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Self-orthogonal Codes over Fq + uFq and Fq + uFq + u2Fq
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Abstract. In this paper, we establish a mass formula for Euclidean and Hermitian self-orthogonal
codes over the finite ring Fq + uFq, where Fq is the finite field of order q and u2 = 0. We also
establish a mass formula for Euclidean self-orthogonal codes over the finite ring Fq + uFq + u2Fq,
with u3 = 0 and characteristic of Fq is odd. These mass formulas are used to give a classification
of Euclidean and Hermitian self-orthogonal codes over F2 + uF2 and F3 + uF3 of small lengths.
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1. Introduction

Self-dual codes have rich mathematical theory and are of great interest to researchers
because many of the best known codes are self-dual. A fundamental problem in coding
theory is the classification of self-dual codes, that is, an enumeration of a complete set of
representatives for the equivalence classes of self-dual codes. In the past years, self-dual
codes over finite fields have been extensively studied and classified up to various lengths
(see [8, 11]). Since the discovery in 1994 [7] that certain non-linear binary codes can be
viewed as linear codes over the ring Z4, there has been much interest in the study of
self-dual codes over various finite rings.

A key problem is to establish an explicit formula for the number of distinct self-dual
codes of length n over a ring R, given by∑

C

|En|
|Aut(C)|

where C runs through the set of all inequivalent self-dual codes of length n over R, En
is the full group of transformations allowed in defining the equivalence for code C and
Aut(C) is the automorphism group. This is called the mass formula, and is an important
computational tool for the classification of such codes. Mass formulas for self-dual codes
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over finite rings rings such as Z4 and Fq + uFq were given in [6], while [3] gave the mass
formula for self-dual codes over Fq + uFq + u2Fq.

In this paper, we focus on the more general mass formula for self-orthogonal codes,
which will include the mass formula for self-dual codes as a special case. Mass formulas
for self-orthogonal codes over Zp2 , where p is a prime, were given in [2], while the mass
formula for even codes over Z8, i.e., self-orthogonal codes whose codewords have Euclidean
weights divisible by 16, was computed in [1].

Codes over Fq + uFq and Fq + uFq + u2Fq have an invariant called type, denoted by
{k0, k1} and {k0, k1, k2}, respectively, where k0, k1 and k2 are nonnegative integers. The
type of a code is determined by its residue and torsion codes. To obtain the mass formula,
we will determine the number of self-orthogonal codes of length n over Fq + uFq with
given residue and torsion, and compute the number of self-orthogonal codes of length
n over Fq + uFq + u2Fq, for odd q, with given u2-Residue and torsion. We also give a
classification of Euclidean and Hermitian self-orthogonal codes over F2+uF2 and F3+uF3,
up to some short lengths.

2. Codes over Fq + uFq

We begin with some basic concepts about codes over rings. A linear code C of length
n over a ring R is a submodule of the Rn module. A generator matrix for C is a matrix
G ∈ Mk×n(R) whose rows generate the code. For a matrix G ∈ Mk×n(R), we denote by
RkG the code {aG | a ∈ Rk} of length n over R.

Let q be a power of a prime and Fq denote the finite field of q elements. Let R1 be the
commutative ring Fq[u]/(u2) = Fq + uFq, where u2 = 0. This finite chain ring is a local
ring with unique maximal ideal (u) and residue field Fq + uFq/(u) = Fq. Every code C of
length n over R1 is permutation-equivalent to a code with the following generator matrix,[

Ik0 A+ uB
0 uD

]
, (1)

where Ik0 is the k0 × k0 identity matrix, A,B ∈Mk0×(n−k0)(Fq) and D ∈Mk1×(n−k0)(Fq).
Such a code C is said to be of type {k0, k1}. The code C is said to be free if k1 = 0. The
type is the analog of the dimension of a code over a finite field. Such a code C contains
q2k0+k1 codewords.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be elements of Rn1 . Define the Eu-
clidean inner product on Rn1 as 〈x, y〉E =

∑n
i=1 xiyi. Now, let z = a+ ub ∈ R1 and define

z = a−ub. The Hermitian inner product on Rn1 is defined as 〈x, y〉H =
∑n

i=1 xiyi. The set

C⊥ = {x ∈ Rn1 | 〈x, y〉 = 0 ∀y ∈ C}

is called the Euclidean or Hermitian dual of C, depending on which inner product 〈x, y〉
is used. The code C is said to be Euclidean or Hermitian self-orthogonal if C ⊆ C⊥. If
C = C⊥, then we say C is Euclidean or Hermitian self-dual.

Let C be a code over R1. The code
{
v ∈ Fnq | ∃w ∈ Fnq , v + uw ∈ C

}
is called the

residue code of C and is denoted by res(C). The code
{
v ∈ Fnq |uv ∈ C

}
is called the
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torsion code of C and is denoted by tor(C). If C has generator matrix (1), then res(C)
and tor(C) are [n, k0] and [n, k0 + k1] codes over Fq, with generator matrices

[
Ik0 A

]
and

[
Ik0 A
0 D

]
,

respectively. Clearly, res(C) ⊆ tor(C) and |C| = q2k0+k1 = |res(C)||tor(C)|.
The following lemma shows the relationship between the residue and torsion codes of

a self-orthogonal code over R1. The proof is given in [6].

Lemma 1. Let C be a (Euclidean or Hermitian) self-orthogonal code over R1. Then

(i) res(C) is self-orthogonal, i.e. res(C) ⊆ res(C)⊥;

(ii) tor(C) ⊆ res(C)⊥.

In particular, if C is (Euclidean or Hermitian) self-dual, tor(C) = res(C)⊥.

3. Codes over Fq + uFq with prescribed residue and torsion

Let C1 be a code of length n over Fq with dimension k0 and generator matrix[
Ik0 A

]
, (2)

and C2 a code of length n over Fq of dimension k0 + k1 and has generator matrix[
Ik0 A
0 D

]
, (3)

where A ∈Mk0×(n−k0)(Fq), and D ∈Mk1×(n−k0)(Fq) is of full row rank.

Lemma 2. If C is a code of length n over R1 with res(C) = C1 and tor(C) = C2, then
there exists a matrix N ∈Mk0×(n−k0)(Fq) such that the matrix[

Ik0 A+ uN
0 uD

]
(4)

is a generator matrix of C. Such matrix N is unique if C is a free code.

Proof. Since the residue and torsion codes of C are C1 and C2, respectively, then for
some M1 ∈Mk0(Fq) and M2 ∈Mk0×(n−k0)(Fq),

Rk0+k11

[
Ik0 + uM1 A+ uM2

0 uD

]
⊆ C.

By an elementary row operation,
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C ⊇ Rk0+k11

[
Ik0 − uM1 0

0 Ik1

] [
Ik0 + uM1 A+ uM2

0 uD

]
= Rk0+k11

[
Ik0 A+ u(M2 −M1A)
0 uD

]
.

Taking N = M2 −M1A, we have

|C| ≥
∣∣∣∣Rk0+k11

[
Ik0 A+ uN
0 uD

]∣∣∣∣ = q2k0+k1 = |C1| |C2| = |C| .

Thus, C has a generator matrix (4).
Suppose C is a free code and there exist N1, N2 ∈Mk0×(n−k0)(Fq) such that

Rk01 [I A+ uN1] = Rk01 [I A+ uN2] .

Then A+ uN1 ≡ A+ uN2 (u2), which implies that N1 ≡ N2 (u). �

For the remainder of this section, assume that C1 ⊆ C2 ⊆ C⊥1 . Then

Ik0 +AAT ≡ 0 (u), (5)

DAT ≡ 0 (u). (6)

It follows from (5) that A is of full row rank.
Denote by Symk0(Fq) the set of k0×k0 symmetric matrices, Altk0(Fq) the set of k0×k0

alternating matrices, and Skewk0(Fq) the set of k0 × k0 skew-symmetric matrices over Fq.

Lemma 3. Let A ∈Mm×n(Fq) where rank A = m. We define the mappings

ΨA : Mm×n(Fq) −→ Mm(Fq)
N 7−→ ANT +NAT ,

and

ΦA : Mm×n(Fq) −→ Mm(Fq)
N 7−→ ANT −NAT .

Then

ΨA (Mm×n(Fq)) =

{
Symm(Fq), if q is odd

Altm(Fq), if q is even,

and the image of the map ΦA is Skewm(Fq).
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Proof. The image of ΨA was shown in [2]. Since rank A = m, A(Mn×m(Fq)) = Mm(Fq).
Indeed,

ΦA(Mk0×(n−k0)(Fq)) =
{
ANT −NAT | N ∈Mk0×(n−k0)(Fq)

}
=

{
S − ST | S ∈Mk0(Fq)

}
= Skewk0(Fq).

�

Lemma 4. The number of free Euclidean self-orthogonal codes over R1 with residue code
C1 is

qk0(2n−3k0+ε)/2,

where ε = −1 if q is odd and ε = 1 if q is even.
The number of free Hermitian self-orthogonal codes over R1 with residue code C1 is

qk0(2n−3k0+1)/2.

Proof. If C is a free code with residue code C1, then by Lemma 2, C has generator
matrix

[
Ik0 A+ uN

]
, for some unique N ∈Mk0×(n−k0)(Fq). Observe that C is Euclidean

self-orthogonal if and only if

Ik0 +AAT + u(ANT +NAT ) ≡ 0 (u2).

Hence, the number of free Euclidean self-orthogonal codes C with residue code C1 is∣∣{N ∈Mk0×(n−k0)|Ik0 +AAT + u(ANT +NAT ) ≡ 0 (u2)}
∣∣ . (7)

By (5), we have ANT +NAT ≡ 0 (u).Therefore, (7) becomes

∣∣{N ∈Mk0×(n−k0)|AN
T +NAT ≡ 0 (u)

}∣∣ = |ker ΨA| =
∣∣Mk0×(n−k0)

∣∣
|Im ΨA|

.

Thus, we have

|ker ΨA| =

{
q

k0(2n−3k0−1)
2 , if q is odd

q
k0(2n−3k0+1)

2 , if q is even,

by Lemma 3.
Similarly, C is Hermitian self-orthogonal if and only if

Ik0 +AAT + u(ANT −NAT ) ≡ 0 (u2).

Hence, by (5) and Lemma 3, the number of free Hermitian self-orthogonal codes C with
residue code C1 is∣∣{N ∈Mk0×(n−k0)|AN

T −NAT ≡ 0 (u)
}∣∣ = |ker ΦA| = q

k0(2n−3k0+1)
2 .
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�

Define the sets

X =
{
C | C ⊆ Rn1 , type {k0, 0}, C ⊆ C⊥, res(C) = C1

}
and

X ′ =
{
C ′ | C ′ ⊆ Rn1 , C ′ ⊆ C ′⊥, res(C ′) = C1, tor(C ′) = C2

}
,

where self-orthogonality is either in the Euclidean or Hermitian sense.

Lemma 5. If C ′ ∈ X ′, then |{C ∈ X|C ⊆ C ′}| = qk0k1.

Proof. By Lemma 2, C ′ has a generator matrix (4). Consider the map

ψ : Mk0×k1(Fq) −→
{
C ∈ X | C ⊆ C ′

}
M 7−→ Rk01 [I A+ u(N +MD)] .

Clearly, ψ is well-defined. We will show that ψ is bijective. If M1,M2 ∈Mk0×k1(Fq) such
that ψ(M1) = ψ(M2), then

Rk01 [Ik0 A+ u(N +M1D)] = Rk01 [Ik0 A+ u(N +M2D)]

which means A + u(N + M1D) ≡ A + u(N + M2D) (u2). Therefore N + M1D ≡ N +
M2D (u). Since D is of full row rank, we have M1 ≡M2 (u). Hence, ψ is injective.

Suppose C ∈ X and C ⊆ C ′. By Lemma 2, C = Rk01 [Ik0 A+ uF ] , for some matrix
F . The inclusion C ⊆ C ′ implies that

A+ uF ≡ A+ u(N +MD) (u2)

for some matrix M . So F ≡ N + MD (u), which shows that ψ is surjective, and hence,
bijective. Therefore, ∣∣{C ∈ X|C ⊆ C ′}∣∣ = |Mk0×k1(Fq)| = qk0k1 .

�

Lemma 6. If C ∈ X, then there exists a unique code C ′ ∈ X ′ such that C ⊆ C ′.

Proof. Since C ∈ X, C has a generator matrix [I A+ uN ] for some unique matrix N ,
by Lemma 2. Let C ′0 be a code with generator matrix[

Ik0 A+ uN
0 uD

]
.

The code C ′0 satisfies res(C ′0) = C1 and tor(C ′0) = C2.
Clearly, C ⊆ C ′0. Since C ∈ X, (6) implies C ′0 is self-orthogonal and hence, C ′0 ∈ X ′.

Suppose C ⊆ C ′ for some C ′ ∈ X ′. Because C ′ has torsion code C2, by Lemma 2,
Rk11 [0 uD] ⊆ C ′ and so C ′0 ⊆ C ′. Note that |C ′0| = |C1| |C2| = q2k0+k1 = |C ′|. Hence,
C ′0 = C ′. �

Next, we count self-orthogonal codes C with given residue code and torsion code.
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Theorem 1. Let C1 and C2 be codes of length n over Fq where C1 ⊆ C2 ⊆ C⊥1 . If
dim C1 = k0 and dim C2 = k0 + k1, then

(i) the number of Euclidean self-orthogonal codes C of length n over Fq + uFq with
res(C) = C1 and tor(C) = C2 is

qk0(2n−3k0−2k1+ε)/2,

where ε = −1 if q is odd and ε = 1 if q is even, and

(ii) the number of Hermitian self-orthogonal codes C of length n over Fq + uFq with
res(C) = C1 and tor(C) = C2 is

qk0(2n−3k0−2k1+1)/2.

Proof. We may assume without loss of generality that C1 and C2 are codes with
generator matrices (2) and (3), respectively. Then we have to compute |X ′|. By Lemma 5
and Lemma 6, we have

qk0k1
∣∣X ′∣∣ =

∑
C′∈X′

∣∣{C ∈ X|C ⊆ C ′}∣∣
=

∑
C∈X

∣∣{C ′ ∈ X ′|C ⊆ C ′}∣∣
=

∑
C∈X

1

= |X| .

The results follow from Lemma 4. �

4. Mass formula for self-orthogonal codes over Fq + uFq

Let σq(n, k0) denote the number of distinct self-orthogonal codes over Fq of length n

and dimension k0 (see [9, 10]). We define the Gaussian coefficient

[
n
k

]
q

for k ≤ n as

[
n
k

]
q

=
(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

,

which gives the number of subspaces of dimension k contained in an n-dimensional vector
space over Fq.

We now have the following mass formula for self-orthogonal codes over R1.
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Theorem 2. Let Mq(n, k0, k1)E and Mq(n, k0, k1)H denote the number of distinct Eu-
clidean and Hermitian self-orthogonal codes of length n over Fq + uFq of type {k0, k1},
respectively. We have

Mq(n, k0, k1)E = σq(n, k0)

[
n− 2k0
k1

]
q

qk0(2n−3k0−2k1+ε)/2

where ε = −1 if q is odd and ε = 1 if q is even, and

Mq(n, k0, k1)H = σq(n, k0)

[
n− 2k0
k1

]
q

qk0(2n−3k0−2k1+1)/2.

Proof. If C is a self-orthogonal code of length n over Fq +uFq of type {k0, k1}, then by
setting C1 = res(C) and C2 = tor(C), we see that C1 and C2 satisfies Lemma 1. There are

σq(n, k0) self-orthogonal codes C1 of length n over Fq. Given C1, there are

[
n− 2k0
k1

]
q

codes C2 such that C1 ⊆ C2 ⊆ C⊥1 . Then the result follows from Theorem 1. �

We have the following mass formula for self-dual codes over R1 as a direct consequence
of the previous theorem.

Corollary 1. The number of distinct Euclidean self-dual codes of length n over Fq + uFq
is given by ∑

0≤k0≤bn2 c

σq(n, k0)q
k0(k0+ε)/2, (8)

where ε = −1 if q is odd and ε = 1 if q is even, and the number of distinct Hermitian
self-dual codes of length n over Fq + uFq is given by∑

0≤k0≤bn2 c

σq(n, k0)q
k0(k0+1)/2. (9)

Proof. Note that the number of distinct Euclidean self-dual codes and the number of
distinct Hermitian self-dual codes of length n over Fq + uFq are given by∑

0≤k0≤bn2 c

Mq(n, k0, n− 2k0)E , and
∑

0≤k0≤bn2 c

Mq(n, k0, n− 2k0)H ,

respectively. �

In [6, Theorem 3], Gaborit establishes the mass formula for Hermitian self-dual codes
over Fq + uFq, but gives the formula for Euclidean self-dual codes instead. The formula
(9) corrects this.

Next, we establish another formula for the number of distinct Euclidean self-orthogonal
codes when the given torsion is self-orthogonal.
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Corollary 2. Suppose q is odd. The number of distinct Euclidean self-orthogonal codes
of length n over Fq + uFq of type {k0, k1} with self-orthogonal torsion is

M̃q(n, k0, k1)E =

[
k0 + k1
k0

]
q

σq(n, k0 + k1)q
k0(2n−3k0−2k1−1)/2.

Proof. Let C1 and C2 be self-orthogonal codes where dim C1 = k0, dim C2 = k0 + k1
and C1 ⊆ C2 . By Theorem 2, we have

M̃q(n, k0, k1)E q
−k0(2n−3k0−2k1−1)/2 =

∑
C2⊆C⊥2

|{C1 | C1 ⊆ C2}|

=

[
k0 + k1
k0

]
q

∣∣∣{C2 | C2 ⊆ C⊥2
}∣∣∣

=

[
k0 + k1
k0

]
q

σq(n, k0 + k1).

�

This corollary will be useful in our mass formula computations on later chapters.

5. Classification of self-orthogonal codes over Fq + uFq

Using Theorem 2, we classify Euclidean and Hermitian self-orthogonal codes over F2 +
uF2 and F3 + uF3, of given type for small lengths. Note that two codes over F2 + uF2

are equivalent if one can be obtained from the other by permuting the coordinates and (if
necessary) multiplying certain coordinates by 1 + u. On the other hand, two Euclidean
self-orthogonal codes over F3+uF3 are equivalent if one can be obtained from the other by
permuting the coordinates and (if necessary) multiplying certain coordinates by 2, and two
Hermitian self-orthogonal codes over F3 + uF3 are equivalent if one can be obtained from
the other by permuting the coordinates and (if necessary) multiplying certain coordinates
by r, where r ∈ {2, 1 + u, 1 + 2u, 2 + u, 2 + 2u}.

To illustrate, we classify Euclidean self-orthogonal codes over F3 +uF3 of length 4 and
type {2, 0}. Let C1 and C2 be inequivalent Euclidean self-orthogonal codes over F3 + uF3

of length 4 and type {2, 0} with generator matrices[
1 0 2 2
0 1 2 1

]
and

[
1 0 2 + 2u 2 + u
0 1 2 + u 1 + u

]
,

respectively. The order of their automorphism groups are 48 and 24, respectively. Hence,

2∑
j=1

|E4|
|Aut(Cj)|

=
24 · 4!

48
+

24 · 4!

24
= 8 + 16 = 24.

From Theorem 2,

M3(4, 2, 0)E = σ3(4, 2)

[
4− 2 · 2

0

]
3

32(8−6−0−1)/2 = 8 · 1 · 3 = 24.
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Therefore, there are two Euclidean self-orthogonal codes of length 4 and type {2, 0} over
F3 + uF3, up to equivalence.

We note that Euclidean self-orthogonal and Hermitian self-orthogonal codes coincide
over F2 + uF2, as well as in codes over F3 + uF3 of type {0, k1}.

Table 1 gives the number of inequivalent Euclidean self-orthogonal codes over F2 +
uF2 of lengths 2 up to 7, while Table 2 gives the number of inequivalent Euclidean and
Hermitian self-orthogonal codes over F3+uF3 of lengths 2 up to 6, for each type. Note that
the code of length 1 with generator matrix [u] is a Euclidean self-orthogonal and Hermitian
self-orthogonal code over Fq+uFq. Therefore, there is a self-orthogonal code for any length
n, since one can just form a direct sum of this length 1 code. Our classification of self-
orthogonal codes over F2+uF2 agrees with the enumeration in [5] for self-dual codes (codes
of type {k0, n− 2k0}) up to length n = 7. Generators and the order of the automorphism
group of each code in Table 1 and Table 2 may be requested by the interested reader
from the authors. All computer calculations in this paper were done with the help of
Magma[4].

Table 1: The number of inequivalent self-orthogonal codes of lengths 2 ≤ n ≤ 7 over F2 + uF2

{n, k0, k1} Number of {n, k0, k1} Number of {n, k0, k1} Number of
Codes Codes Codes

{2, 1, 0} 1 {5, 2, 1} 2 {6, 0, 6} 1
{2, 0, 1} 2 {5, 0, 1} 5 {7, 1, 0} 12
{2, 0, 2} 1 {5, 0, 2} 10 {7, 1, 1} 54
{3, 1, 0} 2 {5, 0, 3} 10 {7, 1, 2} 100
{3, 1, 1} 1 {5, 0, 4} 5 {7, 1, 3} 73
{3, 0, 1} 3 {5, 0, 5} 1 {7, 1, 4} 24
{3, 0, 2} 3 {6, 1, 0} 9 {7, 1, 5} 3
{3, 0, 3} 1 {6, 1, 1} 29 {7, 2, 0} 43
{4, 1, 0} 4 {6, 1, 2} 36 {7, 2, 1} 74
{4, 1, 1} 5 {6, 1, 3} 16 {7, 2, 2} 40
{4, 1, 2} 2 {6, 1, 4} 3 {7, 2, 3} 5
{4, 2, 0} 2 {6, 2, 0} 19 {7, 3, 0} 22
{4, 0, 1} 4 {6, 2, 1} 18 {7, 3, 1} 5
{4, 0, 2} 6 {6, 2, 2} 5 {7, 0, 1} 7
{4, 0, 3} 4 {6, 3, 0} 4 {7, 0, 2} 23
{4, 0, 4} 1 {6, 0, 1} 6 {7, 0, 3} 43
{5, 1, 0} 6 {6, 0, 2} 16 {7, 0, 4} 43
{5, 1, 1} 13 {6, 0, 3} 22 {7, 0, 5} 23
{5, 1, 2} 10 {6, 0, 4} 16 {7, 0, 6} 7
{5, 1, 3} 2 {6, 0, 5} 6 {7, 0, 7} 1
{5, 2, 0} 6



L.E. Galvez, R.A. Betty, F. Nemenzo / Eur. J. Pure Appl. Math, 13 (4) (2020), 873-892 883

Table 2: The number of inequivalent Euclidean and Hermitian self-orthogonal codes of lengths 2 ≤ n ≤ 6 over
F3 + uF3

{n, k0, k1} Number of Codes {n, k0, k1} Number of Codes
Euclidean Hermitian Euclidean Hermitian

{2, 1, 0} 0 0 {5, 2, 1} 2 1
{2, 0, 1} 2 2 {5, 0, 1} 5 5
{2, 0, 2} 1 1 {5, 0, 2} 12 12
{3, 1, 0} 2 1 {5, 0, 3} 12 12
{3, 1, 1} 1 1 {5, 0, 4} 5 5
{3, 0, 1} 3 3 {5, 0, 5} 1 1
{3, 0, 2} 3 3 {6, 1, 0} 12 5
{3, 0, 3} 1 1 {6, 1, 1} 57 27
{4, 1, 0} 4 2 {6, 1, 2} 64 34
{4, 1, 1} 6 4 {6, 1, 3} 20 13
{4, 1, 2} 1 1 {6, 1, 4} 2 2
{4, 2, 0} 2 1 {6, 2, 0} 22 8
{4, 0, 1} 4 4 {6, 2, 1} 18 9
{4, 0, 2} 7 7 {6, 2, 2} 4 3
{4, 0, 3} 4 4 {6, 3, 0} 0 0
{4, 0, 4} 1 1 {6, 0, 1} 6 6
{5, 1, 0} 6 3 {6, 0, 2} 20 20
{5, 1, 1} 19 11 {6, 0, 3} 31 31
{5, 1, 2} 10 7 {6, 0, 4} 20 20
{5, 1, 3} 1 1 {6, 0, 5} 6 6
{5, 2, 0} 4 2 {6, 0, 6} 1 1

6. Codes over Fq + uFq + u2Fq, where q is odd

For the rest of this paper, let R2 be the commutative ring Fq[u]/(u3) = Fq+uFq+u2Fq,
where u3 = 0 and q is odd. We will only consider Euclidean inner product.

A code C of length n over R2 is permutation-equivalent to a code with generator
matrix  Ik0 A0 B0 + uB1 + u2B2

0 uIk1 uD1 + u2D2

0 0 u2F2

 (10)

where F2 ∈Mk2×(n−k0−k1)(Fq) and A0, B0, B1, B2, D1, D2 are matrices of appropriate sizes
over Fq. We define the torsion codes of C as follows:

tor0(C) = {v ∈ Fnq | ∃w, z ∈ Fnq , v + uw + u2z ∈ C} and

tori(C) = {v ∈ Fnq | uiv ∈ C}, for i = 1, 2.

The code tor0(C) is also called the residue code of C. Observe that tor0(C) ⊆ tor1(C) ⊆
tor2(C). If C has generator matrix (10), then the residue code tor0(C) has dimension k0
and generator matrix [

Ik0 A0 B0

]
, (11)
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tor1(C) has dimension k0 + k1 and generator matrix[
Ik0 A0 B0

0 Ik1 D1

]
(12)

and tor2(C) has dimension k0 + k1 + k2 and generator matrix Ik0 A0 B0

0 Ik1 D1

0 0 F2

 (13)

where F2 is of full row rank. The code C is of type {k0, k1, k2} and

|C| = |tor0(C)| |tor1(C)| |tor2(C)| = q3k0+2k1+k2 .

Suppose C is self-orthogonal. Then

Ik0 +A0A
T
0 +B0B

T
0 + u(B0B

T
1 +B1B

T
0 )

+u2(B0B
T
2 +B1B

T
1 +B2B

T
0 ) ≡ 0 (u3)

u(A0 +B0D
T
1 ) + u2(B1D

T
1 +B0D

T
2 ) ≡ 0 (u3)

u2(B0F
T
2 ) ≡ 0 (u3)

u2(Ik1 +D1D
T
1 ) ≡ 0 (u3)

which give the following:

Ik0 +A0A
T
0 +B0B

T
0 ≡ 0 (u) (14)

B0B
T
1 +B1B

T
0 ≡ 0 (u) (15)

B0B
T
2 +B1B

T
1 +B2B

T
0 ≡ 0 (u) (16)

A0 +B0D
T
1 ≡ 0 (u) (17)

B1D
T
1 +B0D

T
2 ≡ 0 (u) (18)

F2B
T
0 ≡ 0 (u) (19)

Ik1 +D1D
T
1 ≡ 0 (u). (20)

From (14), tor0(C) is self-orthogonal and by (14), (17) and (20), we have

tor1(C) ⊆ tor1(C)⊥,

that is, tor1(C) is self-orthogonal. Moreover, by (14), (17) and (19) we have

tor0(C) ⊆ tor2(C)⊥.

We will introduce another type of residue for a code over R2.

Definition 1. Let C be a code over R2. The code over Fq + uFq obtained from C by
reduction modulo u2 is called the u2-Residue of C and will be denoted by Res(C).
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It is easy to see that a generator matrix for Res(C) is[
Ik0 A0 B0 + uB1

0 uIk1 uD1

]
.

It is also clear that res(Res(C)) = tor0(C), tor(Res(C)) = tor1(C), and Res(C) is of type
{k0, k1}.

If C is self-orthogonal, by (14), (15) and (17) we have

Res(C) ⊆ Res(C)⊥,

that is, Res(C) is self-orthogonal of type {k0, k1}. Also, since

tor(Res(C)) = tor1(C) ⊆ tor2(C)

and
tor2(C) ⊆ tor0(C)⊥ = res(Res(C))⊥,

we have
tor(Res(C)) ⊆ tor2(C) ⊆ res(Res(C))⊥

which gives the following lemma.

Lemma 7. Let C be a self-orthogonal code over R2 of type {k0, k1, k2} and let C1 =Res(C)
and C2 =tor2(C). Then

(i) C1 ⊆ C⊥1 ,

(ii) tor(C1) ⊆ tor(C1)
⊥, and

(iii) tor(C1) ⊆ C2 ⊆ res(C1)
⊥, dim C2 = k0 + k1 + k2.

7. Codes over Fq + uFq + u2Fq with prescribed u2-Residue and torsion

For the rest of this chapter, we let C1 be a self-orthogonal code over R1 of type {k0, k1}
such that tor(C1) is self-orthogonal. We assume without loss of generality that C1 has
generator matrix

G1 =

[
Ik0 A0 B0 + uB1

0 uIk1 uD1

]
.

Since C1 is self-orthogonal, we have

Ik0 +A0A
T
0 +B0B

T
0 + u(A0A

T
1 +A1A

T
0 +B0B

T
1 +B1B

T
0 ) ≡ 0 (u2)

u(A0 +B0D
T
1 ) ≡ 0 (u2)

which are equivalent to (14), (15) and (17). Moreover, since tor(C1) is self-orthogonal, we
have

Ik0 +A0A
T
0 +B0B

T
0 ≡ 0 (u)
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A0 +B0D
T
1 ≡ 0 (u)

Ik1 +D1D
T
1 ≡ 0 (u)

which are equivalent to (14), (17) and (19).
Now, notice that from (17), we have

A0 ≡ −B0D
T
1 (u).

By (14), we have

Ik0 +B0D
T
1D1B

T
0 +B0B

T
0 ≡ 0 (u)

Ik0 +B0

(
DT

1D1B + Ik0
)
BT

0 ≡ 0 (u)

which implies B0 is of full row rank.
We start by counting the number of self-orthogonal codes C of type {k0, k1, 0} such

that Res(C) = C1. Similar to what we did in the previous chapter, we first exhibit the
generator matrix of such code C.

Lemma 8. If C is a code over R2 of type {k0, k1, 0} and Res(C) = C1, then there exist
matrices N0 ∈Mk0×(n−k0−k1)(Fq) and N1 ∈Mk1×(n−k0−k1)(Fq) such that[

Ik0 A0 B0 + uB1 + u2N0

0 uIk1 uD1 + u2N1

]
(21)

is a generator matrix for C. The matrices N0 and N1 are unique.

Proof. If C is a code over R2 of type {k0, k1, 0} such that Res(C) = C1, then for some
matrices M1,M2,M3,M4 and M5 over Fq of appropriate sizes,

Rk0+k12

[
Ik0 + u2M1 A0 + u2M2 B0 + uB1 + u2M3

0 Ik1 + u2M4 D1 + u2M5

]
⊆ C.

Applying elementary row operations,[
Ik0 − u2M1 0

0 Ik1 − u2M4

] [
Ik0 + u2M1 A0 + u2M2 B0 + uB1 + u2M3

0 Ik1 + u2M4 D1 + u2M5

]
=

[
Ik0 A0 + u2(M2 −M1A0) B0 + uB1 + u2(M3 −M1B0)
0 Ik1 D1 + u2(M5 −M4D1)

]
and[

Ik0
−u2(M2 −M1A0)

0 Ik1

] [
Ik0

A0 + u2(M2 −M1A0) B0 + uB1 + u2(M3 −M1B0)
0 Ik1

D1 + u2(M5 −M4D1)

]

=

[
Ik0 A0 B0 + uB1 + u2(M3 −M1B0 −M2D1 +M1A0D1)
0 Ik1 D1 + u2(M5 −M4D1)

]
.



L.E. Galvez, R.A. Betty, F. Nemenzo / Eur. J. Pure Appl. Math, 13 (4) (2020), 873-892 887

Letting

N0 = M3 −M1B0 −M2D1 +M1A0D1

N1 = M5 −M4D1,

we have

Rk0+k12

[
Ik0 A0 B0 + uB1 + u2N0

0 uIk1 uD1 + u2N1

]
⊆ C.

Therefore,

|C| ≥
∣∣∣∣Rk0+k12

[
Ik0 A0 B0 + uB1 + u2N0

0 uIk1 uD1 + u2N1

]∣∣∣∣
= qk0+k1q2k0+k1

= q3k0+2k1

= |C|

and hence, (21) is a generator matrix for C.
Next, we show uniqueness of the matrices N0 and N1 over Fq. Suppose there exist

matrices N ′0 ∈Mk0×(n−k0−k1)(Fq) and N ′1 ∈Mk1×(n−k0−k1)(Fq) such that

Rk0+k12

[
Ik0 A0 B0 + uB1 + u2N ′0
0 uIk1 uD1 + u2N ′1

]
=

Rk0+k12

[
Ik0 A0 B0 + uB1 + u2N0

0 uIk1 uD1 + u2N1.

]
.

This means that

B0 + uB1 + u2N ′0 ≡ B0 + uB1 + u2N0 (u3)

uD1 + u2N ′1 ≡ uD1 + u2N1 (u3)

which imply that

N ′0 ≡ N0 (u)

N ′1 ≡ N1 (u)

and hence, N0 and N1 are unique. �

This shows that the number of self-orthogonal codes C over R2 of type {k0, k1, 0} with
Res(C) = C1 is determined by the number of such matrices N0 and N1, which will be
given in the next lemma.

Lemma 9. The number of self-orthogonal codes C of type {k0, k1, 0} over R2 such that
Res(C) = C1 is

q(k0+k1)(n−k0−k1)−k0(k0+1)/2−k0k1 .
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Proof. By Lemma 8, C has generator matrix[
Ik0 A0 B0 + uB1 + u2N0

0 uIk1 uD1 + u2N1

]
for some matrices N0, N1 over Fq. From this, C is self-orthogonal if and only if

Ik0 +AAT0 +BBT
0 + u(B0B

T
1 +B1B

T
0 )

+u2(B1B
T
1 +B0N

T
0 +N0B

T
0 ) ≡ 0 (u3) (22)

u(A0 +B0D
T
1 ) + u2(B1D

T
1 +B0N

T
1 ) ≡ 0 (u3). (23)

We want to count the number of such matricesN0 andN1 satisfying the above equivalences.
First, consider the map

ΦB0 : Mk0×(n−k0−k1)(Fq) −→ Mk0(Fq)
N0 7−→ B0N

T
0 +N0B

T
0

as defined in the previous chapter. By (14) and (15), (22) becomes

B1B
T
1 +B0N

T
0 +N0B

T
0 ≡ 0 (u).

Hence,

|{N0 ∈Mk0×(n−k0−k1)|N0 satisfies (22)}| = |{Φ−1B0
(−B1B

T
1 )}|

= |ker ΦB0 |

=

∣∣Mk0×(n−k0−k1)
∣∣∣∣Symk0(Fq)

∣∣
= qk0(n−k0−k1)−k0(k0+1)/2.

Define another map

β : Mk1×(n−k0−k1)(Fq) −→ Mk0×k1(Fq)
N1 7−→ B0N

T
1 .

This map is surjective because B0 is of full row rank. Therefore by (17),

|{N1 ∈Mk1×(n−k0−k1)|N1 satisfies (23)}| = |{β−1(−B1D
T
1 )}|

= |ker β|

=

∣∣Mk1×(n−k0−k1)(Fq)
∣∣

|Mk0×k1(Fq)|
= qk1(n−k0−k1)−(k0k1).

Finally, the number of self-orthogonal codes C of type {k0, k1, 0} over R2 such that
Res(C) = C1 is the number of such matrices N0 satisfying (22) multiplied to the number
of such matrices N1 satisfying (23) which is

qk0(n−k0−k1)−k0(k0+1)/2qk1(n−k0−k1)−k0k1 .
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The result follows by simplifying the above expression. �

For the rest of this chapter, let C2 be a code over Fq with dimension k0 + k1 + k2 and
has a generator matrix

G2 =

 Ik0 A0 B0

0 Ik1 D1

0 0 F2


where F2 is of full row rank. We assume that tor(C1) ⊆ C2 ⊆ res(C1)

⊥. Hence,

Ik0 +A0A
T
0 +B0B

T
0 ≡ 0 (u)

A0 +B0D
T
1 ≡ 0 (u)

F2B
T
0 ≡ 0 (u)

which are equivalent to (14), (17) and (19), respectively.
Consider the following sets of codes over R2:

Y = {C | C is self-orthogonal of type {k0, k1, 0},Res(C) = C1} ;

Y ′ =
{
C ′ | C ′ is self-orthogonal,Res(C ′) = C1, tor2(C

′) = C2

}
.

Note that |Y | is already given in Lemma 9. Our next goal is to compute for |Y ′|. This
will be done in the same way as in the previous chapter.

Lemma 10. If C ∈ Y , then there exists a unique C ′ ∈ Y ′ such that C ⊆ C ′.

Proof. Since C ∈ Y , C has generator matrix (21) for some matrices N0 and N1.
Suppose C ⊆ C ′ for some C ′ ∈ Y ′ and there exists a code C ′′ with generator matrix Ik0 A0 B0 + uB1 + u2N0

0 uIk1 uD1 + u2N1

0 0 u2F2

 .
Clearly, C ⊆ C ′′. Note that C ′′ satisfies Res(C ′′) = C1 and tor2(C

′′) = C2. Using (19), we
conclude that C ′′ is self-orthogonal. Hence, C ′′ ∈ Y ′.

Next, notice that Rk22 [0 0 u2F2] ⊆ C ′. This, together with the fact that C ⊆ C ′, forces
C ′′ ⊆ C ′. But

|C ′′| = |C1||C2|
= q2k0+k1qk0+k1+k2

= q3k0+2k1+k2

= |C ′|

and therefore, C ′ = C ′′. �

Lemma 11. Let C ′ ∈ Y ′. Then | {C ∈ Y | C ⊆ C ′} | = q(k0+k1)k2.
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Proof. Let C ′ ∈ Y ′ whose generator matrix is Ik0 A0 B0 + uB1 + u2N0

0 uIk1 uD1 + u2N1

0 0 u2F2

 .
Define the map Ψ : Mk0×k2(Fq)×Mk1×k2(Fq) −→ {C ∈ Y | C ⊆ C ′} as

Ψ
(
M ′,M ′′

)
= Rk0+k12

[
Ik0 A0 B0 + uB1 + u2(N0 +M ′F2)
0 uIk1 uD1 + u2(N1 +M ′′F2)

]
and claim that this map is bijective.

Indeed, Ψ is injective because F2 is of full row rank. Now, suppose C ∈ Y such that
C ⊆ C ′. Then by Lemma 8, C has generator matrix[

Ik0 A0 B0 + uB1 + u2F ′

0 uIk1 uD1 + u2F ′′

]
for some matrices F ′ and F ′′. Since C ⊆ C ′, there exist matrices M ′ and M ′′ such that[

Ik0 A0 B0 + uB1 + u2F ′

0 uIk1 uD1 + u2F ′′

]
≡

[
Ik0 0 M ′

0 Ik1 M ′′

] Ik0 A0 B0 + uB1 + u2N0

0 uIk1 uD1 + u2N1

0 0 u2F2

 (u3).

Then we have F ′ = N0 + M ′F2 and F2 = N1 + M ′′F2, so Ψ is surjective and hence,
bijective.

Therefore,

|
{
C ∈ Y | C ⊆ C ′

}
| = |Mk0×k2(Fq)×Mk1×k2(Fq)|

= qk0k2qk1k2

= q(k0+k1)k2 .

�

Given C1 and C2, we can now count the number of self-orthogonal codes over R2 having
u2-Residue C1 and torsion C2.

Theorem 3. Suppose C1 is a self-orthogonal code over Fq + uFq, where q is odd, of
type {k0, k1} such that tor(C1) is self-orthogonal and C2 is a code over Fq of dimension
k0 +k1 +k2 such that tor(C1) ⊆ C2 ⊆ res(C1)

⊥. Then the number of self-orthogonal codes
C ′ of length n over Fq + uFq + u2Fq such that Res(C ′) = C1 and tor2(C

′) = C2 is

qk0(2n−3k0−6k1−2k2−1)/2+k1(n−k1−k2).
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Proof. Without loss of generality, we assume that C1 has generator matrix G1 and C2

has generator matrix G2. Then we compute for |Y ′|. By Lemma 10 and Lemma 11, we
have

q(k0+k1)k2
∣∣Y ′∣∣ =

∑
C′∈Y ′

∣∣{C ∈ X|C ⊆ C ′}∣∣
=

∑
C∈Y

∣∣{C ′ ∈ X ′|C ⊆ C ′}∣∣
=

∑
C∈Y

1

= |Y | .

The results follow from Lemma 9. �

8. Mass formula for self-orthogonal codes over Fq + uFq + u2Fq, where q is
odd

We now have the following theorem.

Theorem 4. Suppose q is odd. The number of distinct self-orthogonal codes over Fq +
uFq + u2Fq of length n and type {k0, k1, k2}, denoted by MR2(n, k0, k1, k2) is[

n− 2k0 − k1
k2

]
q

[
k0 + k1
k0

]
q

σq(n, k0 + k1)q
k0(2n−3k0−4k1−k2−1)+k1(n−k1−k2).

Proof. If C is a self-orthogonal code of length n over Fq+uFq+u2Fq of type {k0, k1, k2},
then by setting C1 = Res(C) and C2 = tor2(C), we see that C1 and C2 satisfies (i)–(iii) of
Lemma 7. The number of self-orthogonal codes with given u2-Residue C1 and torsion C2 is
given in Theorem 3. The number of self-orthogonal codes C1 over Fq+uFq satisfying (i) and

(ii) is given in Corollary 2. The number of codes C2 satisfying (iii) is

[
n− 2k0 − k1

k2

]
q

.

The value of MR2(n, k0, k1, k2) is obtained by the product of these. �

We now have the following mass formula for self-dual codes over R2 as a direct conse-
quence of Theorem 4.

Corollary 3. Suppose q is odd. The number of distinct self-dual codes of even length n
over Fq + uFq + u2Fq is given by

n
2∑

k0=0

MR2(n, k0,
n

2
− k0,

n

2
− k0). (24)

Proof. By [3], we have k1 = k2 and n = 2(k0 + k1). The result follows from Theorem
4. �

The formula (24) agrees with [3, Theorem 1].
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