A Hybrid Inversive Congruential Pseudorandom Number Generator with High Period
DOI:
https://doi.org/10.29020/nybg.ejpam.v14i1.3852Keywords:
Pseudorandom numbers, congruences, period, lattice testAbstract
Though generating a sequence of pseudorandom numbers by linear methods (Lehmer generator) displays acceptable behavior under some conditions of the parameters, it also has undesirable features, which makes the sequence unusable for various stochastic simulations. An extension which showed promise for such applications is a generator obtained by using a first-order recurrence based upon the inversive modulo a prime or a prime power, called inversive congruential generator (ICG). A lot of work has been dedicated to investigate the periods (under some conditions of the parameters), the lattice test passing, discrepancy and other statistical properties of such a generator. Here, we propose a new method, which we call hybrid inversive congruential generator (HICG), based upon a second order recurrence using the inversive modulo M, a power of 2. We investigate the period of this pseudorandom numbers generator (PRNG) and give necessary and sufficient conditions for our PRNG to have periods M (thereby doubling the period of the classical ICG) and M/2 (matching the one of the ICG). Moreover, we show that the lattice test complexity for a binary sequence associated to (a full period) HICG is precisely M/2.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.