{1}} & u D_{1}+u^{2}\left(N_{1}+M^{\prime \prime} F_{2}\right)
\end{array}\right]
$$

and claim that this map is bijective.
Indeed, Ψ is injective because F_{2} is of full row rank. Now, suppose $C \in Y$ such that $C \subseteq C^{\prime}$. Then by Lemma $8, C$ has generator matrix

$$
\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} F^{\prime} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} F^{\prime \prime}
\end{array}\right]
$$

for some matrices F^{\prime} and $F^{\prime \prime}$. Since $C \subseteq C^{\prime}$, there exist matrices M^{\prime} and $M^{\prime \prime}$ such that

$$
\begin{gathered}
{\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} F^{\prime} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} F^{\prime \prime}
\end{array}\right] \equiv} \\
{\left[\begin{array}{ccc}
I_{k_{0}} & 0 & M^{\prime} \\
0 & I_{k_{1}} & M^{\prime \prime}
\end{array}\right]\left[\begin{array}{ccc}
I_{k_{0}} & A_{0} & B_{0}+u B_{1}+u^{2} N_{0} \\
0 & u I_{k_{1}} & u D_{1}+u^{2} N_{1} \\
0 & 0 & u^{2} F_{2}
\end{array}\right]\left(u^{3}\right) .}
\end{gathered}
$$

Then we have $F^{\prime}=N_{0}+M^{\prime} F_{2}$ and $F_{2}=N_{1}+M^{\prime \prime} F_{2}$, so Ψ is surjective and hence, bijective.

Therefore,

$$
\begin{aligned}
\left|\left\{C \in Y \mid C \subseteq C^{\prime}\right\}\right| & =\left|M_{k_{0} \times k_{2}}\left(\mathbb{F}_{q}\right) \times M_{k_{1} \times k_{2}}\left(\mathbb{F}_{q}\right)\right| \\
& =q^{k_{0} k_{2}} q^{k_{1} k_{2}} \\
& =q^{\left(k_{0}+k_{1}\right) k_{2}}
\end{aligned}
$$

Given C_{1} and C_{2}, we can now count the number of self-orthogonal codes over R_{2} having u^{2}-Residue C_{1} and torsion C_{2}.

Theorem 3. Suppose C_{1} is a self-orthogonal code over $\mathbb{F}_{q}+u \mathbb{F}_{q}$, where q is odd, of type $\left\{k_{0}, k_{1}\right\}$ such that tor $\left(C_{1}\right)$ is self-orthogonal and C_{2} is a code over \mathbb{F}_{q} of dimension $k_{0}+k_{1}+k_{2}$ such that $\operatorname{tor}\left(C_{1}\right) \subseteq C_{2} \subseteq \operatorname{res}\left(C_{1}\right)^{\perp}$. Then the number of self-orthogonal codes C^{\prime} of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$ such that $\operatorname{Res}\left(C^{\prime}\right)=C_{1}$ and $\operatorname{tor}_{2}\left(C^{\prime}\right)=C_{2}$ is

$$
q^{k_{0}\left(2 n-3 k_{0}-6 k_{1}-2 k_{2}-1\right) / 2+k_{1}\left(n-k_{1}-k_{2}\right)}
$$

Proof. Without loss of generality, we assume that C_{1} has generator matrix G_{1} and C_{2} has generator matrix G_{2}. Then we compute for $\left|Y^{\prime}\right|$. By Lemma 10 and Lemma 11, we have

$$
\begin{aligned}
q^{\left(k_{0}+k_{1}\right) k_{2}}\left|Y^{\prime}\right| & =\sum_{C^{\prime} \in Y^{\prime}}\left|\left\{C \in X \mid C \subseteq C^{\prime}\right\}\right| \\
& =\sum_{C \in Y}\left|\left\{C^{\prime} \in X^{\prime} \mid C \subseteq C^{\prime}\right\}\right| \\
& =\sum_{C \in Y} 1 \\
& =|Y| .
\end{aligned}
$$

The results follow from Lemma 9.

8. Mass formula for self-orthogonal codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$, where q is odd

We now have the following theorem.
Theorem 4. Suppose q is odd. The number of distinct self-orthogonal codes over $\mathbb{F}_{q}+$ $u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$ of length n and type $\left\{k_{0}, k_{1}, k_{2}\right\}$, denoted by $M_{R_{2}}\left(n, k_{0}, k_{1}, k_{2}\right)$ is

$$
\left[\begin{array}{c}
n-2 k_{0}-k_{1} \\
k_{2}
\end{array}\right]_{q}\left[\begin{array}{c}
k_{0}+k_{1} \\
k_{0}
\end{array}\right]_{q} \sigma_{q}\left(n, k_{0}+k_{1}\right) q^{k_{0}\left(2 n-3 k_{0}-4 k_{1}-k_{2}-1\right)+k_{1}\left(n-k_{1}-k_{2}\right)} .
$$

Proof. If C is a self-orthogonal code of length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$ of type $\left\{k_{0}, k_{1}, k_{2}\right\}$, then by setting $C_{1}=\operatorname{Res}(C)$ and $C_{2}=\operatorname{tor}_{2}(C)$, we see that C_{1} and C_{2} satisfies (i)-(iii) of Lemma 7. The number of self-orthogonal codes with given u^{2}-Residue C_{1} and torsion C_{2} is given in Theorem 3. The number of self-orthogonal codes C_{1} over $\mathbb{F}_{q}+u \mathbb{F}_{q}$ satisfying (i) and (ii) is given in Corollary 2. The number of codes C_{2} satisfying (iii) is $\left[\begin{array}{c}n-2 k_{0}-k_{1} \\ k_{2}\end{array}\right]_{q}$. The value of $M_{R_{2}}\left(n, k_{0}, k_{1}, k_{2}\right)$ is obtained by the product of these.

We now have the following mass formula for self-dual codes over R_{2} as a direct consequence of Theorem 4.

Corollary 3. Suppose q is odd. The number of distinct self-dual codes of even length n over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$ is given by

$$
\begin{equation*}
\sum_{k_{0}=0}^{\frac{n}{2}} M_{R_{2}}\left(n, k_{0}, \frac{n}{2}-k_{0}, \frac{n}{2}-k_{0}\right) . \tag{24}
\end{equation*}
$$

Proof. By [3], we have $k_{1}=k_{2}$ and $n=2\left(k_{0}+k_{1}\right)$. The result follows from Theorem 4.

The formula (24) agrees with [3, Theorem 1].

Acknowledgements

The authors gratefully acknowledge the support of the University of the Philippines Office of the Vice President for Academic Affairs for this project. The authors also thank Dr. Markus Grassl for useful suggestions and the reviewers for their valuable comments.

References

[1] Koichi Betsumiya, Rowena Alma Betty, and Akihiro Munemasa. Mass formula for even codes over \mathbb{Z}_{8}. Lecture Notes in Computer Science, 5921:65-77, 2009.
[2] Rowena Alma Betty and Akihiro Munemasa. Mass formula for self-orthogonal codes over $\mathbb{Z}_{p^{2}}$. Journal of Combinatorics, Information and System Sciences, 34:51-66, 2009.
[3] Rowena Alma Betty, Trilbe Lizann Vasquez, and Fidel Nemenzo. Mass formula for self-dual codes over $\mathbb{F}_{q}+u \mathbb{F}_{q}+u^{2} \mathbb{F}_{q}$. Journal of Applied Mathematics and Computing, 57:523-546, 2018.
[4] Wieb Bosma, John Cannon, and Catherine Playoust. The magma algebra system I: The user language. Journal of Symbolic Computation, 24(3-4):235-265, 1997.
[5] Steven Dougherty, Philippe Gaborit, Masaaki Harada, and Patrick Solé. Type II codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$. IEEE Transactions on Information Theory, 45(1):32-45, 1999.
[6] Philippe Gaborit. Mass formulas for self-dual codes over \mathbb{Z}_{4} and $\mathbb{F}_{q}+u \mathbb{F}_{q}$ rings. IEEE Transactions on Information Theory, 42(4):1222-1228, 1996.
[7] A Roger Hammons, P Vijay Kumar, A Robert Calderbank, Neil JA Sloane, and Patrick Solé. The z_{4}-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on Information Theory, 40(2):301-319, 1994.
[8] W Cary Huffman and Vera Pless. Fundamentals of error-correcting codes. Cambridge University Press, 2010.
[9] Vera Pless. Number of isotropic subspaces in a finite geometry. Atti della accademia nazionale dei lincei rendiconti-classe di scienze fisiche-matematiche $\mathcal{E}^{\text {n }}$ naturali, 39(6):418, 1965.
[10] Vera Pless. On the uniqueness of the golay codes. Journal of Combinatorial theory, 5(3):215-228, 1968.
[11] Eric M Rains and NJA Sloane. Self-dual codes, in Handbook of coding theory. Elsevier, Amsterdam, pages 177-294, 1998.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v13i4.3838
 Email addresses: legalvez@math.upd.edu.ph (L. E. Galvez), rabetty@math.upd.edu.ph (R. A. Betty), fidel@math.upd.edu.ph (F. Nemenzo)
 https://www.ejpam.com © © 2020 EJPAM All rights reserved.

