On γ-Sets in Rings
DOI:
https://doi.org/10.29020/nybg.ejpam.v14i1.3873Keywords:
$\gamma$-set, separating $\gamma$-set, ring, $c$-numberAbstract
Let R be a ring with identity 1R. A subset J of R is called a γ-set if for every a ∈ R\J,
there exist b, c ∈ J such that a+b = 0 and ac = 1R = ca. A γ-set of minimum cardinality is called a minimum γ-set. In this study, we identified some elements of R that are necessarily in a γ-sets, and we presented a method of constructing a new γ-set. Moreover, we gave: necessary and sufficient conditions for rings to have a unique γ-set; an upper bound for the total number of minimum γ-sets in a division ring; a lower bound for the total number of minimum γ-sets in a division ring; necessary and sufficient conditions for T(x) and T to be equal; necessary and sufficient conditions for a ring to have a trivial γ-set; necessary and sufficient conditions for an image of a γ-set to be a γ-set also; necessary and sufficient conditions for a ring to have a trivial γ-set; and, necessary and sufficient conditions for the families of γ-sets of two division rings to be isomorphic.
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.