EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 13, No. 4, 2020, 758-765 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

On β -local Functions in ideal topological spaces

P. L. Powar^{1,*}, T. Noiri², Shikha Bhadauria³

- ¹ Department of Mathematics and Computer Science, R. D. University, Jabalpur, India
- ² 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan
- ³ Department of Mathematics and Computer Science, R. D. University, Jabalpur, India

Abstract. In this paper, by using β -open sets in [1] we introduce and investigate the concepts of the β -local function, I_{s^*g} - β -closed sets and I_g - β -closed sets in an ideal topological space. In addition to the properties, an operation cl^*_{β} is defined and the properties are obtained similarly with the local function in [8].

2020 Mathematics Subject Classifications: 54C10, 54A05, 54D15, 54D30

Key Words and Phrases: β -open set, β -local function, operation cl^*_{β} , I_{s^*g} - β -closed set, I_g - β -closed set.

1. Introduction

Kuratowski [11] has introduced the concept of an ideal topological space in 1930. Further, Jankovic and Hamlet [8] have studied ideal topological spaces and obtained their significant properties. They introduced the concept of I-open sets and studied topologies via ideals quite extensively. Abd-El-Monsef et al.[2] further explored the ideas of I-open sets. The concept of I_g -closed sets has been given by Dontchev et al. [6] in 1999 and the idea of I_{s^*g} -closed sets was first introduced by Khan and Hamza [9]. The concepts of the s-local function was first introduced by Abd. El-Monsef et al. [3] and further investigated by Khan and Noiri [10].

Recently, Al-Omari and Noiri [5] have introduced and investigated the notion of local function Γ^* in an ideal topological space and showed that Γ^* is equivalent to the δ -local function due to Hatir et al. [7]. In this paper, by using β -open sets in [1] we introduce and investigate the concepts of the β -local function, I_{s^*g} - β -closed sets and I_g - β -closed sets in an ideal topological space. And also, an operation cl^*_{β} is defined and the properties are obtained similarly with the local function in [8].

DOI: https://doi.org/10.29020/nybg.ejpam.v13i4.3856

 $Email\ addresses: {\tt pvjrdvv@rediffmail.com}\ (P.\ L.\ Powar),$

t.noiri@nifty.com (T. Noiri), shikhabhadauriamaths@gmail.com (Shikha Bhadauria)

 $^{^*}$ Corresponding author.

2. Preliminaries

Throughout this paper (X, τ) and (X, τ, I) denote a topological space and an ideal topological space, respectively. The collection of closed sets in X is denoted by τ_F . For any subset A of X the closure and the interior of A are denoted by cl(A) and Int(A), respectively.

We now recall certain definitions, which would be required for our study.

Definition 1. [8] An ideal I on a topological spaces (X, τ) is a nonempty collection of subsets of X, which satisfies the following conditions:

- $A \in I$ and $B \in I$ implies $A \cup B \in I$,
- $A \in I$ and $B \subset A$ implies $B \in I$.

Then the triplet (X, τ, I) is called an ideal topological space.

Definition 2. [8] Let (X, τ, I) be an ideal topological space. For a set $A \subset X$, $A^*(X, \tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$, is called the **local-function** of A with respect to I and τ . $A^*(X, \tau)$ is simply denoted by A^* .

Definition 3. [5] Let (X, τ, I) be an ideal topological space. For a set $A \subset X$, $\Gamma^*(A)(I, \tau) = \{x \in X : A \cap U \notin I \text{ for every regular open set } U \text{ containing } x\}$ is called the **local function** Γ^* of A with respect to I and τ .

Definition 4. [3],[10] Let (X, τ, I) be an ideal topological space and A be a subset of X. Then $(A)^{*s}(I,\tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in SO(X,x)\}$ is called the **semi-local function** of A with respect to I and τ , where $SO(X,x) = \{U \in SO(X) | x \in U\}$. When there is no ambiguity we write A^{*s} for $(A)^{*s}(I,\tau)$.

Definition 5. Let (X,τ) be a topological space. A subset A of X is said to be:

- (i) β -open [1] if $A \subset cl(Int(cl(A)))$,
- (ii) semi-open [12] if $A \subset cl(Int(A))$,
- (iii) regular-open [13] if A = Int(cl(A)).

The family of all β -open (resp. semi-open, regular open) sets in X is denoted by $\beta O(X)$ (resp. SO(X), RO(X)).

Definition 6. [1] Let (X, τ) be a topological space. A subset A of X is said to be β -closed if its complement is β -open.

Definition 7. [4] Let (X, τ) be a topological space and A be a subset of X. The β -closure of A is defined by the intersection of all β -closed sets containing the set A and it is denoted by $\beta cl(A)$.

3. β -local functions

In order to define the generalized version of the local function [8], we now introduce the concept of the β -local function.

Definition 8. Let (X, τ, I) be an ideal topological space. For a set $A \subset X$, $A_{\beta}^*(I, \beta O(X)) = \{x \in X : A \cap U \notin I \text{ for every } U \in \beta O(x)\}$, where $\beta O(x) = \{U \in \beta O(X) : x \in U\}$, is called the β -local function of A with respect to I and $\beta O(X)$. $A_{\beta}^*(I, \beta O(X))$ is simply denoted by A_{β}^* .

Example 1. Let $X = \{a, b, c, d\}$ be a nonempty set with the topology $\tau = \{\phi, X, \{a\}, \{a, b, c\}\}$. Then the collection of closed sets is $\tau_F = \{X, \phi, \{b, c, d\}, \{d\}\}$. Applying Definition 5, we compute the collection $\beta O(X) = \{\phi, X, \{a\}, \{a, b\}, \{a, d\}, \{a, b, c\}, \{c, d, a\}, \{d, a, b\}, \{a, c\}\}$. Next, we consider $I = \{\phi, \{b\}\}$. If $A = \{c, d\} \subset X$ then it may be easily verified that $A_{\beta}^* = \{c, d\}$ and $A^* = \{b, c, d\}$.

We need the following lemma for our analysis.

Lemma 1. [4] Let A be a subset of a topological space (X,τ) . Then $x \in \beta cl(A)$ if and only if $A \cap U \neq \phi$ for every U in $\beta O(x)$.

Theorem 1. Let (X, τ, I) be an ideal topological space and A, B be subsets of X. Then the following properties hold:

- (1). If $A \subset B$ then $A_{\beta}^* \subset B_{\beta}^*$,
- (2). $(A \cup B)^*_{\beta} = A^*_{\beta} \cup B^*_{\beta}$,
- (3). $(A \cap B)^*_{\beta} \subset A^*_{\beta} \cap B^*_{\beta}$,
- $(4). (A_{\beta}^*)_{\beta}^* \subset A_{\beta}^*,$
- (5). $A_{\beta}^* = \beta cl(A_{\beta}^*) \subset \beta cl(A)$.

Proof. (1). If $x \notin B_{\beta}^*$, then there exists $U \in \beta O(x)$ such that $U \cap B \in I$. Since $A \subset B$, $U \cap A \in I$ and hence $x \notin A_{\beta}^*$. This shows that $A_{\beta}^* \subset B_{\beta}^*$.

(2). Let $x \in (A \cup B)^*_{\beta}$, then using Definition 8, we have $U \cap (A \cup B) \notin I$ for every $U \in \beta O(x)$ and $(U \cap A) \cup (U \cap B) \notin I$. Now, since I is an ideal, three cases can be possible:

case I $(U \cap A) \notin I$ and $(U \cap B) \notin I$,

case II $(U \cap A) \in I$ and $(U \cap B) \notin I$,

case III $(U \cap A) \notin I$ and $(U \cap B)$ in I.

It may be seen easily that for all three cases $x \in A_{\beta}^* \cup B_{\beta}^*$. Therefore, we have $(A \cup B)_{\beta}^* \subset A_{\beta}^* \cup B_{\beta}^*$. By (1), $A_{\beta}^* \subset (A \cup B)_{\beta}^*$ and $B_{\beta}^* \subset (A \cup B)_{\beta}^*$. Hence, $A_{\beta}^* \cup B_{\beta}^* \subset (A \cup B)_{\beta}^*$ and we obtain

$$A_{\beta}^* \cup B_{\beta}^* = (A \cup B)_{\beta}^*.$$

(3). Since, $A \cap B \subset A$ and $A \cap B \subset B$, by (1), $(A \cap B)^*_{\beta} \subset (A)^*_{\beta}$ and $(A \cap B)^*_{\beta} \subset (B)^*_{\beta}$ and hence,

$$(A \cap B)^*_{\beta} \subset (A)^*_{\beta} \cap (B)^*_{\beta}.$$

- (4). Let $x \in (A_{\beta}^*)_{\beta}^*$, then by Definition 8, we have, $A_{\beta}^* \cap U \notin I$ for every $U \in \beta O(x)$ and $A_{\beta}^* \cap U \neq \phi$. Now, let $y \in A_{\beta}^* \cap U$, then $y \in U$ and $U \in \beta O(y)$. Since $y \in A_{\beta}^*$, $A \cap U \notin I$. Hence, $x \in A_{\beta}^*$. Therefore, $(A_{\beta}^*)_{\beta}^* \subset A_{\beta}^*$.
- (5). We know that $A_{\beta}^* \subset \beta cl(A_{\beta}^*)$.

We show that $\beta cl(A_{\beta}^*) \subset A_{\beta}^*$.

Let $x \in \beta cl(A_{\beta}^*)$. Then by Lemma 1, we have, $A_{\beta}^* \cap U \neq \phi$ for every $U \in \beta O(x)$. Now, let $y \in A_{\beta}^* \cap U$, then we have $y \in A_{\beta}^*$ and $y \in U \in \beta O(X)$. Therefore, we have, $A \cap U \notin I$ and hence, $x \in A_{\beta}^*$. Therefore, $\beta cl(A_{\beta}^*) \subset A_{\beta}^*$ and hence, $A_{\beta}^* = \beta cl(A_{\beta}^*)$. This implies A_{β}^* is β -closed.

Next, we show that $A^*_{\beta} \subset \beta cl(A)$. If $x \notin \beta cl(A)$, then there exists $U \in \beta O(x)$ such that $U \cap A = \phi \in I$ and $x \notin A^*_{\beta}$. Therefore, $A^*_{\beta} \subset \beta cl(A)$.

Remark 1. Let (X, τ, I) be an ideal topological space and $A \subset X$. Then the following holds:

- (1). If $I = \{\phi\}$, then $A_{\beta}^* = \beta cl(A)$,
- (2). If $K \in I$, then $K_{\beta}^* = \phi$ and hence, $\{\phi\}_{\beta}^* = \phi$,
- (3). It is not necessary that 3(a). $A \subset A_{\beta}^*$ or 3(b). $A_{\beta}^* \subset A$,
- (4). $A_{\beta}^{*}(I, \beta O(X)) = (A)^{*s}(I, \tau)$ if $SO(X) = \beta O(X)$,
- (5). $A_{\beta}^{*}(I, \beta O(X)) = A^{*}(I, \tau)$ if $\beta O(X) = \tau(X)$.

In order to verify 3(a). and 3(b). of Remark 1, we explore the following example:

Example 2. Let $X = \{a, b, c, d\}$ be a nonempty set with the topology $\tau = \{\phi, X, \{a\}, \{a, b, c\}\}$ and the collection of closed sets is $\tau_F = \{\phi, X, \{b, c, d\}, \{d\}\}$. Next, by applying Definition 5, we compute the collection $\beta O(X) = \{\phi, X, \{a\}, \{a, b\}, \{a, d\}, \{a, c\}, \{a, b, c\}, \{c, d, a\}, \{d, a, b\}\}$. Considering $I = \{\phi, \{b\}\}$ and $A, B \subset X$ where, $A = \{b, c, d\}$ and $B = \{a, b, c\}$ then by applying Definition 8, $A_{\beta}^* = \{c, d\}$ and $B_{\beta}^* = X$. In view of above assertions 3(a) and 3(b) have been verified.

Lemma 2. Let (X, τ, I) be an ideal topological space. Then the following properties hold: (1). $RO(X) \subset \tau \subset SO(X) \subset \beta O(X)$,

- (2). $A^*_{\beta} \subset A^{*^s} \subset A^* \subset \Gamma^*(A)$ for every subset A of X.
 - *Proof.* (1). The proof is obvious by the Definition 5.
- (2). First, we show that $A^*_{\beta} \subset A^{*^s}$. Let $x \in A^*_{\beta}$. Then, $A \cap U \notin I$ for every $U \in \beta O(x)$. Since $SO(X) \subset \beta O(X)$, $A \cap U \notin I$ for every $U \in SO(x)$ and $x \in A^{*^s}$. Hence, we have $A^*_{\beta} \subset A^{*^s}$. Similarly, by using the fact that $RO(X) \subset \tau \subset SO(X)$, we may establish $A^{*^s} \subset A^*$ and $A^* \subset \Gamma^*(A)$.

Definition 9. Let (X, τ, I) be an ideal topological space. We define $cl^*_{\beta}(A) = A \cup A^*_{\beta}$ for every subset A of X.

Theorem 2. Let (X, τ, I) be an ideal topological space. Then the following properties hold:

- (1). $A \subset cl^*_{\beta}(A)$,
- (2). $cl_{\beta}^{*}(\phi) = \phi \text{ and } cl_{\beta}^{*}(X) = X,$
- (3). $A \subset B$ implies $cl_{\beta}^*(A) \subset cl_{\beta}^*(B)$,
- (4). $cl^*_{\beta}(A) \cup cl^*_{\beta}(B) = cl^*_{\beta}(A \cup B),$
- (5). $(cl^*_{\beta}(A))^*_{\beta} \subset cl^*_{\beta}(A) = cl^*_{\beta}(cl^*_{\beta}(A)).$

Proof. (1). This follows directly by the Definition 9.

- (2). We have $cl^*_{\beta}(\phi) = \{\phi\} \cup \{\phi\}^*_{\beta} = \phi$. Similarly, it may be verified that $cl^*_{\beta}(X) = X$.
- (3). Given, $A \subset B$. By Definition 9, $cl_{\beta}^*(A) = A \cup A_{\beta}^*$ and $cl_{\beta}^*(B) = B \cup B_{\beta}^*$. Next, by Theorem 1 (1), we have $A_{\beta}^* \subset B_{\beta}^*$. Therefore, we obtain $A \cup A_{\beta}^* \subset B \cup B_{\beta}^*$ and hence $cl_{\beta}^*(A) \subset cl_{\beta}^*(B)$.
- (4). By Theorem 1 (2), $cl_{\beta}^{*}(A \cup B) = (A \cup B) \cup (A_{\beta}^{*} \cup B_{\beta}^{*})$ = $cl_{\beta}^{*}(A) \cup cl_{\beta}^{*}(B)$. Hence, $cl_{\beta}^{*}(A \cup B) = cl_{\beta}^{*}(A) \cup cl_{\beta}^{*}(B)$.
- (5). First, we show that $(c\tilde{l}_{\beta}^*(A))_{\beta}^* \subset cl_{\beta}^*(A)$.

Let if possible $x \notin cl^*_{\beta}(A)$. This implies $x \notin A^*_{\beta}$ and there exists $U \in \beta O(x)$ such that $U \cap A \in I$ and we conclude that $U \cap A^*_{\beta} = \phi$ and $\phi \in I$. For if $A^*_{\beta} \cap U \neq \phi$ then there exists $y \in A^*_{\beta} \cap U$ and $U \in \beta O(y)$. Then $y \in A^*_{\beta}$ implies $U \cap A \notin I$, which is a contradiction as $U \cap A \in I$. Hence, $U \cap A^*_{\beta} = \phi$. Now, we obtain $(A \cup A^*_{\beta}) \cap U = (A \cap U) \cup (A^*_{\beta} \cap U) \in I$. This implies that $(cl^*_{\beta}(A)) \cap U \in I$. By Definition 8, we obtain, $x \notin (cl^*_{\beta}(A))^*_{\beta}$. Hence, we obtain $(cl^*_{\beta}(A))^*_{\beta} \subset cl^*_{\beta}(A)$.

Next, we show that $cl_{\beta}^{*}(cl_{\beta}^{*}(A)) = cl_{\beta}^{*}(A)$. Now, we have $cl_{\beta}^{*}(cl_{\beta}^{*}(A)) = cl_{\beta}^{*}(A) \cup (cl_{\beta}^{*}(A))_{\beta}^{*}$. Since $(cl_{\beta}^{*}(A))_{\beta}^{*} \subset cl_{\beta}^{*}(A)$, we obtain $cl_{\beta}^{*}(cl_{\beta}^{*}(A)) \subset cl_{\beta}^{*}(A)$. It is obvious that $cl_{\beta}^{*}(A) \subset cl_{\beta}^{*}(cl_{\beta}^{*}(A))$. Therefore, $cl_{\beta}^{*}(A) = cl_{\beta}^{*}(cl_{\beta}^{*}(A))$.

Theorem 3. Let (X, τ, I) be an ideal topological space. Let $\tau_{\beta}^* = \{U \subset X : cl_{\beta}^*(X \setminus U) = X \setminus U\}$. Then τ_{β}^* is a topology for X such that $\tau^* \subset \tau_{\beta}^*$ and $\beta O(X) \subset \tau_{\beta}^*$.

Proof. By Theorem 2, we obtain that $cl^*_{\beta}(A) = A \cup A^*_{\beta}$ is a Kuratowski Closure Operator. Therefore, τ^*_{β} is the topology for X generated by cl^*_{β} .

First, we show that $\tau^* \subset \tau_{\beta}^*$. By Lemma 2(2), for every subset A of X, $cl_{\beta}^*(A) = A \cup A_{\beta}^* \subset A \cup A^* = cl^*(A)$. Let A be a τ^* -closed set, then $cl^*(A) = A$ and $cl_{\beta}^*(A) \subset A$. Hence $cl_{\beta}^*(A) = A$ and A is τ_{β}^* -closed.

Secondly, we show that $\beta O(X) \subset \tau_{\beta}^*$. Suppose that A is β -closed. If $x \notin A$, then by Lemma 1, there exists U in $\beta O(x)$ such that $U \cap A = \phi \in I$. Hence $x \notin A_{\beta}^*$. This shows $A_{\beta}^* \subset A$. Therefore, $cl_{\beta}^*(A) = A \cup A_{\beta}^* = A$ and A is τ_{β}^* -closed. We obtain that $\beta O(X) \subset \tau_{\beta}^*$.

Definition 10. Let (X, τ, I) be an ideal topological space. A subset A of X is said to be I_g - β -closed if $A^*_{\beta} \subset U$ whenever $A \subset U$ and U in $\beta O(X)$.

Theorem 4. For a subset A of an ideal topological space (X, τ, I) , the following properties are equivalent:

- (1). A is I_q - β -closed;
- (2). $cl_{\beta}^*(A) \subset U$ whenever $A \subset U$ and U is β -open;
- (3). For every $x \in cl^*_{\beta}(A)$, $\beta cl(\{x\}) \cap A \neq \phi$;
- (4). $cl_{\beta}^*(A) A$ contains no nonempty β -closed set;
- (5). $A_{\beta}^* A$ contains no nonempty β -closed set.
- *Proof.* (1). \Rightarrow (2). By hypothesis, A is I_g - β -closed. Therefore, $A^*_{\beta} \subset U$ whenever $A \subset U$ and U in $\beta O(X)$. This implies $A^*_{\beta} \cup A \subset U$ and hence, $cl^*_{\beta}(A) \subset U$ whenever $A \subset U$ and $U \in \beta O(X)$.
- (2). \Rightarrow (3). Suppose $x \in cl^*_{\beta}(A)$. If $\beta cl(\{x\}) \cap A = \phi$, then $A \subset (X \beta cl(\{x\}))$, where $(X \beta cl(\{x\}))$ is β -open and by hypothesis, $cl^*_{\beta}(A) \subset (X \beta cl(\{x\}))$. Therefore, $cl^*_{\beta}(A) \cap \beta cl(\{x\}) = \phi$, which is a contradiction, since $x \in cl^*_{\beta}(A)$. Hence, for every $x \in cl^*_{\beta}(A)$, $\beta cl(\{x\}) \cap A \neq \phi$
- (3). \Rightarrow (4). Let if possible, $F \subset cl^*_{\beta}(A) A$, where F is a nonempty β -closed set and $x \in F$. This implies $F \subset X A$ and $F \cap A = \phi$. Therefore, $\beta cl(\{x\}) \cap A = \phi$, which is a contradiction to our hypothesis as $\beta cl(\{x\}) \cap A \neq \phi$. Hence, $cl^*_{\beta}(A) A$ contains no nonempty β -closed set.
- (4). \Rightarrow (5). The proof is obvious, since $A_{\beta}^* \subset cl_{\beta}^*(A)$.
- (5). \Rightarrow (1). Let $A \subset U$ and U is any β -open set of X. By Theorem 1(5), A_{β}^* is β -closed and $A_{\beta}^* \cap (X U) \subset A_{\beta}^* A$, where, $A_{\beta}^* \cap (X U)$ is β -closed. By (5), $A_{\beta}^* \cap (X U) = \phi$. Therefore, $A_{\beta}^* \subset U$ and hence A is I_g - β -closed.

4. I_{s^*q} - β -closed sets

In this section, the notion of I_{s^*g} - β -closed sets is defined with an illustrative example. Moreover, some properties of these closed sets has been also explored.

Definition 11. Let (X, τ, I) be an ideal topological space. A subset A of X is said to be I_{s^*g} - β -closed (resp. I_{s^*g} -closed [9]) if $A^*_{\beta} \subset U$ (resp. $A^* \subset U$) whenever $A \subset U$ and U is semi-open. The complement of an I_{s^*g} - β -closed set is said to be I_{s^*g} - β -open. The family of I_{s^*g} - β -closed (resp. I_{s^*g} -closed) sets is denoted by I_{s^*g} $\beta C(X)$ (resp. $I_{s^*g}C(X)$).

Theorem 5. Let (X, τ, I) be an ideal topological space and A a subset of X. If A is I_{s^*g} -closed, then it is I_{s^*g} -closed. But the converse is not always true.

Proof. Suppose that A is I_{s^*g} -closed. For every $U \in SO(X)$ containing A, we have $A^* \subset U$ and by Lemma 2(2), $A^*_{\beta} \subset A^* \subset U$. This shows that A is I_{s^*g} - β -closed.

Example 3. Let $X = \{a, b, c, d\}$ be a nonempty set with the topology $\tau = \{\phi, X, \{b, c\}, \{a, b, c\}, \{b\}, \{a, b\}\}$ and the collection of closed sets is $\tau_F = \{X, \phi, \{a, c, d\}, \{c, d\}, \{a, d\}, \{d\}\}\}$. Applying the Definition 5, we compute the collection $\beta O(X) = \{\phi, X, \{a, b\}, \{b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}, \{d, a, b\}\}$. Considering $I = \{\phi, \{a\}\}\}$ and applying Definition 11, we compute the collection of $I_{s^*g}\beta C(X) = \{\phi, X, \{a, c, d\}, \{c, d\}, \{a, d\}, \{a, c\}, \{d\}, \{a\}, \{c\}\}\}$ and $I_{s^*g}C(X) = \{\phi, X, \{a, c, d\}, \{c, d\}, \{a, d\}, \{d\}, \{a\}\}$. It can be verified that the subsets $\{a, c\}$ and $\{c\}$ of X are $I_{s^*g}\beta$ -closed but not I_{s^*g} -closed.

REFERENCES 764

Theorem 6. Let (X, τ, I) be an ideal topological space and A, B be subsets of X.

- (1). If A and B are I_{s^*q} - β -closed, then $A \cup B$ is I_{s^*q} - β -closed.
- (2). If A is closed in X, then A is I_{s^*q} - β -closed.
- (3). If U is open in X and A is I_{s^*g} - β -open, then $U \cap A$ is I_{s^*g} - β -open.
- *Proof.* (1). Let $A \cup B \subset U$ and $U \in SO(X)$. Then, we know that $A \subset U$ and $B \subset U$. Since A and B both are I_{s^*g} - β -closed, we have $A^*_{\beta} \subset U$ and $B^*_{\beta} \subset U$. Hence, $A^*_{\beta} \cup B^*_{\beta} \subset U$. Now by Theorem 1(2), $(A \cup B)^*_{\beta} = A^*_{\beta} \cup B^*_{\beta} \subset U$. Hence, we obtain $A \cup B$ is I_{s^*g} - β -closed.
- (2). Let $A \subset U$ and $U \in SO(X)$. By Lemma 2, $A_{\beta}^* \subset A^* \subset Cl(A) = A \subset U$. This shows that A is I_{s^*g} - β -closed.
- (3). The proof is a direct consequence of (1) and (2).

5. Conclusion

The concept of the β -local function, the operation cl_{β}^{*} and I_{g} - β -closed sets have been introduced with illustrative examples. Moreover, certain properties have been also studied and explored. It may be concluded that the concept of the topology τ_{β}^{*} is more generalized version of τ^{*} and β -open sets, which may be further useful to enrich the class of continuous functions.

References

- [1] M. E. Abd El-Monsef, S. N. EL-Deeb and R.A. Mahmoud, β -open and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77 90.
- [2] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, On I-open sets and I-continuous functions, Kyungpook Math. J., 32(1)(1992), 21-30.
- [3] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, Some topological operators via ideals, Kyungpook J. Math., 32(2)(1992), 273 284.
- [4] M. E. Abd-E-Monsef, R. A. Mohmoud and E. R. Lashin, β -closure and β -interior, J. Fac. Ed. Ain Shans Univ., 10(1986), 235-245.
- [5] A. Al-Omari and T. Noiri, Local function Γ^* in ideal topological spaces, Sci. Stud. Res. Ser. Math. Inform., 26(1)(2016), 5-16.
- [6] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japon., 49(1999), 395 402.
- [7] E. Hatir, A. Al-Omari and S. Jafari, δ -local functions and its properties in ideal topological spaces, Fasciculi Math., 53(2014), 53-64.
- [8] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295 310.

REFERENCES 765

[9] M. Khan and M. Hamza, I_{s^*g} -closed sets in ideal topological spaces, Glob. J. Pure Appli. Math., 7(1)(2011), 89 - 99.

- [10] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2(1)(2010), 36-42.
- [11] K. Kuratowski, Topology I, Warszawa (1933).
- [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [13] P. L. Powar and K. Rajak, Some new concepts of continuity in generalized topological space, Int. J. Com. Appl., 38(5)(2012), 12 17.