EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 14, No. 1, 2021, 314-326 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On γ -Sets in Rings

Eva Jenny C. Sigasig¹, Cristoper John S. Rosero², Michael P. Baldado Jr.^{3,*}

- ¹ Lourdes Ledesma Del Prado Memorial National High School, Tanjay City, Philippines
- ² Mathematics and ICT Department, Cebu Normal University, Cebu City, Philippines
- ³ Mathematics Department, Negros Oriental State University, Dumaguete City, Philippines

Abstract. Let R be a ring with identity 1_R . A subset J of R is called a γ -set if for every $a \in R \setminus J$, there exist $b, c \in J$ such that a + b = 0 and $ac = 1_R = ca$. A γ -set of minimum cardinality is called a minimum γ -set.

In this study, we identified some elements of R that are necessarily in a γ -sets, and we presented a method of constructing a new γ -set.

Moreover, we gave: necessary and sufficient conditions for rings to have a unique γ -set; an upper bound for the total number of minimum γ -sets in a division ring; a lower bound for the total number of minimum γ -sets in a division ring; necessary and sufficient conditions for T(x) and T to be equal; necessary and sufficient conditions for a ring to have a trivial γ -set; necessary and sufficient conditions for an image of a γ -set to be a γ -set also; necessary and sufficient conditions for a ring to have a trivial γ -set; and, necessary and sufficient conditions for the families of γ -sets of two division rings to be isomorphic.

2020 Mathematics Subject Classifications: 16

Key Words and Phrases: \mathscr{D} -set, γ -set, minimum γ -set, separating γ -set, ring

1. Introduction

Let G be a group with identity e. A subset D of G is called a \mathscr{D} -set of G if for every x in $G \setminus D$, there exists $y \in D$ such that xy = e = yx. In other words, a subset of a group G is a \mathscr{D} -set only if every element not in D has its inverse in D. A smallest \mathscr{D} -set of G is called a minimum \mathscr{D} -set of G. The number of minimum \mathscr{D} -set of G is called the index minimum. If G is a finite group and $S = \{s \in G : s^2 = e\}$ (the elements of S will be called involutions), then the c-number of G is given by $|(G \setminus S)|/2$.

Let R be a ring with identity 1_R . A subset J of R is called a γ -set of R if for every $a \in R \setminus J$, there exist $b, c \in J$ such that a + b = 0 and $ac = 1_R = ca$. For example, consider the field \mathbb{Z}_5 . Then the γ -sets of \mathbb{Z}_5 are $\{0, 1, 4, 2\}$, $\{0, 1, 4, 3\}$, and \mathbb{Z}_5 . A γ -set of a finite

DOI: https://doi.org/10.29020/nybg.ejpam.v14i1.3873

Email addresses: evajenny@yahoo.com (E.J. Sigasig),

crisrose_18@yahoo.com (C.J. Rosero), michaelpbaldadojr@yahoo.com (M. Baldado Jr.)

^{*}Corresponding author.

ring having minimum cardinality is called a minimum γ -set. For example, $\{0, 1, 4, 2\}$ and $\{0, 1, 4, 3\}$ are minimum γ -sets \mathbb{Z}_5 .

Here after please refer to [4], [5], [6], [7], [8], [9], [10] for the other concepts.

Motivated by the concept dominating sets in graphs, Buloron *et al.* [3] introduced the concept \mathscr{D} -set in a group. The concept \mathscr{D} -set uses the idea of dominating sets in some sense. For example, a \mathscr{D} -set E in a group requires that every element not in E must have its inverse in E in the same way that a dominating set D in a graph requires every element not in D must be a neighbor of some element in D.

Buloron et al. [3] gave some fundamental properties of \mathscr{D} -sets and some characterizations. Ontolan et al. [12] gave the number of minimum \mathscr{D} -sets in a group. Corcino et al. [2] presented some isomorphism results for some families of \mathscr{D} -sets.

Rosero and Baldado [1] continued the study of \mathscr{D} -sets by investigating the \mathscr{D} -sets that are generated by a set. Moreover, they introduced and investigated a parallel concept for rings, called γ -sets [11].

In this study, we continued the investigation of γ -sets.

2. Preliminary Results

This section presents some elementary properties of a γ -set. We denote by T_R the set of all γ -sets of R. Note that $T_R \neq \emptyset$ since R is a γ -set.

The next theorem, Theorem 1, is taken from [3]. It shows that the set of all γ -sets in a ring is a semi-group under the set operation union, and the set $T_R^C = \{J^C : J \text{ is a } \gamma\text{-set}\}$ is a semi-group under the set operation intersection.

Theorem 1. [3] Let R be a ring with identity 1_R . Let T_R be the set of all γ -sets of R and $T_R^C = \{J^C : J \text{ is a } \gamma\text{-set}\}$. Then

- a.) The set T_R is a semi-group under the set operation union;
- b.) The set T_R^C is a semi-group under the set operation intersection.

Remark 1 (b) is found in [4], while (c) is an exercise in [6] (Prob 24E, Chapter 5.1). Remark 1 (d) is a contrapositive of (c).

Remark 1. Let R be a ring with identity 1_R and $a \in R$.

- a.) If a is a unit, then $-(a^{-1}) = (-a)^{-1}$.
- b.) If a is a unit, then so is -a.
- c.) If a is a unit, then a is not a zero divisor.
- d.) If a is a zero divisor, then a is not a unit.

Remark 2 is clear, and sometimes are given in the exercises of some books.

Remark 2. Let R be a ring with identity $1_R \neq 0$ and a be a unit of R.

- a.) $-a = a^{-1}$ if and only if $a = (-a)^{-1}$.
- b.) $-a \neq a^{-1}$ if and only if $a \neq (-a)^{-1}$
- c.) $a^2 = 1_R$ if and only if $-a = (-a)^{-1}$.
- d.) $a^2 \neq 1_R$ if and only if $-a \neq (-a)^{-1}$.
- e.) 2a = 0 if and only if $(a)^{-1} = (-a)^{-1}$.
- f.) $2a \neq 0$ if and only if $(a)^{-1} \neq (-a)^{-1}$.

Theorem 2, identified the elements of a ring that are necessarily in a γ -sets.

Theorem 2. Let R be a ring with identity $1_R \neq 0$ and J be a γ -set of R.

- a.) If 2a = 0, then $a \in J$.
- b.) If $a^2 = 1_R$, then $a \in J$.
- c.) If a is not a unit, then $a \in J$.
- d.) If a is a zero-divisor, then $a \in J$.

Proof. Let R be a ring with identity $1_R \neq 0$ and J be a γ -set of R. (a) Assume that 2a = 0 and $a \notin J$. Since J is a γ -set, there exists $b \in J$ such that a + b = 0. Hence, a = a + 0 = a + (a + b) = (a + a) + b = 2a + b = 0 + b = b, that is a = b. This is a contradiction.

- (b) Assume that $a^2 = 1_R$ and $a \notin J$. Since J is a γ -set, there exists $c \in J$ such that $ac = 1_R = ca$. Hence, $a = a1_R = a(ac) = (aa)c = 1_Rc = c$, that is a = c. This is a contradiction.
- (c) If a is not a unit, then a has no multiplicative inverse. Clearly, a is necessarily in J.
- (d) If a is a zero-divisor, then by Remark 2 (b), a is not a unit. Hence, by (c) a must be in J.

3. Constructing a γ -Set

In this section, we presented a method of constructing a γ -set from a γ -set.

The next theorem, Theorem 3, says that a unit a with $a^2 \neq 1_R$ and $2a \neq 0$ determines a γ -set.

Theorem 3. Let R be a ring with identity $1_R \neq 0$, and J is a γ -set of R. If a is a unit with $a^2 \neq 1_R$ and $2a \neq 0$, then $\left(J \setminus \{a, (-a)^{-1}\}\right) \cup \{a^{-1}, -a\}$ and $\left(J \setminus \{a^{-1}, -a\}\right) \cup \{a, (-a)^{-1}\}$ are γ -sets of R.

Proof. Let R be a ring with identity $1_R \neq 0$, and J is a γ -set of R. Let a be a unit of R with $a^2 \neq 1_R$ and $2a \neq 0$. Then by Remark 2 (d) and Remark 2 (f), $-a \neq (-a)^{-1}$ and $a^{-1} \neq (-a)^{-1}$. Consider $J_1 = (J \setminus \{a, (-a)^{-1}\}) \cup \{a^{-1}, -a\}$ and $J_2 = (J \setminus \{a^{-1}, -a\}) \cup \{a, (-a)^{-1}\}$.

Claim 1. $J_1 = (J \setminus \{a, (-a)^{-1}\}) \cup \{a^{-1}, -a\}$ is a γ -set

To show Claim 1 consider the following cases:

Case 1. $a \notin J$

If $a \notin J$, then $J = J_1$. Hence J_1 is a γ -set.

Case 2. $a \in J$

If $a \in J$, then let $b \in R \setminus J_1$ and consider the following subcases:

Subcase 1. $b \neq a$ and $b \neq (-a)^{-1}$

If $b \neq a$ and $b \neq (-a)^{-1}$, then $b \in R \setminus J \cup \{a^{-1}, -a\}$. Since J is a γ -set, there exist $c, d \in J_1$ such that b + c = 0 = c + b and $bd = 1_R = db$.

Subcase 2. b = a

If b = a, then a + (-a) = 0 = (-a) + a and $aa^{-1} = 1_R = a^{-1}a$.

Subcase 3. $b = (-a)^{-1}$

If $b = (-a)^{-1}$, then by Remark 1 (a) $(-a)^{-1} + a^{-1} = -a^{-1} + a^{-1} = 0 = a^{-1} + -a^{-1} = a^{-1} + (-a)^{-1}$ and $(-a)^{-1}(-a) = 1_R = (-a)(-a)^{-1}$.

This shows the claim.

Claim 2.
$$J_2 = (J \setminus \{a^{-1}, -a\}) \cup \{a, (-a)^{-1}\}$$
 is a γ -set Proved similarly.

Let R be a ring with identity $1_R \neq 0$, and J is a γ -set of R. A unit a with $a^2 \neq 1_R$ and $2a \neq 0$ is called a *super-couple*. Theorem 5 suggests that every super-couple determines a minimum γ -set, in the same way as in [3] that every non-involution determines a \mathscr{D} -set.

Theorem 4 give some of the conditions wherein a ring R has a unique γ -set, that is, $|T_R| = 1$.

Theorem 4. Let R be a ring with identity $1_R \neq 0$ and J be a γ -set of R. Then $|T_R| > 1$ if and only if there exists a unit $u \in R$ such that $u^2 \neq 1_R$ and $2u \neq 0$.

Proof. Let R be a ring with identity $1_R \neq 0$ and J be a γ -set of R. Suppose that $|T_R| > 1$. Then there exists a γ -set J in R with $J \neq R$. Let $x \in R \setminus J$. Since J is a γ -set, there exists $y, z \in J$ such that x + y = 0 = y + x and $xz = 1_R = zx$. Thus, x is a unit. Moreover, since $y, z \in J$ and $x \in R \setminus J$, $x \neq y$ and $x \neq z$. Hence, by Remark 2 (d) and Remark 2 (f), $x^2 \neq 1_R$ and $2x \neq 0$, respectively.

Conversely, assume that there exists a unit $x \in R$ such that $x^2 \neq 1_R$ and $2x \neq 0$. Then by Theorem 5, $(R \setminus \{x^{-1}, -x\}) \cup \{x, (-x)^{-1}\}$ is a nontrivial γ -sets of R. Therefore, $|T_R| > 1$.

Theorem 5. Let R be a ring with identity $1_R \neq 0$ and J be a γ -set of R. Then $|T_R| = 1$ if and only if for all $a \in R$ either $a^2 = 1_R$ or 2a = 0 or a is a zero-divisor.

Proof. Proved similarly. \Box

4. An Equivalence Relation in $R \setminus S$

In this section, we presented an equivalence relation in $R \setminus S$ which will be useful in the next section.

Lemma 1. Let R be a division ring and $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. The relation \sim on $R \setminus S$ given by $x \sim y$ if and only if x = y or $x = y^{-1}$ or x = y or $x = (-y)^{-1}$ is an equivalence relation.

Proof. Let R be a division ring and $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. Define a relation \sim on $R \setminus S$ as follows: $x \sim y$ if and only if x = y or $x = y^{-1}$ or $x = (-y)^{-1}$. Since x = x for all $x \in R$, we have $x \sim x$ for all $x \in R \setminus S$. Hence, \sim is reflexive. It can easily be shown that \sim is symmetric and transitive. Thus, \sim is an equivalence relation. \square

Remark 3. Let R be a division ring, and let $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. The equivalence relation \sim in $R \setminus S$ of Lemma 1 partitions $R \setminus S$ into equivalence classes $[a] = \{x \in R \setminus S : x \sim a\} = \{x \in R \setminus S : x = a, \text{ or } x = a^{-1}, \text{ or } x = -a, \text{ or } x = (-a)^{-1}\}$.

5. Some Bounds on the Number of Minimum γ -Set

In this section, we established a sharp upper bound and a sharp lowerbound for the number of minimum γ -set in a finite division ring.

If R is a finite division ring, then we denote the partition of $R \setminus S$ in Remark 3 by $\mathscr{C} = \{[a_1], [a_2], \dots, [a_c]\}$. In this case, we call c the c-number of R.

Lemma 2. Let R be a finite division ring, and let $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. If $\mathscr{C} = \{[a_1], [a_2], \dots, [a_c]\}$ is the partition of $R \setminus S$ in the sense of Remark 3, then $2 \le |[a_i]| \le 4$.

Proof. Let R be a finite division ring and let $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. If $\mathscr{C} = \{[a_1], [a_2], \dots, [a_c]\}$ is the partition of $R \setminus S$ in the sense of Remark 3, then $[a_i] = \{a_i, -a_i, a_i^{-1}, -a_i^{-1}, \}$ for all $i = 1, 2, \dots, c$. Since $a_i^2 \neq 1_R$ and $2a_i \neq 0$ for all i, Remark 2 implies that $\{a_i, -a_i^{-1}\} \cap \{-a_i, a_i^{-1}\} = \emptyset$ for all i. If $a_i = -a_i^{-1}$, then by Remark 2, $-a_i = a_i^{-1}$. Hence, in this case $|[a_i]| = 2$. On the hand, if $a_i \neq -a_i^{-1}$, then by Remark 2, $-a_i \neq a_i^{-1}$. Hence, in this case $|[a_i]| = 4$. Accordingly, $2 \leq |[a_i]| \leq 4$.

By Theorem 3, each equivalence class $[a_i]$ determines two minimum γ -sets.

Lemma 3. Let R be a finite division ring, and let $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. Then, $c \ge (|R| - |S|)/4$.

Proof. Let R be a finite division ring and let $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. By Lemma 2, $|[a_i]| \le 4$. Therefore, $c \ge (|R| - |S|)/4$.

Lemma 4. Let R be a finite division ring, and let $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. Then, $c \leq (|R| - |S|)/2$.

Proof. Let R be a finite division ring and let $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. By Lemma 2, $2 \le |[a_i]|$. Therefore, $c \le (|R| - |S|)/2$.

Theorem 6 give a necessary and sufficient condition for a γ -set to be minimum.

Theorem 6. Let R be a finite division ring. Then, E is a minimum γ -set of R if and only if $E = S \cup \{-x_1, x_1^{-1}, -x_2, x_2^{-1}, \dots, -x_c, x_c^{-1}\}$ where $x_i \in [a_i]$ for $i = 1, 2, \dots, c$, and $\{[a_1], [a_2], \dots, [a_c]\}$ is the partition of $R \setminus S$ in the sense of Remark 3.

Proof. Suppose that *E* is a minimum γ-set of *R* and *E* is not of the form $S \cup \{-x_1, x_1^{-1}, -x_2, x_2^{-1}, \dots, -x_c, x_c^{-1}\}$. If *E* is not of the form $S \cup \{-x_1, x_1^{-1}, -x_2, x_2^{-1}, \dots, -x_c, x_c^{-1}\}$, then there exists $i \in \{1, 2, \dots, j\}$ such that $-x_i, x_i^{-1}, (-x_i)^{-1} \in E$ or $x_i, -x_i, x_i^{-1}, (-x_i)^{-1} \in E$. Thus, $S \cup \{-x_1, x_1^{-1}, -x_2, x_2^{-1}, \dots, -x_c, x_c^{-1}\}$ is a γ-set smaller than *E*. This is a contradiction.

Conversely, suppose that E is of the form $S \cup \{-x_1, x_1^{-1}, -x_2, x_2^{-1}, \ldots, -x_c, x_c^{-1}\}$ and E is not a minimum γ -set of R. If E is not a minimum γ -set of R, then then there exists $i \in \{1, 2, \ldots, j\}$ such that $x_i, -x_i, x_i^{-1} \notin E$. Since E is a γ -set and $x_i^{-1}, x_i = (x_i^{-1})^{-1} \in E$. This is a contradiction.

The *index minimum* of a finite ring R is the number of minimum γ -sets of R and is denoted by ind(R). Corollary 1 gives an upper bound on the number of minimum γ -set of a finite division ring, while Corollary 2 gives a lower bound on the number of minimum γ -set of a finite division ring.

Corollary 1. Let R be a finite division ring. Then $ind(R) \leq 2^{(|R|-|S|)/2}$.

Proof. Let R be a finite division ring and let $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. Then by Lemma 4, $c \leq (|R| - |S|)/2$. Moreover, by Theorem 3, each equivalence class $[a_i]$ determines two minimum γ -sets. Therefore, by the *multiplication principle*, $ind(R) \leq 2^{(|R| - |S|)/2}$. \square

The bound in Corollary 1 is sharp. Equality holds for some fields. For example, if R is \mathbb{Z}_5 , then the equality holds. To see this, we note that the minimum γ -sets of \mathbb{Z}_5 are $J_1=\{0,1,4,3\}$ and $J_1=\{0,1,4,3\}$. Hence, $ind(\mathbb{Z}_5)=2$. This is equal to $2^{(|R|-|S|)/2}=2^{(|\mathbb{Z}_5|-|\{0,1,4\}|)/2}=2^{(5-3)/2}=2$.

Corollary 2. Let R be a finite division ring. Then $ind(R) \ge 2^{(|R|-|S|)/4}$.

Proof. Let R be a finite division ring and let $S = \{x \in R : x^2 = 1_R \text{ or } 2x = 0\}$. Then by Lemma 3, $c \ge (|R| - |S|)/4$. Moreover, by Theorem 3, each equivalence class $[a_i]$ determines two minimum γ -sets. Therefore, by multiplication principle, $ind(R) \le 2^{(|R| - |S|)/2}$.

The bound in Corollary 2 is also sharp. Equality holds for some fields. For example, if R is \mathbb{Z}_7 , then the equality holds. To see this, we note that the minimum γ -sets of \mathbb{Z}_7 are $J_1=\{0,1,2,3,6\}$ and $J_2=\{0,1,4,5,6\}$. Hence, $ind(\mathbb{Z}_7)=2$. This is equal to $2^{(|R|-|S|)/2}=2^{(|\mathbb{Z}_7|-|\{0,1,6\}|)/2}=2^{(7-3)/4}=2$.

6. γ -Sets and Homomorphism of Rings

In this section, we gave some properties of γ -sets in relation to its homomorphic image. We say that a set A precedes a set B if there exists an injective map from A to B. In this case, we write $A \prec B$.

Theorem 7. Let J be a γ -set of a ring. Then $R \setminus J \leq J$.

Proof. Let $f: R \setminus J \to J$ be a given by $f(x) = x^{-1}$, and let $x, y \in J$ with x = y. Since J is a γ -set and each unit of a ring has a unique multiplicative inverse, x = y implies that $f^{-1}(x) = f^{-1}(y)$. This means that f is injective. Hence, $R \setminus J \preceq J$.

Theorem 7 says that in a finite ring, a γ -set has more elements than its complement.

Lemma 5. Let R be a ring, and $x \in R$. Then $T(x) = \{J \subseteq R : J \text{ is a } \gamma\text{-set and } x \in J\}$ is a semigroup under the operation union.

Proof. It suffices to show that T(x) is closed under the operation union. Let J_1 and J_2 be element of T(x). Then by Theorem 1, $J_1 \cup J_2$ is a γ -set. Since clearly $x \in J_1 \cup J_2$, $J_1 \cup J_2 \in T(x)$.

An element x of a ring R is called an involution if $x^2 = 1_R$, or 2x = 0, or $x \neq -x^{-1}$.

Theorem 8. Let x be a non-identity element of a ring. Then x is an involution if and only if T(x) = T.

Proof. Let R be a ring, and suppose that x is an involution of R. If x is an involution, then by Theorem 2 x is contained in every γ -set of R. Thus, if J is a γ -set, then $J \in T(x)$, that is $T \subseteq T(x)$. Since clearly $T \supseteq T(x)$, we must have T = T(x).

Conversely, assume that T(x) = T and x is not an involution. If x is not an involution and $x \neq 1_R$, then $x \neq x^{-1}$. By Theorem 3, $J' = (J \setminus \{x, (-x)^{-1}\}) \cup \{x^{-1}, -x\}$ is also a γ -set. Note that $J' \in T$, but $J' \notin T(x)$, that is $T(x) \neq T$. This is a contradiction. \square

Theorem 9. Let R be a ring with identity and x be a non-zero element of R with 2x = 0. Then every γ -set of R contains a non-trivial subring.

Proof. Let J be a γ -set of a ring R and x be a non-zero element of R with 2x = 0. Theorem 2 implies that 0 and x are elements of J. Thus, $\{0, x\}$ is a subring of R contained in J.

Theorem 10. Let R be a ring with identity. R has a trivial γ -set if and only if R is trivial.

Proof. Let $R = \{0, 1\}$. Then clearly $\{0, 1\}$ is a γ -set of R.

Conversely, suppose that $J = \{0, 1\}$ is a γ -set of R and R is non-trivial. Let $x \in R$ with $x \neq 0$ and $x \neq 1_R$. Since J is a γ -set of R, there exists $y, z \in J$ such that x + y = 0 and $xz = 1_R$. Since the elements of J are 0 and 1 only, this implies that x + 1 = 0, that is x = -1. Hence, $x^2 = (-1)^2 = 1_R$. By Theorem 2, $x \in J$. This is a contradiction.

Theorem 11. Let T be the set of all γ -sets of a division ring R, and $S = \{x \in R : x^2 = 1_R\} \cup \{0\}$. Then |T| = 1 if and only if R = S.

Proof. Assume that |T| = 1, and $R \neq S$. If $R \neq S$, then there exists $x \in R \setminus S$ such that $x^2 = 1_R$. Let $J \in T$ and consider the following cases:

Case 1. $x \notin J$

If $x \in J$, then by Theorem 3, $J' = (J \setminus \{x^{-1}, -x\}) \cup \{x, (-x)^{-1}\}$ is another γ -set. This is a contradiction.

Case 2. $x \in J$

If $x \in J$, then by Theorem 3, $J' = (J \setminus \{x, (-x)^{-1}\}) \cup \{x^{-1}, -x\}$ is another γ -set. This is a contradiction.

Conversely, suppose that R = S. Since R is a division ring, every non-zero element is an involution. Hence, by Theorem 10 if J is a γ -set of R, we must have J = R, that is R is the only γ -set R. Thus, |T| = 1.

Theorem 12. Let Q be a subring of R, and J be a γ -set of R. Then J is a γ -set of Q if and only if Q = R.

Proof. Assume that J is a γ -set of Q, and $Q \neq R$. If $Q \neq R$, then there exists $x \in R \setminus Q$. Since $x \notin Q$, $x \notin J$. Since J, $x^{-1} \in J$. Since J is also a γ -set of Q, $x = xx^{-1} \in T$. This is a contradiction. The converse is clear.

Theorem 13. Let R_1 and R_2 be rings, and $\phi: R_1 \to R_2$ be an epimorphism of rings. If J is a γ -set of R_1 , then $\phi(J)$ is a γ -set of R_2 .

Proof. Let J be a γ -set of R_1 , and $y \in R_2 \setminus \phi(J)$. If $y \in R_2 \setminus \phi(J)$ and ϕ is an epimorphism, then there exists $x \in R_1$ such that $\phi(x) = y$. Note that $x \in R_1 \setminus J$, otherwise $y = \phi(x) \in \phi(J)$. Since J is a γ -set, there exists $u, v \in J$ such that $xu = 1_{R_1}$ and $x + v = 0_{R_1}$. Clearly, $\phi(u), \phi(v) \in \phi(J)$. Since ϕ is a homomorphism, $\phi(x)\phi(u) = \phi(xu) = \phi(1_{R_1}) = 1_{R_2}$ and $\phi(x) + \phi(v) = \phi(x + v) = \phi(0_{R_1}) = 0_{R_2}$. Hence, there exists $\phi(u), \phi(v) \in \phi(J)$ such that $\phi(x)\phi(u) = 1_{R_2}$ and $\phi(x) + \phi(v) = 0_{R_2}$. This shows that $\phi(J)$ is a γ -set of R_2 . \square

Theorem 14. Let R_1 and R_2 be rings, and $\phi: R_1 \to R_2$ be an isomorphism of rings. Then, J is a γ -set of R_1 if and only if $\phi(J)$ is a γ -set of R_2 .

Proof. Let J be a γ -set of R_1 . Then by Theorem 7, $\phi(J)$ is a γ -set of R_2 .

Conversely, let J be a subset of R_1 , and suppose that $\phi(J)$ is a γ -set of R_2 . Let $x \in R_1 \backslash J$. Then $\phi(x) \in R_2 \backslash \phi(J)$, otherwise $x = \phi^{-1}\phi(x) \in J$. Since $\phi(J)$ is a γ -set of R_2 , there exists $u, v \in \phi(J)$ such that $\phi(x)u = 1_{R_2}$ and $\phi(x) + v = 0_{R_2}$. Note that $\phi^{-1}(u), \phi^{-1}(v) \in J$, otherwise $u = \phi(\phi^{-1}(u)) \in R_2 \backslash \phi(J)$ and $v = \phi(\phi^{-1}(v)) \in R_2 \backslash \phi(J)$. Since ϕ is an isomorphism, $x\phi^{-1}(u) = \phi^{-1}(\phi(x))\phi^{-1}(u) = \phi^{-1}(\phi(x)u) = \phi^{-1}(1_{R_2}) = 1_{R_1}$ and $x + \phi^{-1}(v) = \phi^{-1}(\phi(x)) + \phi^{-1}(v) = \phi^{-1}(\phi(x) + v) = \phi^{-1}(0_{R_2}) = 0_{R_1}$. Hence, there exists $\phi^{-1}(u), \phi^{-1}(v) \in J$ such that $x\phi^{-1}(u) = 1_{R_1}$ and $x + \phi^{-1}(v) = 0_{R_1}$. This shows that J is a γ -set of R_1 .

Theorem 15. Let R be a ring, $T = \{J \subseteq R : J \text{ is a } \gamma\text{-set of } R\}$, and $T' = \{J' : J \in T\}$ where J' is the complement of J. Then, T is isomorphic to T'.

Proof. Let R be a ring, $T = \{J \subseteq R : J \text{ is a } \gamma\text{-set of } R\}$, and $T' = \{J' : J \in T\}$. Define $\phi: T \to T'$ by $J \mapsto J'$ where J' is the complement of J. Then clearly ϕ is bijective. Now, let $J_1, J_2 \in T$. Then

$$\phi(J_1 \cup J_2) = (J_1 \cup J_2)'$$

$$= J'_1 \cap J'_2$$

$$= \phi(J_1) \cap \phi(J_2).$$

This shows that ϕ is an isomorphism, that is T is isomorphic to T' as a semigroup. \Box

7. Separating γ -Sets

Our objective in this section is to show the statement: Let R and S be rings. Then T_R is isomorphic to T_S if and only if $|G \setminus S_R| = |H \setminus S_S|$.

We borrowed here some ideas presented by Joris N. Buloron in [2] to show the results. We denote the set of all involutions of a division ring D by S_D , that is, $S_D = \{x \in R : x^2 = 1_D, \text{ or } 2x = 0, \text{ or } a \neq -a^{-1}\}.$

Let J be a γ -set of a division ring D. Then J is called a *separating* γ -set of D if for every $x \in J \setminus S_D$, $x^{-1} \notin D$. Note that for a finite division ring D, the separating γ -sets are just the minimum γ -sets. Also note that if J is not a *separating* γ -set, then there exists $x \in D \setminus S_D$ such that $x, x^{-1} \in J$.

Lemma 6. Let D be a division ring and J be a γ -set. If J is not a separating γ -set, then J can be expressed as a union of two distinct separating γ -sets.

Proof. Let J be a γ -set that is not separating. Define a relation \sim on $J \setminus S_D$ as follows: $x \sim y$ if and only if x = y or $y = x^{-1}$. Then \sim is an equivalence relation, that is, \sim partitions $J \setminus S_D$ into equivalence classes. For each $x \in J \setminus S_D$, the equivalence class containing x is $\bar{x} = \{x, x^{-1}\}$. By the Axiom of Choice, there exists a set Δ such that $\Delta \cap \bar{x}$ is a singleton set for all $x \in J \setminus S_D$. It is easy to see that $\Delta \cup S_D$ and $J \setminus \Delta$ is a separating γ -set, and $J = (\Delta \cup S_D) \cup (J \setminus \Delta)$.

A careful observation would suggest that a separating γ -set cannot be expressed as a union of two distinct γ -sets. The next lemma is anchored on this idea.

Lemma 7. Let D be a division ring and J be a γ -set of D. J is not a separating \mathscr{D} -set if and only if it is a union of two or more distinct γ -sets.

Proof. Let J be a γ -set of D and assume that J is not a separating γ -set. Then by Lemma 6, $J = E \cup F$ for some separating γ -sets E and F. Note that E and F must be distinct, otherwise, $J = E \cup F = E$ (which is a contradiction since E is a separating γ -set while J is not).

Conversely, assume that $J=E\cup F$ for some γ -sets E and F, with $E\neq F$. If one of E and F is not a separating γ -set, then clearly, $J=E\cup F$ is not a separating γ -set. So we assume that E and F are both separating γ -sets. Since $E\neq F$, $E\setminus F\neq \emptyset$. Let $x\in E\setminus F$. Since F is a γ -set, $x^{-1}\in F$. Hence, $x,x^{-1}\in D$. This implies that D is not a separating γ -set.

At this point, we will now state some consequence of the above lemma.

The following definitions are helpful in the succeeding statements.

Let x be an element of a division ring D. We denote by $T_D(x)$ the family of all γ -sets containing x, that is, $T_D(x) = \{D \in T_D : x \in D\}$. Similarly, we denote by $T_{sep(D)}(x)$ the family of all separating γ -sets containing x, that is, $T_{sep(D)}(x) = \{D \in T_{sep(D)} : x \in D\}$.

Lemma 8. Let D be a non-trivial division ring and x be an element of D. Then the following statements are equivalent.

- (i) x is an involution.
- (ii) $T_D(x) = T_D$.
- (iii) $T_{sep(D)}(x) = T_{sep(D)}$.

Proof. (1) \Rightarrow (2) Suppose that x is an involution and $T_D(x) \neq T_D$. If $T_D(x) \neq T_D$, then there exists a γ -set B such that $x \notin B$. Since x is an involution and B is a γ -set, $x = x^{-1} \in B$. This is a contradiction. Hence, $T_D(x) = T_D$.

(2) \Rightarrow (1) Suppose that $T_D(x) = T_D$ and x is not an involution. Let J be a γ -set of D and x be a non-involution. Consider the following cases:

Case 1. $x^2 \neq 1_D$

If $x^2 \neq 1_D$, that is, $x \neq x^{-1}$, then we note that $J \setminus \{x\}$ is a γ -set that do not contain x. This is a contradiction since $T_D(x) = T_D$. Therefore, x must be an involution.

Case 2. $2x \neq 0$

If $2x \neq 0$, that is, $x \neq -x$, then we note that $J \setminus \{x\}$ is a γ -set that do not contain x. This is a contradiction since $T_D(x) = T_D$. Therefore, x must be an involution.

Case 3. $x = -x^{-1}$

If $x = -x^{-1}$, then we note that $J \setminus \{x\}$ is a γ -set that do not contain x. This is a contradiction since $T_D(x) = T_D$. Therefore, x must be an involution.

- (1) \Rightarrow (3) Suppose that x is an involution and $T_{sep(D)}(x) \neq T_{sep(D)}$. If $T_{sep(D)}(x) \neq T_{sep(D)}$, then there exists a separating γ -set B such that $x \notin B$. Since x is an involution and B is a γ -set, $x = x^{-1} \in B$. This is a contradiction. Hence, $T_{sep(D)}(x) = T_{sep(D)}$.
- (3) \Rightarrow (1) Suppose that $T_{sep(D)}(x) = T_{sep(D)}$ and x is not an involution. If x is not an involution, then consider the following cases:

Case 1. $x^2 \neq 1_D$

If $x^2 \neq 1_D$, then $x \neq x^{-1}$. Let H be a separating γ -set. Then $(H \setminus \{x\}) \cup \{x^{-1}\}$ is a separating γ -set that do not contain x. This is a contradiction since $T_{sep(D)}(x) = T_{sep(D)}$. Therefore, x must be an involution.

Case 2. $2x \neq 0$

If $2x \neq 0$, then $x \neq -x$. Let H be a separating γ -set. Then $(H \setminus \{x\}) \cup \{-x\}$ is a separating γ -set that do not contain x. This is a contradiction since $T_{sep(D)}(x) = T_{sep(D)}$. Therefore, x must be an involution.

Case 3. $x = -x^{-1}$

If $x = -x^{-1}$, then $x = (-x)^{-1}$. Let H be a separating γ -set. Then $(H \setminus \{x\}) \cup \{-x\}$ is a separating γ -set that do not contain x. This is a contradiction since $T_{sep(D)}(x) = T_{sep(D)}$. Therefore, x must be an involution.

The next proposition shows that an isomorphism preserves the state of being *separating* in the same way as it preserves other properties.

Lemma 9. Let D_1 and D_2 be division rings, and $\varphi: T_{D_1} \to T_{D_2}$ be an isomorphism. Then J is a separating γ -set of D_1 if and only if $\varphi(J)$ is a separating γ -set of D_2 .

Proof. Let D_1 and D_2 be division rings, and $\varphi: T_{D_1} \to T_{D_2}$ be an isomorphism. Suppose that J is a separating γ -set of D_1 and $\varphi(J)$ is not a separating γ -set of D_2 . If $\varphi(J)$ is not a separating γ -set of D_2 , then by Lemma 6, $\varphi(J) = E \cup F$ for some distinct separating γ -sets E and F in D_2 . It is easy to see that there exist distinct γ -sets E' and F' such that $\varphi(E') = E$ and $\varphi(F') = F$. Thus, $\varphi(J) = E \cup F = \varphi(E') \cup \varphi(F') = \varphi(E' \cup F')$. Since φ is injective, we have $J = E' \cup F'$. This is a contradiction (by Lemma 6). Therefore, $\varphi(J)$ must be a separating γ -set of D_2 .

Conversely, assume that $\varphi(J)$ is a separating γ -set of H and J is not a separating γ -set of D_1 . If J is not a separating γ -set of D_1 , then by Lemma 6, $J = E \cup F$ for some γ -sets E and F with $E \neq F$. Thus, $\varphi(J) = \varphi(E \cup F) = \varphi(E) \cup \varphi(F)$. Since φ is injective, $\varphi(E) \neq \varphi(F)$. This is a contradiction (by Lemma 6). Therefore, J must be a separating γ -set of D_1 .

Lemma 10. Let D_1 and D_2 be division rings and $\varphi: T_{D_1} \to T_{D_2}$ be an isomorphism. Let J be a separating γ -set of D_1 and $x \in D_1 \backslash J$. Then there exists a unique $y \in D_2 \backslash \varphi(J)$ such that $\varphi(J \cup \{x\}) = \varphi(J) \cup \{y\}$.

Proof. Let D_1 and D_2 be division rings and $\varphi: T_{D_1} \to T_{D_2}$ be an isomorphism. Let J be a separating γ -set of D_1 and $x \in D_1 \backslash J$. If $x \in D_1 \backslash J$, then $x \notin J$. Note that $\varphi(J) \cup \{x\} \neq \varphi(J)$ since J is a separating γ -set and $\varphi(J) \cup \{x\}$ is not (by Lemma 9). Hence, $(\varphi(J) \cup \{x\}) \backslash \varphi(J) \neq \emptyset$. Now, we claim that $(\varphi(J) \cup \{x\}) \backslash \varphi(J)$ is singleton. Suppose it is not. Without loss of generality, assume that $\{u, v\} = (\varphi(J) \cup \{x\}) \backslash \varphi(J)$. If $\{u, v\} = (\varphi(J) \cup \{x\}) \backslash \varphi(J)$, then $u, v \notin \varphi(J)$. Since $\varphi(J)$ is a γ -set $u^{-1}, u^{-1} \in \varphi(J)$. Thus, $A = \varphi(J), B = (\varphi(J) \backslash \{u^{-1}\}) \cup \{u\}$, and $C = (\varphi(J) \backslash \{v^{-1}\}) \cup \{v\}$ are three distinct separating γ -sets. Note that $\varphi(J \cup \{x\}) = A \cup B \cup C$. Hence, $J \cup \{x\} = J \cup \varphi^{-1}(B) \cup \varphi^{-1}(C)$ where $J, \varphi^{-1}(B), \varphi^{-1}(C)$ are three distinct separating γ -sets. This is a contradiction.

Therefore, $(\varphi(J) \cup \{x\}) \setminus \varphi(J)$ must be singleton. Let $y \in (\varphi(J) \cup \{x\}) \setminus \varphi(J)$. Then there exists $y \in D_2 \setminus \varphi(J)$ such that $\varphi(J \cup \{x\}) = \varphi(J) \cup \{y\}$.

The next result give necessary and sufficient conditions for two division rings to have isomorphic families of γ -set.

Theorem 16. Let D_1 and D_2 be division rings. Then T_{D_1} is isomorphic to T_{D_2} if and only if there exists a bijection $\sigma: D_1 \backslash S_{D_1} \to D_2 \backslash S_{D_2}$.

Proof. Let $\varphi: T_{D_1} \to T_{D_2}$ be an isomorphism. Define $\sigma: D_1 \backslash S_{D_1} \to D_2 \backslash S_{D_2}$ as follows. Let J be a separating γ -set of D_1 and $x \in D_1 \backslash S_{D_1}$. Without loss of generality, choose $x \notin J$. If $x \notin J$, then $x \in D_1 \backslash J$. By Lemma 10, there exists $y \in D_2 \backslash \varphi(J)$ with $\varphi(J \cup \{x\}) = \varphi(J) \cup \{y\}$. Now, we define $\sigma(x) = y$ and $\sigma(x^{-1}) = y^{-1}$.

We first show that σ is injective. Let $a, b \in D_1 \backslash S_{D_1}$ with $a \neq b$. Let $J_j = (J \backslash \{a\}) \cup \{a^{-1}\}$ and $J_k = (J \backslash \{b\}) \cup \{b^{-1}\}$. Then $a \in D_1 \backslash J_j$ and $b \in D_1 \backslash J_k$. By Lemma 10, there exist $u \in D_2 \backslash \varphi(J_j)$, and $v \in D_2 \backslash \varphi(J_k)$ such that $\varphi(J_j \cup \{a\}) = \varphi(J_j) \cup \{u\}$ and $\varphi(J_k \cup \{b\}) = \varphi(J_k) \cup \{v\}$. Without loss of generality, assume that $a \notin J$ and $b \notin J$. If $a \notin J$ and $b \notin J$, then $\sigma(a) = u$ and $\sigma(b) = v$. In the sense of the proof of Lemma 10, $\varphi(J) \backslash \varphi(J_j)$ and $\varphi(J) \backslash \varphi(J_j)$ are singleton sets. Thus, if u = v, then $\varphi(J \cup \{a\}) = \varphi(J \cup \{b\})$. Since φ is an isomorphism, $J \cup \{a\} = J \cup \{b\}$. Thus, if $a, b \notin J$, then a = b. This is a contradiction. This shows that σ is injective.

Next, we show that σ is surjective. Let $y \in D_2 \backslash S_{D_2}$ and J be a separating γ -set of D_1 . Without loss of generality, assume that $y \notin J$. If $y \notin J$, then $y \in D_2 \backslash \varphi(J)$. Since φ^{-1} is also an isomorphism, by Lemma 10, there exists $x \in D_1 \backslash J$ such that $\varphi^{-1}(\varphi(J) \cup \{y\}) = J \cup \{x\}$, that is $\varphi(J) \cup \{y\} = \varphi(J \cup \{x\})$. This implies that there exists $x \in D_1 \backslash S_{D_1}$ such that $\sigma(x) = y$. This shows that σ is surjective.

Accordingly, σ is bijective.

For the converse, consider the bijective function $\sigma: D_1 \backslash S_{D_1} \to D_2 \backslash S_{D_2}$ given by $\sigma(x) = y$ and $\sigma(x^{-1}) = y^{-1}$ where $x \notin J$, and y and J are in the same sense as in the above arguments. Define $\varphi: T_{D_1} \to T_{D_2}$ as follows. Let J be in T_{D_1} , then $J = S_{D_1} \cup A$ for some subset A of $D_1 \backslash S_{D_1}$. Let $\varphi(J) = S_{D_2} \cup \sigma(A)$. Then it is easy to show that φ is an isomorphism.

Corollary 3. Let D_1 and D_2 be division rings. Then, T_{D_1} is isomorphic to T_{D_2} if and only if $|D_1 \setminus S_{D_1}| = |D_2 \setminus S_{D_2}|$.

Proof. The given statement follows from Theorem 16.

8. Acknowledgements

The authors would like to thank Rural Engineering and Technology Center of Negros Oriental State University for partially supporting this research.

REFERENCES 326

References

- [1] Michael Patula Baldado Jr and Cristopher John Salvador Rosero. \mathscr{D} -sets generated by a subset of a group. European Journal of Pure and Applied Mathematics, 9(1):34–38, 2016.
- [3] Joris N Buloron, Cristopher John S Rosero, Jay M Ontolan, and MP Baldado Jr. Some properties of \mathscr{D} -sets of a group1. In *International Mathematical Forum*, volume 9, pages 1035–1040, 2014.
- [4] John B Fraleigh. A first course in abstract algebra. Pearson Education India, 2003.
- [5] Joseph Gallian. Contemporary abstract algebra. Nelson Education, 2012.
- [6] Linda Gilbert. Elements of modern algebra. Nelson Education, 2014.
- [7] Israel N Herstein. Abstract algebra. Prentice Hall, 1996.
- [8] Thomas W Hungerford. Algebra, volume 73 of. Graduate Texts in Mathematics, pages 20–31, 1980.
- [9] David C Kurtz. Foundations of abstract mathematics. 1992.
- [10] Davender S Malik, John M Mordeson, and MK Sen. Fundamentals of abstract algebra. McGraw-Hill, 1997.
- [11] Cristopher John S Rosero and Michael P Baldado Jr. Some properties of γ -sets in a ring. International Journal of Algebra, 8(18):883–888, 2014.
- [12] Cristopher John S Rosero, Joris N Buloron, Jay M Ontolan, and Michael P Baldado Jr. *D*-sets of finite groups. *International Journal of Algebra*, 8(13):623–628, 2014.