EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 1, 2021, 204-233
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Radon measure-valued solutions for nonlinear strongly degenerate parabolic equations with measure data

Quincy Stévène Nkombo ${ }^{1, *}$, Fengquan Li^{1}
${ }^{1}$ School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China

Abstract

In this paper, we prove the existence of Radon measure-valued solutions for nonlinear strongly degenerate parabolic equations with nonnegative bounded Radon measure as initial data. Moreover, we show the uniqueness of the Radon measure-valued solutions when the Radon measure as a forcing term is diffuse with respect to the parabolic capacity and the Radon measure as a initial value is diffuse with respect to the Newtonian capacity. We also deduce that the concentrated part of the Radon measure-valued solution with respect to the Newtonian capacity depends on time.

2020 Mathematics Subject Classifications: 35K20, 35K65, 35K59, 35R06, 28A33
Key Words and Phrases: Radon measure-valued solutions, Nonlinear degenerate parabolic equations, Capacity

1. Introduction

In this work we address the nonhomogeneous nonlinear strongly degenerate parabolic equations having the nonnegative bounded Radon measure on the right-hand side with the nonnegative bounded Radon measure as initial data. This problem is described as follows

$$
\begin{cases}u_{t}-\Delta \psi(u)=\mu & \text { in } Q:=\Omega \times(0, T) \tag{P}\\ u=0 & \text { on } \partial \Omega \times(0, T) \\ u(x, 0)=u_{0} & \text { in } \Omega\end{cases}
$$

where $T>0, \Omega \subset \mathbb{R}^{N}(N \geq 2)$ is an open bounded domain with smooth boundary $\partial \Omega$, the initial value data u_{0} is a nonnegative bounded Radon measure on Ω and μ is a nonnegative bounded Radon measure on Q.
The nonlinear strongly degenerate parabolic equations (P) is the special case derived

[^0]from the study of quasilinear parabolic equations with degenerate coercivity involving a quadratic gradient term (see $[4,7]$). The general model of the problem (P) is given by
\[

$$
\begin{cases}u_{t}-\operatorname{div}(\alpha(u) \nabla u)=\beta(u)|\nabla u|^{2}+f(x, t) & \text { in } Q:=\Omega \times(0, T), \tag{S}\\ u=0 & \text { on } \partial \Omega \times(0, T), \\ u(x, 0)=u_{0} & \text { in } \Omega,\end{cases}
$$
\]

where α and β are real continuous functions, moreover α is positive bounded and may vanish at $\pm \infty, u_{0} \in L^{\infty}(\Omega)$ and $f \in L^{m}(\Omega)\left(m>1+\frac{N}{2}\right)$ (see [4]). For the problem (S), the typical example of functions α and β are expressed as follows

$$
\alpha(s)=\frac{1}{\sqrt{1+s^{2}}} \quad \text { and } \quad \beta(s)=\frac{1}{\sqrt{\left(1+s^{2}\right)^{3}}} .
$$

In [7], the authors studied the problem (S) with more general assumptions in which (S) is a nonlinear degenerate parabolic equation. Meanwhile, in [32] Bogelein, Duzaarr and Gianazza dealt with nonhomogenous porous medium type equations related to CauchyDirichlet problem in a space-time cylinder $Q:=\Omega \times(0, T)$ (see also [13]). Likewise, Fiorenza, Mercaldo and Rakotoson [1] studied some regularity and uniqueness results of the evolution N-Laplacian equation with right hand term $\mu \in L^{1}((0, T), \mathcal{M}(\Omega))$. Furthermore Porzio, Smarrazzo and Tesei [23] introduced the definition of Radon measure-valued solutions to quasilinear parabolic equations with initial value as measure data. More precisely, in [23] authors proved the existence, uniqueness and qualitative properties of Radon measure-valued solutions to the following problem

$$
\begin{cases}u_{t}=\Delta \varphi(u) & \text { in } Q, \tag{F}\\ u=0 & \text { on } \partial \Omega \times(0, T), \\ u(x, 0)=u_{0} & \text { in } \Omega,\end{cases}
$$

where $u_{0} \in \mathcal{M}^{+}(\Omega)$ is a bounded Radon measure and

$$
\begin{equation*}
\varphi(s)=\gamma\left[1-\frac{1}{(1+s)^{\sigma}}\right] \tag{A.1}
\end{equation*}
$$

with $\gamma \in(0,+\infty), \sigma>0$. Since φ increases monotonically to limiting value γ as $s \rightarrow+\infty$. Therefore, $\varphi^{\prime}(s) \rightarrow 0$, thus the problem (F) is strongly degenerate parabolic equation at infinity.
Another interesting problems similar to the problem (P) has been investigated in $[18,22$, $24,28,30,31]$ in which authors showed the existence and uniqueness of Radon measure valued solutions to nonlinear parabolic equations.
To obtain the problem (P), we replace the function φ by ψ which is defined by

$$
\begin{equation*}
\psi(s)=\int_{0}^{s} e^{-|z|^{m}} d z \quad(0<m \leq 1) \tag{1.1}
\end{equation*}
$$

The function ψ increases monotonically to limiting value γ as $s \rightarrow+\infty$. Therefore, the problem (P) is nonlinear strongly degenerate parabolic equation at infinity and the function ψ is given by Oleinik-Kruzhkov in [26].
The choice of the special function ψ in (1.1) is motivated by the connection with the function φ in (A.1), such as $\psi^{\prime} \leq \varphi^{\prime}$ in \mathbb{R}_{+}. This comparison leads to the connection of the problem (P) with the previous study problem (F).
In order to construct the problem (P), we add a Radon measure as a forcing term $\mu \in \mathcal{M}^{+}(Q)$ (a nonnegative bounded Radon measure with respect to the parabolic capacity) to the problem (F).
The first difficulty when studying the problem (P) is due to the presence of a forcing term μ and the second difficulty is a lack of coercivity of the differential operator $u \rightarrow \operatorname{div}\left(\psi^{\prime}(u) \nabla u\right)$.
In the study of degenerate parabolic equations, a physical model may be imagined in which the degenerate parabolic equations described arise in nonlinear fluid mechanics, heat transfer or diffusion. Moreover the Radon measures involved as data describe the distribution of mass in the length area, and volume.
The last decades some authors studied the parabolic and elliptic equations involving measure data, but the solutions of these equations are not measures (see [2, 17, 25]). Due to this reason, the main purpose of this paper is to study the degenerate parabolic equations with measure data which the solutions of such equations are measures as well. This result is possible because of the definition of weak Radon measure-valued solutions introduced in [23], hence the main motivation to study of the problem (P).
The unique point of the novelty of this paper is the study of the uniqueness of the Radon measure-valued solutions when the Radon measure as a forcing term is diffuse with respect to the parabolic capacity and the Radon measure as initial data is diffuse with respect to the Newtonian capacity.
To the best of our knowledge there is no existing results of the problem (P) are known in the literature. Hence, this interesting case will be discussed in this paper.
The plan of this paper is organized as follows. In the next section, we recall some preliminaries about capacity and Radon measures. Then in Section 3, we state the main results, while in Section 4-6, we prove the main results.

2. Preliminaries

2.1 About capacity and measures

For any Borel set $E \subset \Omega$, the C_{2}-capacity of E in Ω is defined as

$$
C_{2}(E)=\inf \left\{\int_{\Omega}|\nabla u|^{2} d x / u \in \mathbb{Z}_{\Omega}^{E}\right\}
$$

where \mathbb{Z}_{Ω}^{E} denotes the set of u belongs to $H_{0}^{1}(\Omega)$ such that $0 \leq u \leq 1$ almost everywhere in Ω, and $u=1$ almost everywhere in a neighborhood E (see [23]).
Let $W=\left\{u \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)\right.$ and $\left.u_{t} \in L^{2}\left((0, T), H^{-1}(\Omega)\right)\right\}$ endowed with its natural norm $\|u\|_{W}=\|u\|_{L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)}+\left\|u_{t}\right\|_{L^{2}\left((0, T), H^{-1}(\Omega)\right)}$ a Banach space. For any open set $U \subset Q$, we define the parabolic capacity as

$$
\operatorname{Cap}(U)=\inf \left\{\|u\|_{W} / u \in \mathbb{V}_{Q}^{U}\right\}
$$

where \mathbb{V}_{Q}^{U} denotes the set of u belongs to W such that $0 \leq u \leq 1$ almost everywhere in Q, and $u=1$ almost everywhere in a neighborhood U (see [16]). Let $\mathcal{M}(\Omega)$ be the space of bounded Radon measures on Ω, and
$\mathcal{M}^{+}(\Omega) \subset \mathcal{M}(\Omega)$ the cone of nonnegative bounded Radon measures on Ω. For any $\mu \in$ $\mathcal{M}(\Omega)$ a bounded Radon measure on Ω, we set

$$
\|\mu\|_{\mathcal{M}(\Omega)}:=|\mu|(\Omega)
$$

where $|\mu|$ stands for the total variation of μ.
The duality map $\langle\cdot, \cdot\rangle_{\Omega}$ between the space $\mathcal{M}(\Omega)$ and $C_{c}(\Omega)$ is defined by

$$
\langle\mu, \varphi\rangle_{\Omega}=\int_{\Omega} \varphi d \mu
$$

For any $\mu \in \mathcal{M}(\Omega)$ and any Borel set $B \subseteq \Omega$, the restriction $\mu\llcorner B$ of μ to B is defined by setting

$$
(\mu\llcorner B)(A):=\mu(B \cap A) \quad \text { for every Borel set } \quad A \subseteq \Omega .
$$

It is worth observing that $(\mu\llcorner B)(\emptyset)=0$.
$\mathcal{M}_{s}^{+}(\Omega)$ denotes the set of nonnegative measures singular with respect to the Lebesgue measure, namely

$$
\mathcal{M}_{s}^{+}(\Omega):=\left\{\mu \in \mathcal{M}^{+}(\Omega) / \exists \text { a Borel set } E \subseteq \Omega ;|E|=0, \mu=\mu\llcorner B\}\right.
$$

we will consider $|\cdot|$ the Lebesgue measure on \mathbb{R}^{N}. Similarly, $\mathcal{M}_{a c}^{+}(\Omega)$ the set of nonnegative measures absolutely continuous with respect to the Lebesgue measure, namely

$$
\mathcal{M}_{a c}^{+}(\Omega):=\left\{\mu \in \mathcal{M}^{+}(\Omega) / \mu(E)=0, \text { for every Borel set } E \subseteq \Omega ;|E|=0\right\}
$$

Recall that $\mathcal{M}_{s}^{+}(\Omega) \cap \mathcal{M}_{a c}^{+}(\Omega)=\{0\}$. Moreover, by the Lebesgue decomposition and Radon-Nikodym theorem (see [9]), for any $\mu \in \mathcal{M}^{+}(\Omega)$:
(i) there exists a unique couple $\mu_{a c} \in \mathcal{M}_{a c}^{+}(\Omega), \mu_{s} \in \mathcal{M}_{s}^{+}(\Omega)$ such that

$$
\begin{equation*}
\mu=\mu_{a c}+\mu_{s} \tag{2.1}
\end{equation*}
$$

(ii) there exist a unique nonnegative function $u_{r} \in L^{1}(\Omega)$ called the density of the measure $\mu_{a c}$ such that

$$
\begin{equation*}
\mu_{a c}(E)=\int_{E} u_{r} \mathrm{dx}, \quad \text { for every Borel set } E \subseteq \Omega \tag{2.2}
\end{equation*}
$$

Let $\mathcal{M}_{c, 2}^{+}(\Omega)$ be the set of nonnegative measures on Ω which are concentrated with respect to the Newtonian capacity

$$
\mathcal{M}_{c, 2}^{+}(\Omega):=\left\{\mu \in \mathcal{M}^{+}(\Omega) / \exists \text { a Borel set } E \subseteq \Omega ; \mu=\mu\left\llcorner E \text { and } C_{2}(E)=0\right\}\right.
$$

Notice that $\mathcal{M}_{c, 2}^{+}(\Omega)$ can be also defined as the set of all measures μ in $\mathcal{M}^{+}(\Omega)$ which are singular with respect to the Newtonian capacity, i.e.

$$
\mathcal{M}_{c, 2}^{+}(\Omega):=\left\{\mu \in \mathcal{M}_{s}^{+}(\Omega) / \exists \text { a Borel set } E \subseteq \Omega ; C_{2}(E)=0\right\} .
$$

It is clear to observe that $\mathcal{M}_{c, 2}^{+}(\Omega) \subseteq M_{s}^{+}(\Omega)$ (see [12]).
$\mathcal{M}_{d, 2}^{+}(\Omega)$ denotes the set of nonnegative measures on Ω which are diffuse with respect to the Newtonian capacity

$$
\mathcal{M}_{d, 2}^{+}(\Omega):=\left\{\mu \in \mathcal{M}^{+}(\Omega) / \mu(E)=0, \text { for every Borel set } E \subseteq \Omega ; C_{2}(E)=0\right\} .
$$

Due to $C_{2}(E)=0$ implies that $|E|=0$ (see [9]), we observe that $\mathcal{M}_{a c}^{+}(\Omega) \subseteq \mathcal{M}_{d}^{+}(\Omega)$. It is known that a measure $\mu_{d, 2} \in \mathcal{M}_{d, 2}^{+}(\Omega)$ if there exist $f_{0} \in L^{1}(\Omega)$ and $G_{0} \in\left[L^{2}(\Omega)\right]^{N}$ such that

$$
\begin{equation*}
\mu_{d, 2}=f_{0}-\operatorname{div} G_{0} \text { in } D^{\prime}(\Omega) . \tag{2.3}
\end{equation*}
$$

For any $\mu \in \mathcal{M}^{+}(\Omega)$, if there exists a unique couple $\mu_{d, 2} \in \mathcal{M}_{d, 2}^{+}(\Omega)$, $\mu_{c, 2} \in \mathcal{M}_{c, 2}^{+}(\Omega)$ such that

$$
\begin{equation*}
\mu=\mu_{d, 2}+\mu_{c, 2} . \tag{2.4}
\end{equation*}
$$

Notice that $\mu_{c, 2}=[\mu]_{c, 2}$ and $\mu_{d, 2}=[\mu]_{d, 2}$.
For the above assertions we can also refer to ($[18,23,30]$ and references therein).
Let $\mathcal{M}(Q)$ be the space of bounded Radon measures on Q, and
$\mathcal{M}^{+}(Q) \subset \mathcal{M}(Q)$ the cone of nonnegative bounded Radon measures on Q.
For any $\mu \in \mathcal{M}(Q)$, we set

$$
\|\mu\|_{\mathcal{M}(Q)}:=|\mu|(Q)
$$

where $|\mu|$ denotes the total variation of μ.
For any diffuse measure $\mu_{0} \in \mathcal{M}_{d, 2}^{+}(Q)$, there exist $f \in L^{1}(Q), g \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$ and $G \in\left[L^{2}(Q)\right]^{N}$

$$
\begin{equation*}
\mu_{0}=f-\operatorname{div} G+g_{t} \text { in } \quad D^{\prime}(Q) \tag{2.5}
\end{equation*}
$$

(see $[10,11,16]$). The rest of statements of $\mathcal{M}(Q)$ can be deduce from the properties of $\mathcal{M}(\Omega)$.
Let E be a Borel subset of Ω, for $t_{0} \in(0, T)$ fixed, one has $\operatorname{Cap}\left(E \times\left\{t_{0}\right\}\right)=0$ if and only if $|E|=0$ and for any $0 \leq t_{0}<t_{1} \leq T$, there holds $\operatorname{Cap}\left(E \times\left(t_{0}, t_{1}\right)\right)=0$ if and only if $C_{2}(E)=0$ (see [16]).
The relationship between parabolic capacity and Newtonian capacity is given in [27] such that :
(i) There exist positive constants $0<k_{1}<k_{2}$ such that

$$
k_{1} C_{2}(E) \leq \operatorname{Cap}\left(E \times\left\{t_{0}\right\}\right) \leq k_{2} C_{2}(E) .
$$

(ii) For any $0<t_{0}<t_{1}$, there exist positive constants $0<l_{1}<l_{2}$ such that

$$
l_{1} C_{2}(E) \leq \operatorname{Cap}\left(E \times\left(t_{0}, t_{1}\right)\right) \leq l_{2} C_{2}(E) .
$$

Let $U \subset Q$ an open set and $K \subset Q$ a compact set with $\operatorname{Cap}(K)=0$, then there exists $\varphi_{n} \in C_{c}^{\infty}(U)$ such that
(iii) $0 \leq \varphi_{n} \leq 1$ a.e in Q, (iv) $\varphi_{n}=1$ a.e in K, (v) $\varphi_{n} \rightarrow 0$ in W, (vi) φ_{n} converges to zero Cap-quasi continuous (see [27, Proposition 2.2]).
On the other hand, assume that $V \subset \Omega$ an open set and $\mathbb{K} \subset \Omega$ a compact set with $\operatorname{Cap}(\mathbb{K})=0$, then there exists $\phi_{n} \in C_{c}^{\infty}(V)$ such that (vii) $0 \leq \phi_{n} \leq 1$ a.e in Ω, (viii) $\phi_{n}=1$ a.e in \mathbb{K}, (ivx) $\phi_{n} \rightarrow 0$ in $H_{0}^{1}(\Omega)$, (x) φ_{n} converges to zero Cap-quasi continuous (see [15, Lemma 4.E.1].
By $L^{\infty}\left((0, T), \mathcal{M}^{+}(\Omega)\right)$, the set of nonnegative Radon measures $u \in \mathcal{M}^{+}(Q)$ which satisfy the following property: For almost every $t \in(0, T)$, there exists a measure $u(\cdot, t) \in \mathcal{M}^{+}(\Omega)$ such that
(a) for every $\xi \in C(\bar{Q})$, the map $t \mapsto\langle u(\cdot, t), \xi(\cdot, t)\rangle_{\Omega}$ is Lebesgue measurable and there holds

$$
\begin{equation*}
\langle u, \xi\rangle_{Q}=\int_{0}^{T}\langle u(\cdot, t), \xi(\cdot, t)\rangle_{\Omega} d t \tag{2.6}
\end{equation*}
$$

(b) for every Borel set $E \subseteq \Omega$, the map $t \mapsto u(\cdot, t)\left(E^{t}\right)$ is Lebesgue measurable and there holds

$$
u(E)=\int_{0}^{T} u(\cdot, t)\left(E^{t}\right) d t
$$

where $E^{t}=\{x \in \Omega /(x, t) \in E\}$
(c) there exists a constant $C>0$ such that

$$
\operatorname{ess} \sup _{t \in(0, T)}\|u(\cdot, t)\|_{\mathcal{M}(\Omega)} \leq C .
$$

In the following, we will use the notation

$$
\|u\|_{L^{\infty}((0, T), \mathcal{M}(\Omega))}=\operatorname{ess} \sup _{t \in(0, T)}\|u(\cdot, t)\|_{\mathcal{M}(\Omega)} .
$$

If $u \in L^{\infty}((0, T), \mathcal{M}(\Omega))$, it is easily seen that $u_{a c}, u_{s} \in L^{\infty}((0, T), \mathcal{M}(\Omega))$ as well and that $u_{r} \in L^{\infty}\left((0, T), L^{1}(\Omega)\right)$.
Moreover, the inequality (2.6) implies that for every $\xi \in C(\bar{Q})$

$$
\left\langle u_{a c}, \xi\right\rangle_{Q}=\int_{Q} u_{r} \xi d x d t
$$

and

$$
\left\langle u_{s}, \xi\right\rangle_{Q}=\int_{0}^{T}\left\langle u_{s}(\cdot, t), \xi(\cdot, t)\right\rangle_{\Omega} d t
$$

Notice that $u_{a c}(\cdot, t)=[u(\cdot, t)]_{a c}, u_{r}(\cdot, t)=[u(\cdot, t)]_{r}$ and $u_{s}(\cdot, t)=[u(\cdot, t)]_{s}$ (see $[18,23,30]$). Assume that the function ψ satisfies the following conditions:

$$
(I) \quad\left\{\begin{array}{l}
(i) \quad \psi \in L^{\infty}\left(\mathbb{R}_{+}\right) \cap C^{2}\left(\mathbb{R}_{+}\right), \quad \psi(0)=0, \quad \psi^{\prime}>0 \text { in } \mathbb{R}_{+} \\
(i i) \quad \psi^{(j)} \in L^{\infty}\left(\mathbb{R}_{+}^{*}\right), \text { for any } j=1,2, \ldots, n \text { if } 0<m \leq 1 \\
(i i i) \quad \psi(s) \rightarrow \gamma \text { as } s \rightarrow+\infty,
\end{array}\right.
$$

where $\mathbb{R}_{+} \equiv[0,+\infty)$ and $\gamma \in \mathbb{R}_{+}^{*} \equiv(0,+\infty)$. By ψ^{\prime} and $\psi^{(j)}$ we denote the first and j th derivative of the function ψ. The assumption $(I)-(i i i)$ stems from $(I)-(i)$, hence we extend the function ψ in $[0,+\infty]$ defining $\psi(+\infty)=\gamma$.
To prove the well-posedness of (P) (if $N \geq 2$) we will need further assumption

$$
\left\{\begin{array}{l}
\text { There exist } \gamma>0, \underline{s}<\bar{s} \text { and } l_{1}, l_{2}>0, l_{1}<l_{2} \text { such that } \tag{J}\\
\text { (i) } \psi^{\prime}(s) \geq l_{1} e^{-|s|^{m}} \\
\text { (ii) } \psi^{\prime}(s) \leq l_{2} e^{-|s|^{m}} \\
\text { for any } \underline{s}<s<\bar{s}
\end{array}\right.
$$

where l_{1}, l_{2} can be expressed as follows

$$
l_{1}=\min _{s \in[\underline{s}, \bar{s}]} \psi^{\prime}(s) e^{|s|^{m}} \quad \text { and } \quad l_{2}=\max _{s \in[\underline{s}, \bar{s}]} \psi^{\prime}(s) e^{|s|^{m}} \quad(0<m \leq 1)
$$

3. Statement of main results

Definition 3.1. For any $u_{0} \in \mathcal{M}^{+}(\Omega)$ and $\mu \in \mathcal{M}^{+}(Q)$, a measure u is called a weak solution of the problem (P), if $u \in \mathcal{M}^{+}(Q)$ such that
(i) $u \in L^{\infty}\left((0, T), \mathcal{M}^{+}(\Omega)\right)$
(ii) $\psi\left(u_{r}\right) \in L^{1}\left((0, T), W_{0}^{1,1}(\Omega)\right)$
(iii) for every $\xi \in C^{1}\left([0, T], C_{0}^{1}(\Omega)\right), \xi(\cdot, T)=0$ in Ω, u satisfies the identity

$$
\begin{equation*}
\int_{0}^{T}\left\langle u(\cdot, t), \xi_{t}(\cdot, t)\right\rangle_{\Omega} d t=\int_{Q} \nabla \psi\left(u_{r}\right) \nabla \xi d x d t-\int_{Q} \xi d \mu-\left\langle u_{0}, \xi(\cdot, 0)\right\rangle_{\Omega} \tag{3.1}
\end{equation*}
$$

where u_{r} is the density of the absolutely continuous part of the Radon-measure with respect to the Lebesgue measure such that $0 \leq u_{r} \in L^{\infty}\left((0, T), L^{1}(\Omega)\right)$.
Remark 3.1 In (3.1), we can choose test functions ξ in $C^{1}(\bar{Q})$ which vanish on $\partial \Omega \times[0, T]$ and $t=T$.
The following theorem gives necessary conditions on the measures μ and u_{0} for the existence of weak solutions to the problem (P) with respect to the parabolic capacity and Newtonian capacity respectively.

Theorem 3.1. Assume that (I), $(J), \mu \in \mathcal{M}^{+}(Q)$ and $u_{0} \in \mathcal{M}^{+}(\Omega)$ hold. If u is a weak solution to the problem (P). Then μ and $u_{0} \otimes \delta_{\{t=0\}}$ are absolutely continuous measures with respect to the parabolic capacity.

Since Newtonian capacity and parabolic capacity are equivalent, then μ and $u_{0} \otimes \delta_{\{t=0\}}$ are absolutely continuous measures with respect to the C_{2}-capacity as well.

Theorem 3.2. Assume that the hypothesis (I) holds. Let u be a weak solution to the problem (P). Then there exist a set $F \subset(0, T)$ with zero Lebesgue measure and $\nu^{t} \in \mathcal{M}^{+}(\Omega)$ such that

$$
\begin{equation*}
\left[u(\cdot, t)-u_{0}\right]_{c, 2}=\left[\nu^{t}\right]_{c, 2} \tag{3.2}
\end{equation*}
$$

for every $t \in(0, T) \backslash F$.
Remark 3.2. Theorem 3.2 improves Theorem 2.4 in [23].
To prove the existence of solutions to the problem (P), we will consider the approximating problems

$$
\begin{cases}u_{n t}=\Delta \psi_{n}\left(u_{n}\right)+\mu_{n} & \text { in } Q:=\Omega \times(0, T), \tag{n}\\ u_{n}=0 & \text { on } \partial \Omega \times(0, T), \\ u(x, 0)=u_{0 n} & \text { in } \Omega,\end{cases}
$$

where $\left\{u_{0 n}\right\} \subseteq C_{0}^{\infty}(\Omega)$ and $\left\{\mu_{n}\right\} \subseteq C_{c}^{\infty}(Q)$ satisfy

$$
\left\{\begin{array}{l}
u_{0 n} \stackrel{*}{\rightharpoonup} u_{0} \quad \text { in } \mathcal{M}^{+}(\Omega), \tag{3.3}\\
u_{0 n} \rightarrow u_{0 r} \quad \text { a.e in } \Omega, \\
\left\|u_{0 n}\right\|_{L^{1}(\Omega)} \leq\left\|u_{0}\right\|_{\mathcal{M}^{+}(\Omega)} .
\end{array}\right.
$$

And

$$
\left\{\begin{array}{l}
\mu_{n} \stackrel{*}{\rightharpoonup} \mu \quad \text { in } \quad \mathcal{M}^{+}(Q), \tag{3.4}\\
\left\|\mu_{n}\right\|_{L^{1}(Q)} \leq\|\mu\|_{\mathcal{M}^{+}(Q)} .
\end{array}\right.
$$

The approximating function ψ_{n} is such that

$$
\begin{equation*}
\psi_{n}(u)=\psi(u)+\frac{1}{n} \tag{3.5}
\end{equation*}
$$

for every $n \in \mathbb{N}$.
By $[3,20]$, the approximating problem $\left(P_{n}\right)$ has a solution u_{n} in $C\left((0, T), L^{1}(\Omega)\right) \cap L^{\infty}(Q)$. Theorem 3.3. Assume that $(I), \mu \in \mathcal{M}^{+}(Q)$ and $u_{0} \in \mathcal{M}^{+}(\Omega)$ hold. Then there exists a weak solution u to the problem (P) obtained as a limiting point of the sequence $\left\{u_{n}\right\}$ of solutions to the problem $\left(P_{n}\right)$ such that for every $t \in(0, T) \backslash H^{*}$, there holds

$$
\begin{equation*}
\|u(\cdot, t)\|_{\mathcal{M}^{+}(\Omega)} \leq C\left(\|\mu\|_{\mathcal{M}^{+}(Q)}+\left\|u_{0}\right\|_{\mathcal{M}^{+}(\Omega)}\right) . \tag{3.6}
\end{equation*}
$$

Moreover, there exists a Radon measure $\nu^{t} \in \mathcal{M}^{+}(\Omega)$ such that

$$
\begin{equation*}
\left[u_{s}(\cdot, t)\right]^{ \pm} \leq\left[u_{0 s}\right]^{ \pm}+\left[\nu_{s}^{t}\right]^{ \pm} \quad \text { in } \quad \mathcal{M}^{+}(\Omega) \tag{3.7}
\end{equation*}
$$

where C is positive constant and H^{*} a zero Lebesgue measure set.
To get the uniqueness of the solution to the problem (P), we define the notion of very
weak solutions as follows.
Definition 3.2. For any $\mu \in \mathcal{M}_{d, 2}^{+}(Q)$ and $u_{0} \in \mathcal{M}_{d, 2}^{+}(\Omega)$, a measure u is called a very weak solution to the problem (P) if $u \in L^{\infty}\left((0, T), \mathcal{M}^{+}(\Omega)\right)$ such that

$$
\begin{equation*}
\int_{0}^{T}\left\langle u(\cdot, t), \xi_{t}(\cdot, t)\right\rangle_{\Omega} d t=-\int_{Q} \psi\left(u_{r}\right) \Delta \xi d x d t-\int_{Q} \xi d \mu-\left\langle u_{0}, \xi(0)\right\rangle_{\Omega} \tag{3.8}
\end{equation*}
$$

for every $\xi \in C^{2,1}(\bar{Q})$, which vanishes on $\partial \Omega \times[0, T]$, for $t=T$.
The notion of very weak solutions adapted to our study can be found in [18, 33].
Definition 3.3. Let $u_{0} \in \mathcal{M}_{d, 2}^{+}(\Omega)$ and $\mu \in \mathcal{M}_{d, 2}^{+}(Q)$ such that

$$
\begin{gathered}
u_{0}=f_{0}-\operatorname{div} G_{0}, \quad f_{0} \in L^{1}(\Omega) \text { and } G_{0} \in\left[L^{2}(\Omega)\right]^{N} . \\
\mu=f-\operatorname{div} G+g_{t}, f \in L^{1}(Q), G \in\left[L^{2}(Q)\right]^{N} \quad \text { and } \quad g \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right) .
\end{gathered}
$$

A measure u is called very weak solutions obtained as limit of approximation, if

$$
\begin{equation*}
u_{n} \stackrel{*}{\rightharpoonup} u \text { in } \mathcal{M}^{+}(Q) \tag{3.9}
\end{equation*}
$$

where $\left\{u_{n}\right\} \subseteq L^{\infty}(Q) \cap L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$ is a sequence of weak solutions to the problem $\left(P_{n}\right)$ and satisfy

$$
\left\{\begin{array}{l}
\mu_{n}=f_{n}-F_{n}+g_{n t} \in C_{0}^{\infty}(Q) \tag{3.10}\\
u_{0 n} f_{0 n}-F_{0 n} \in C_{0}^{\infty}(\Omega), \\
f_{n} \rightarrow f \text { in } L^{1}(Q) \\
F_{n} \rightarrow \operatorname{div} G \text { in } L^{2}\left((0, T), H^{-1}(\Omega)\right), \\
g_{n} \rightarrow g \text { in } L^{2}\left((0, T), H_{0}^{1}(\Omega)\right), \\
F_{0 n} \rightarrow \operatorname{div} G_{0} \text { in } H^{-1}(\Omega) \\
f_{0 n} \rightarrow f_{0} \text { in } L^{1}(\Omega)
\end{array}\right.
$$

Notice that

$$
\mu_{n} \stackrel{*}{\rightharpoonup} \mu \quad \text { in } \mathcal{M}^{+}(Q) \quad \text { and } \quad u_{0 n} \stackrel{*}{\rightharpoonup} u_{0} \quad \text { in } \mathcal{M}^{+}(\Omega)
$$

Theorem 3.4. Under assumptions of (I) and (J), then for every $\mu \in \mathcal{M}_{d, 2}^{+}(Q)$ and $u_{0} \in \mathcal{M}_{d, 2}^{+}(\Omega)$, there exists a unique very weak solution obtained as limit of approximation u of the problem (P).
Notice that a very weak solution is also weak solution to the problem (P), therefore the problem (P) possesses a unique weak solution obtained as limit of approximation.

4. Approximating problems and the persistence

Now we establish some technical statements which will be used in the proof of the existence solution.
Lemma 4.1. Assume that (I) and (J) are satisfied and u_{n} is the solution of the approximation problem $\left(P_{n}\right)$. Then there exists a zero Lebesgue measure set $F^{*} \subset(0, T)$ such that

$$
\begin{equation*}
\left\|u_{n}(\cdot, t)\right\|_{L^{1}(\Omega)} \leq\left\|u_{0}\right\|_{\left.\mathcal{M}^{+}(\Omega)\right)}+\|\mu\|_{\mathcal{M}^{+}(Q)} \tag{4.1}
\end{equation*}
$$

for every $t \in(0, T) \backslash F^{*}$ and $n \in \mathbb{N}$.
Proof. Assuming that any sequence $\left\{\Omega_{j}\right\}$ of smooth open sets such that

$$
\bar{\Omega}_{j} \subset \Omega_{j+1} \subset \bar{\Omega}_{j+1} \subset \Omega, \Omega=\bigcup_{j=1}^{\infty} \Omega_{j}, \quad \operatorname{dist}\left(\bar{\Omega}_{j}, \partial \Omega\right) \leq \frac{1}{j}
$$

Let $\left\{\rho_{j}\right\} \subseteq C_{c}^{\infty}(\Omega)$ be any function such that

$$
0 \leq \rho_{j} \leq 1 \text { in } \Omega, \rho_{j}=1 \text { in } \Omega_{j},\left|\nabla \rho_{j}\right| \leq j \text { in } \Omega \backslash \bar{\Omega}_{j}
$$

Then for any

$$
\left|\nabla \rho_{j}\right| \leq j \leq \frac{1}{d(x)}
$$

where $d(x):=\operatorname{dist}(x, \partial \Omega) \leq \operatorname{dist}\left(\bar{\Omega}_{j}, \partial \Omega\right)($ see $[24])$.
Let us consider the truncated function η such that for any $0 \leq t_{1}<t_{2} \leq T$

$$
\eta(s)= \begin{cases}0 & \text { if } 0 \leq s \leq t_{1} \\ 1 & \text { if } t_{1}<s<t_{2} \\ 0 & \text { if } s \geq t_{2}\end{cases}
$$

For any fixed $j \in \mathbb{N}$, we choose $\xi_{j}(x, s)=\eta(s) \rho_{j}(x)$ as a test function in the problems $\left(P_{n}\right)$ gives

$$
\begin{gather*}
\int_{\Omega} u_{n}\left(x, t_{2}\right) \rho_{j}(x) d x-\int_{\Omega} u_{n}\left(x, t_{1}\right) \rho_{j}(x) d x=-\int_{t_{1}}^{t_{2}} \int_{\Omega} \eta(s) \nabla \psi\left(u_{n}\right) \nabla \rho_{j}(x) d x d s+ \\
\quad+\int_{t_{1}}^{t_{2}} \int_{\Omega} \eta(s) \rho_{j}(x) \mu_{n}(x) d x \tag{4.2}
\end{gather*}
$$

It is worth observing that

$$
\left|\int_{\Omega} \nabla \psi\left(u_{n}\right) \nabla \rho_{j}(x) d x\right| \leq\left|\Omega \backslash \bar{\Omega}_{j}\right|| | \nabla \psi\left(u_{n}\right) \|_{L^{2}(\Omega)}
$$

By letting j to infinity, we deduce that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\Omega} \nabla \psi\left(u_{n}\right) \nabla \rho_{j}(x) d x=0 \tag{4.3}
\end{equation*}
$$

By the properties of the sequence functions $\left\{\rho_{j}\right\}$, we set $t_{2}=t, t_{1}=0$ and then combining together (4.2) with (4.3), there holds

$$
\begin{equation*}
\int_{\Omega} u_{n}(x, t) d x \leq \int_{\Omega} u_{0 n}(x) d x+\int_{0}^{t} \int_{\Omega} d \mu_{n} \tag{4.4}
\end{equation*}
$$

Hence the estimate (4.1) follows.
To show the existence of the solutions to the problems (P) we need a priori estimates of
sequences $\left\{\psi\left(u_{n}\right)\right\}$.
Proposition 4.1. Under the assumptions of $(I)-(J)$ and u_{n} be the solution of the approximation problem $\left(P_{n}\right)$. Then we obtain

$$
\begin{gather*}
\left\|\nabla \psi\left(u_{n}\right)\right\|_{L^{2}(Q)} \leq C \tag{4.5}\\
\left\|\psi\left(u_{n}\right)\right\|_{L^{\infty}\left((0, T), H_{0}^{1}(\Omega)\right)} \leq C . \tag{4.6}
\end{gather*}
$$

Proof. Since $\psi\left(u_{n}\right) \geq 0$ in Q and $\psi\left(u_{n}\right)=0$ on $\partial \Omega \times(0, T)$ for every
$t \in(0, T)$. The fact that $u_{n}=\psi\left(\psi^{-1}\left(u_{n}\right)\right) \in C^{1}\left([0, T], H_{0}^{1}(\Omega)\right)$. Take $\psi\left(u_{n}\right)$ as a test function in $\left(P_{n}\right)$, we get

$$
\begin{gathered}
\int_{Q}\left|\nabla \psi\left(u_{n}\right)\right|^{2} d x d t=\int_{\Omega}\left(\int_{0}^{u_{0 n}(x)} \psi(s) d s\right) d x-\int_{\Omega}\left(\int_{0}^{u_{n}(x, T)} \psi(s) d s\right) d x \\
+\int_{Q} \mu_{n} \psi\left(u_{n}\right) d x d t
\end{gathered}
$$

It follows that

$$
\int_{Q}\left|\nabla \psi\left(u_{n}\right)\right|^{2} d x d t \leq \int_{\Omega}\left(\int_{0}^{u_{0 n}(x)} \psi(s) d s\right) d x+\int_{Q} \mu_{n} \psi\left(u_{n}\right) d x d t
$$

By (I)-(i) and the assumption (3.3), there exists a positive constant C such that (4.5) holds.
Assume that $\left\{\eta_{j}\right\}$ a sequence such that $\left\|\eta_{j}\right\|_{L^{1}(\Omega)} \leq C$ and $\eta_{j} \stackrel{*}{\rightharpoonup} \delta_{t_{0}}(t)$ in $\mathcal{M}^{+}(0, T)$. Suppose that $\xi(x, t)=\psi\left(u_{n}\right)(T-t)^{\alpha} \int_{t}^{T} \eta_{j}(s) d s \quad(1<T-t<\tau, \alpha>1)$ as a test function in the approximating problem $\left(P_{n}\right)$, there holds

$$
\begin{gather*}
-\int_{\Omega}\left(\int_{0}^{u_{0 n}(x)} \psi(s) d s\right) T^{\alpha} \int_{0}^{T} \eta_{j}(s) d s+ \\
+\int_{\Omega}\left(\int_{0}^{u_{n}(x, t)} \psi(s) d s\right)\left\{(T-t)^{\alpha} \int_{0}^{T} \eta_{j}(s) d s+\int_{0}^{T} \eta_{j}(s)(T-t)^{\alpha} d t\right\}= \\
=\frac{1}{1+\alpha} \int_{\Omega}\left|\nabla \psi\left(u_{n}\right)\right|^{2} d x\left(\int_{0}^{T} \eta_{j}(s) \chi_{(0, T)}(s) d s\right)(T-t)^{\alpha}-\int_{Q} \mu_{n} \psi\left(u_{n}\right)(T-t)^{\alpha} \int_{T}^{t} \eta_{j}(s) d s . \tag{4.7}
\end{gather*}
$$

This leads to the following result

$$
\left(\int_{0}^{T} \eta_{j}(s) \chi_{(0, T)}(s) d s\right) \int_{\Omega}\left|\nabla \psi\left(u_{n}\right)\right|^{2} d x \leq C\left(\left\|u_{0}\right\|_{\mathcal{M}^{+}(\Omega)}+\|\mu\|_{\mathcal{M}^{+}(Q)}\right)
$$

Letting $j \rightarrow+\infty$ the assertion (4.6) holds true.
Proposition 4.2. Suppose that $(I)-(J)$ and (1.1) hold. Let u_{n} be the solution of the problem $\left(P_{n}\right)$ and $\phi \in C^{1}\left(\mathbb{R}_{+}\right)$be the function defined by

$$
\begin{equation*}
\phi(s)=\int_{0}^{s} \psi(z) d z \tag{4.8}
\end{equation*}
$$

Then the sequence $\left[\phi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right]_{t}\right.$ is bounded in $L^{2}\left((0, T), H^{-1}(\Omega)\right)+L^{1}(Q)$. Where $T_{k}(s)=\min \{s, k\}$.
Proof. We choose $\psi\left(u_{n}\right) \varphi$ as a test function in $\left(P_{n}\right)$, with $\varphi \in C_{c}^{2,1}(Q)$, there holds

$$
\left[\phi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right]_{t}-\operatorname{div}\left[\psi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right) \nabla \psi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right)\right]+\left|\nabla \psi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right)\right|^{2}=\psi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right) \mu_{n} .\right.
$$

It follows that

$$
\left\|\left[\phi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right)\right]_{t}\right\|_{L^{2}\left((0, T), H^{-1}(\Omega)\right)+L^{1}(Q)}
$$

$\leq\left\|\psi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right) \nabla \psi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right)\right\|_{L^{2}(Q)}+\left\|\nabla \psi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right)\right\|_{L^{1}(Q)}^{2}+\left\|\psi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right) \mu_{n}\right\|_{L^{1}(Q)}$.
By the condition (I), we obtain the sequence $\left\{\left[\phi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right]_{t}\right\}\right.$ is bounded in $L^{2}\left((0, T), H^{-1}(\Omega)\right)+$ $L^{1}(Q)$.

Proof of Theorem 3.1. This proof is similar to ([21, Theorem 1.1]). As in ([27, Proposition 3.1]), it is enough to show that for any compact $K \subset Q$ such that $\mu^{-}(K)=0$, $\left(u_{0}^{-} \otimes \delta_{\{t=0\}}\right)(K)=0$ and $\operatorname{Cap}(K)=0$, then $\mu^{+}(K)=0$ and $\left(u_{0}^{+} \otimes \delta_{\{t=0\}}\right)(K)=0$. By the equivalence of the capacity, we have $\operatorname{Cap}(E \times\{t=0\})=0$, where E a compact set of Ω with $u_{0}^{-}(E)=0$. Let $\epsilon>0$ and we choose an open set U such that $\left(|\mu|+\left|u_{0}\right| \otimes \delta_{\{t=0\}}\right)(U \backslash K)<\epsilon$ and $K \subset U \subset Q$. Then there exists a sequence $\left\{\varphi_{n}\right\} \subseteq C_{0}^{\infty}(Q)$ such that

$$
\begin{aligned}
& \text { (i) } 0 \leq \varphi_{n} \leq 1 \quad \text { in } Q, \quad \varphi_{n} \equiv 1 \quad \text { in } K . \\
& \text { (ii) }\left\|\Delta \varphi_{n}\right\|_{L^{1}(Q)} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{aligned}
$$

In particular, $\varphi_{n} \rightarrow 0$ in W, indeed

$$
\int_{Q}\left|\nabla \varphi_{n}\right|^{2} d x d t=-\int_{Q} \varphi_{n} \Delta \varphi_{n} d x d t \leq \int_{Q}\left|\Delta \varphi_{n}\right| d x d t
$$

Let us consider φ_{n} as a test function in (P), there holds

$$
\begin{equation*}
\int_{Q} \varphi_{n} d \mu+\int_{\Omega} \varphi_{n}(0) d u_{0}=-\int_{Q} \psi\left(u_{r}\right) \Delta \varphi_{n} d x d t \tag{4.9}
\end{equation*}
$$

On the other hand, we get

$$
\int_{Q} \varphi_{n} d \mu+\int_{\Omega} \varphi_{n}(0) d u_{0} \geq \mu^{+}(K)+\left(u_{0}^{+} \otimes \delta_{\{t=0\}}\right)(K)
$$

$$
-\left(|\mu|+\left|u_{0}\right| \otimes \delta_{\{t=0\}}\right)(U \backslash K)
$$

It follows that

$$
\begin{equation*}
\int_{Q} \varphi_{n} d \mu+\int_{\Omega} \varphi_{n}(0) d u_{0} \geq \mu^{+}(K)+\left(u_{0}^{+} \otimes \delta_{\{t=0\}}\right)(K)-\epsilon . \tag{4.10}
\end{equation*}
$$

Combining (4.11) with (4.12), we obtain that

$$
\mu^{+}(K)+\left(u_{0}^{+} \otimes \delta_{\{t=0\}}\right)(K) \leq\|\psi\|_{L^{\infty}(Q)}\left\|\Delta \varphi_{n}\right\|_{L^{1}(Q)}+\epsilon
$$

Letting n to infinity, we infer that

$$
\mu^{+}(K)=\left(u_{0}^{+} \otimes \delta_{\{t=0\}}\right)(K)=0 .
$$

Proof of Theorem 3.2. Let $\mathbb{K} \subseteq \Omega$ be any compact set such that $C_{2}(\mathbb{K})=0$, there exists a sequence $\left\{\phi_{n}\right\} \subseteq C_{c}^{\infty}(\Omega)$ satisfying (iv) and (viii) as stated in preliminaries, Section 2. Furthermore, $\rho_{V} \in C_{c}^{\infty}(V)$ be any smooth function such that
(iii) $0 \leq \rho_{V} \leq 1 \quad$ in $\Omega, \quad \rho_{V} \equiv 1 \quad$ in \mathbb{K}.

By standard regularization argument, we consider $\phi_{\tau}(x, s)=\rho(x) \eta_{\tau}(s)$ as a test function in (3.8), where

$$
\eta_{\tau}(s)= \begin{cases}1 & \text { if } 0 \leq s \leq t \\ \frac{1}{\tau}(t+\tau-s) & \text { if } t \leq s \leq t+\tau \\ 0 & \text { if } s \geq t+\tau\end{cases}
$$

for any $\rho \in C_{0}^{2}(\Omega)$ and $\tau>0$. There holds

$$
\frac{1}{\tau} \int_{t}^{t+\tau}\langle u(s), \rho\rangle_{\Omega} d s-\left\langle u_{0}, \rho\right\rangle_{\Omega}=\int_{0}^{T} \eta_{\tau}(s) d s \int_{\Omega} \psi\left(u_{r}\right) \Delta \rho d x+\int_{0}^{T} \eta_{\tau}(s) \int_{\Omega} \rho d \mu
$$

Since $\eta_{\tau}(s) \rightarrow \chi_{(0, t]}$ for every $s \in(0, T)$ as $\tau \rightarrow 0$ and we replace the test function ρ by $\phi_{n}(x) \rho_{V}(x)$.
Then we infer that

$$
\left\langle u(\cdot, t), \phi_{n} \rho_{V}\right\rangle_{\Omega}-\left\langle u_{0}, \phi_{n} \rho_{V}\right\rangle_{\Omega}=\int_{0}^{t} \int_{\Omega} \psi\left(u_{r}\right) \Delta\left(\phi_{n} \rho_{V}\right) d x d s+\int_{0}^{t} \int_{\Omega}\left(\phi_{n} \rho_{V}\right) d \mu
$$

By ($\left[14\right.$, Theorem 8, p.85]), the measure $\mu \in \mathcal{M}^{+}(Q)$ can be decomposed as $\lambda \in \mathcal{M}^{+}(0, T)$ and $\nu^{t} \in \mathcal{M}^{+}(\Omega)$ such that for $\phi_{n} \rho_{V} \in C(\Omega)$, there holds

$$
\left\langle\mu, \phi_{n} \rho_{V}\right\rangle_{Q}=\int_{(0, T)} d \lambda(s) \int_{\Omega} \phi_{n} \rho_{V} d \nu^{t}
$$

with $\lambda(s):=\delta_{(0, T)}(s)$, where $\delta_{(0, T)}$ a Dirac measure on $(0, \mathrm{~T})$. Therefore,

$$
\left\langle[u(\cdot, t)]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}+\left\langle[u(\cdot, t)]_{d, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}=
$$

$$
\begin{gather*}
=\int_{0}^{t} \int_{\Omega} \psi\left(u_{r}\right) \Delta\left(\phi_{n} \rho_{V}\right) d x d s+\left\langle\left[\nu^{t}\right]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}+ \\
+\left\langle\left[\nu^{t}\right]_{d, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}+\left\langle\left[u_{0}\right]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}+\left\langle\left[u_{0}\right]_{d, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega} . \tag{4.11}
\end{gather*}
$$

By the assumptions stated above, we infer that

$$
\lim _{n \rightarrow \infty} \int_{0}^{t} \int_{\Omega} \psi\left(u_{r}\right) \Delta\left(\phi_{n} \rho_{V}\right) d x d s=0
$$

Moreover, since $[u(\cdot, t)]_{d, 2},\left[\nu^{t}\right]_{d, 2},\left[u_{0}\right]_{d, 2}$ belong to $L^{1}(\Omega)+H^{-1}(\Omega)$ and $\phi_{n} \stackrel{*}{\sim} 0$ in $L^{\infty}(\Omega)$, $\phi_{n} \rightarrow 0$ in $H_{0}^{1}(\Omega)$ so that

$$
\lim _{n \rightarrow \infty}\left\langle[u(\cdot, t)]_{d, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}=\lim _{n \rightarrow \infty}\left\langle\left[\nu^{t}\right]_{d, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}=\lim _{n \rightarrow \infty}\left\langle\left[u_{0}\right]_{d, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}=0
$$

It follows that (4.11) can be rewritten as

$$
\begin{equation*}
\left\langle[u(\cdot, t)]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}=\left\langle\left[\nu^{t}\right]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}+\left\langle\left[u_{0}\right]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega} . \tag{4.12}
\end{equation*}
$$

Since K is a subset compact of Ω, then
$\left[u(\cdot, t)-u_{0}\right]_{c, 2}(K) \leq \limsup _{n \rightarrow \infty}\left\langle\left[u(\cdot, t)-u_{0}\right]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}=\limsup _{n \rightarrow \infty}\left\langle\left[\nu^{t}\right]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega} \leq\left[\nu^{t}\right]_{c, 2}(K)$.
On the other hand, we get

$$
\left[\nu^{t}\right]_{c, 2}(K) \leq \limsup _{n \rightarrow \infty}\left\langle\left[\nu^{t}\right]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega}=\limsup _{n \rightarrow \infty}\left\langle\left[u(., t)-u_{0}\right]_{c, 2}, \phi_{n} \rho_{V}\right\rangle_{\Omega} \leq\left[u(., t)-u_{0}\right]_{c, 2}(K) .
$$

The above inequality implies that

$$
\left[u(\cdot, t)-u_{0}\right]_{c, 2}(K) \leq \inf \left\{\left[\nu^{t}\right]_{c, 2}(V) \mid K \subset V, \text { open }\right\}=\left[\nu^{t}\right]_{c, 2}(K) .
$$

Similarly, we have

$$
\left[\nu^{t}\right]_{c, 2}(K) \leq \inf \left\{\left[u(\cdot, t)-u_{0}\right]_{c, 2}(V) \mid K \subset V, \text { open }\right\}=\left[u(., t)-u_{0}\right]_{c, 2}(K)
$$

Whence, the following statement

$$
\begin{equation*}
\left[\nu^{t}\right]_{c, 2}(K)=\left[u(\cdot, t)-u_{0}\right]_{c, 2}(K) \tag{4.13}
\end{equation*}
$$

holds true. According to the arbitrariness of K, (4.13) is satisfied for every Borel set $E \subseteq \Omega$ with $C_{2}(E)=0$. By the definition of concentrated measure with respect to the Newtonian capacity, we have for any $t \in(0, T) \backslash F$,

$$
[u(\cdot, t)]_{c, 2}=[u(\cdot, t)]_{c, 2}\left\llcorner B_{1}(t),\left[\nu^{t}\right]_{c, 2}=\left[\nu^{t}\right]\left\llcorner B_{2}(t) \text { and } \quad\left[u_{0}\right]_{c, 2}=\left[u_{0}\right]_{c, 2}\llcorner A\right.\right.
$$

for some Borel sets $B_{1}(t), B_{2}(t)$, and A is a zero Newtonian capacity, then (4.13) yields

$$
[u(\cdot, t)]_{c, 2}\left(\left(B_{1}(t) \cup B_{2}(t)\right) \backslash A\right)=\left[\nu^{t}\right]_{c, 2}\left(\left(B_{1}(t) \cup B_{2}(t)\right) \backslash A\right)=
$$

$$
=\left[u_{0}\right]_{c, 2}\left(\left(B_{1}(t) \cup B_{2}(t)\right) \backslash A\right)=0
$$

Therefore for every $t \in(0, T) \backslash F,[u(\cdot, t)]_{c, 2},\left[\nu^{t}\right]_{c, 2},\left[u_{0}\right]_{c, 2}$ are concentrated measures on the set $B^{*}(t)$ such that $B^{*}(t)=\left(B_{1}(t) \cap A\right) \cup\left(B_{2}(t) \cap A\right)$. Therefore, for every set $E \subseteq \Omega$ and $t \in(0, T) \backslash F$, there holds

$$
\begin{aligned}
{\left[u(\cdot, t)-u_{0}\right]_{c, 2}(E) } & =\left(\left[u(\cdot, t)-u_{0}\right]_{c, 2}\left\llcorner B^{*}(t)\right)(E)=\left[u(\cdot, t)-u_{0}\right]_{c, 2}\left\llcorner\left(B^{*}(t) \cap E\right)=\right.\right. \\
& =\left[\nu^{t}\right]_{c}\left\llcorner\left(B^{*}(t) \cap E\right)=\left(\left[\nu^{t}\right]_{c, 2}\left\llcorner B^{*}(t)\right)(E) .\right.\right.
\end{aligned}
$$

Hence, the proof is achieved.

5. Existence results

We prove the existence result of the problem (P).
Proposition 5.1. Assume that (I) and (J) hold. Let u_{n} be the solution to the approximation problem $\left(P_{n}\right)$, then there exist a subsequence $\left\{u_{n_{j}}\right\} \subseteq\left\{u_{n}\right\}$ and $v \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right) \cap$ $L^{\infty}\left((0, T), H_{0}^{1}(\Omega)\right) \cap L^{\infty}(Q)$ with $0 \leq v \leq \gamma$ in Q such that

$$
\begin{gather*}
\psi\left(u_{n_{j}}\right) \stackrel{*}{\rightharpoonup} v \text { in } L^{\infty}(Q) . \tag{5.1}\\
\nabla \psi\left(u_{n_{j}}\right) \rightharpoonup \nabla v \text { in }\left[L^{2}(Q)\right]^{N} . \tag{5.2}\\
\psi\left(u_{n_{j}}\right) \rightarrow v \text { a.e in } Q . \tag{5.3}
\end{gather*}
$$

Proof. By the assumption (I)-(ii), the sequence $\left\{\psi\left(u_{n}\right)\right\}$ is uniformly bounded in $L^{\infty}(Q)$, then from [5] there exists a function $v \in L^{\infty}(Q)$ such that the convergence in (5.1) holds true. Furthermore, the convergence (5.2) stems from estimate (4.5).
By (4.6), we have

$$
\begin{align*}
\left|\nabla \phi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right)\right| & =\left|\nabla T_{k}\left(\psi\left(u_{n}\right)\right)\right|\left|\psi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right)\right| \\
& \leq \gamma\left|\nabla T_{k}\left(\psi\left(u_{n}\right)\right)\right| . \tag{5.4}
\end{align*}
$$

It follows that,

$$
\int_{Q}\left|\nabla \phi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right)\right| d x d t \leq \gamma|Q|\left[\int_{Q}\left|\nabla T_{k}\left(\psi\left(u_{n}\right)\right)\right|^{2} d x d t\right]^{\frac{1}{2}}
$$

Since $T_{k}\left(\psi\left(u_{n}\right)\right) \in L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$ then there exists a positive constant C such that

$$
\begin{equation*}
\int_{Q} \mid \nabla \phi\left(T_{k}\left(\psi\left(u_{n}\right)\right) \mid d x d t \leq C\right. \tag{5.5}
\end{equation*}
$$

By Proposition 4.2, the sequence $\left[\phi\left(T_{k}\left(\psi\left(u_{n}\right)\right)\right)\right]_{t}$ is bounded in $L^{2}\left((0, T), H^{-1}(\Omega)\right)+L^{1}(Q)$. According to the compactness theorem in [29], then there
exists a subsequence denoted again $\left\{\psi\left(u_{n_{j}}\right)\right\}$ (possibly for $\bar{k}>0, T_{\bar{k}}\left(\psi\left(u_{n}\right)\right)=\psi\left(u_{n_{j}}\right)$ and $\left.\left|\psi\left(u_{n_{j}}\right)\right| \leq \bar{k}\right)$ and a function $\bar{v} \in L^{1}\left((0, T), W_{0}^{1,1}(\Omega)\right) \cap L^{1}(Q)$ such that

$$
\begin{equation*}
\phi\left(\psi\left(u_{n_{j}}\right)\right) \rightarrow \bar{v} \quad \text { a.e in } \quad Q . \tag{5.6}
\end{equation*}
$$

Therefore, we get

$$
\begin{equation*}
\psi\left(u_{n_{j}}\right) \rightarrow \phi^{-1}(\bar{v}) \quad \text { a.e in } \quad Q . \tag{5.7}
\end{equation*}
$$

Combining (5.6) with (5.1) gives $\phi^{-1}(\bar{v})=v$, this proves (5.3).
We recall the following sclicing property of the bounded Radon measure $u \in \mathcal{M}(Q)$. The proof is omitted since it follows from the more general result in ([14, Theorem 8, p.35]).

Proposition 5.2. Assume that $\mu \in \mathcal{M}^{+}(Q)$. Then there exists a measure $\lambda \in \mathcal{M}^{+}(0, T)$ and for λ almost everywhere $t \in(0, T)$, there exists a probability $\nu^{t} \in \mathcal{M}^{+}(\Omega)$ with the following properties
(i) for any Borel set $E \subseteq Q$

$$
\begin{equation*}
\mu(E)=\int_{(0, T)} \nu^{t}\left(E^{t}\right) d \lambda(t) \tag{5.8}
\end{equation*}
$$

where $E^{t}=\{x \in \Omega /(x, t) \in E\}$
(ii) for every $\xi \in C(\bar{Q})$

$$
\begin{equation*}
\langle\mu, \xi\rangle_{Q}=\int_{(0, T)} d \lambda(t) \int_{\Omega} \xi(x, t) d \nu^{t}(x) . \tag{5.9}
\end{equation*}
$$

Proposition 5.3. Let $\left\{u_{n_{j}}\right\}$ and v as in Proposition 5.1. Then the following assertions hold
(i) $\psi^{-1}\left(u_{n_{j}}\right) \in L^{1}(Q)$ and we have

$$
\begin{equation*}
u_{n_{j}}(x, t) \rightarrow\left[\psi^{-1}(v)\right](x, t) \quad \text { a.e } \quad(x, t) \in Q . \tag{5.10}
\end{equation*}
$$

(ii) There exist $\left.\lambda_{1}, \lambda_{2} \in L^{\infty}\left((0, T), \mathcal{M}^{+}(\Omega)\right)\right)$ and we can extract a subsequence still denoted $\left\{u_{n_{j}}\right\}$ such that

$$
\begin{gather*}
u_{n_{j}}^{+} \stackrel{*}{\rightharpoonup}\left[\psi^{-1}(v)\right]^{+}+\lambda_{1} \quad \text { in } \mathcal{M}^{+}(Q), \tag{5.11}\\
u_{n_{j}}^{-} \stackrel{*}{\rightharpoonup}\left[\psi^{-1}(v)\right]^{-}+\lambda_{2} \quad \text { in } \mathcal{M}^{+}(Q), \tag{5.12}\\
u_{n_{j}} \stackrel{*}{\rightharpoonup}\left[\psi^{-1}(v)\right]+\lambda \quad \text { in } \mathcal{M}^{+}(Q), \tag{5.13}
\end{gather*}
$$

where $\lambda:=\lambda_{1}-\lambda_{2}$ in $L^{\infty}\left((0, T), \mathcal{M}^{+}(\Omega)\right)$.
Proof. From (5.3), (4.1) and $\psi^{-1}\left(u_{n_{j}}\right) \in L^{1}(Q)$, then by Fatou's Lemma, we get

$$
\begin{equation*}
\int_{Q}\left[\psi^{-1}(v)\right](x, t) d x d t \leq \liminf _{j \rightarrow \infty} \int_{Q} u_{n_{j}}(x, t) d x d t \tag{5.14}
\end{equation*}
$$

By (5.3) the convergence (5.11) is satisfied.
Since the sequence $\left\{u_{n_{j}}\right\}$ is uniformly bounded in $L^{1}(Q)$ and by (4.6), there exist a subsequence $\left\{u_{n_{j}}\right\}$ which still denote $\left\{u_{n_{j}}\right\}$ and Radon-measures $\bar{u}, \widetilde{u} \in \mathcal{M}^{+}(Q)$ such that

$$
\begin{align*}
& u_{n_{j}}^{+} \stackrel{*}{\rightharpoonup} \bar{u} \text { in } \mathcal{M}^{+}(Q) . \tag{5.15}\\
& u_{n_{j}}^{-} \stackrel{*}{\rightharpoonup} \widetilde{u} \text { in } \mathcal{M}^{+}(Q) . \tag{5.16}
\end{align*}
$$

Let us prove that $\bar{u}, \widetilde{u} \in L^{\infty}\left((0, T), \mathcal{M}^{+}(\Omega)\right)$. To prove this, we consider $\lambda_{i} \in \mathcal{M}^{+}(0, T)$ and λ_{i}-a.e $t \in(0, T)$. Let $\nu_{i}^{t} \in \mathcal{M}^{+}(\Omega)$ be the measure given by Proposition 5.2 in correspondence with each \bar{u}, \widetilde{u}. Let us show that the measures $\lambda_{i} \in \mathcal{M}^{+}(0, T)$ are absolutely continuous with respect to the Lebesgue measure over $(0, T)$. In this direction, fix arbitrarily $\bar{t} \in(0, T)$ and choose $r, s>0$ such that $J_{r, s} \equiv(\bar{t}-r-2 s, \bar{t}+r+2 s) \subseteq(0, T)$. Then for every function $\eta_{r, s} \in C_{c}^{1}(0, T)$ such that

$$
\eta_{r, s} \equiv 1 \text { in }[\bar{t}-r-2 s, \bar{t}+r+2 s], \quad 0 \leq \eta_{r, s} \leq 1, \quad \operatorname{supp} \eta_{r, s} \subseteq J_{r, s}
$$

By the estimate (4.1), we have

$$
\begin{equation*}
\int_{Q} u_{n_{j}}^{ \pm} \eta_{r, s}(t) d x d t \leq 2(r+2 s)\|\mu\|_{\mathcal{M}^{+}(Q)}+2(r+2 s)\left\|u_{0}\right\|_{\mathcal{M}^{+}(\Omega)} \tag{5.17}
\end{equation*}
$$

By (5.15), (5.16) and (5.17), there holds

$$
\int_{[\bar{t}-r, \bar{t}+r]} d \lambda_{i}(t) \leq \int_{(\bar{t}-r-2 s, \bar{t}+r+2 s)} \nu_{i}^{t}(\Omega) d \lambda_{i}(t) \leq \liminf _{k \rightarrow \infty} \int_{Q} u_{n_{j}}^{ \pm}(x, t) \eta_{r, s}(t) d x d t .
$$

Thus

$$
\int_{[t-r, \bar{t}+r]} d \lambda_{i}(t) \leq 2(r+2 s)\|\mu\|_{\mathcal{M}^{+}(Q)}+2(r+2 s)\left\|u_{0}\right\|_{\mathcal{M}^{+}(\Omega)} .
$$

Noting s is arbitrary, thus we divide both sides of the above inequality by $2 r$, we obtain

$$
\frac{1}{2 r} \int_{[t-r, \bar{t}+r]} d \lambda_{i}(t) \leq\|\mu\|_{\mathcal{M}^{+}(Q)}+\left\|u_{0}\right\|_{\mathcal{M}^{+}(\Omega)}
$$

Therefore there exists $h_{i} \in L^{1}(0, T), h_{i} \geq 0$ such that $d \lambda_{i}(t)=h_{i}(t) d t$, this means that the Radon-measure $\mathcal{M}^{+}(0, T)$ is regular (e.g, [9]).
Since $\bar{u}, \widetilde{u} \in \mathcal{M}^{+}(Q)$ are nonnegative Radon-measures, letting $r \rightarrow 0$ in the previous inequality yields

$$
0 \leq h_{i}(t) \leq C\left(\|\mu\|_{\mathcal{M}^{+}(Q)}+\left\|u_{0}\right\|_{\mathcal{M}^{+}(\Omega)}\right)
$$

for almost every $t \in(0, T)$. Finally, defining

$$
\bar{u}(t)=h_{1}(t) \nu_{1}^{t} \quad \text { and } \widetilde{u}(t)=h_{2}(t) \nu_{2}^{t} \quad \text { for almost everywhere } t \in(0, T) .
$$

From (5.7) and (5.8) we obtain that $\bar{u}, \widetilde{u} \in L^{\infty}\left((0, T), \mathcal{M}^{+}(\Omega)\right)$.
Since $u_{n_{j}} \rightarrow \psi^{-1}(v)$ almost everywhere in Q, then $u_{n_{j}}^{ \pm} \rightarrow\left[\psi^{-1}(v)\right]^{ \pm}$almost everywhere in
Q.
By (5.14) and (5.16), then we infer from Fatou's Lemma

$$
\int_{Q}\left[\psi^{-1}(v)\right]^{+} \xi(x, t) d x d t \leq \liminf _{j \rightarrow \infty} \int_{Q} u_{n_{j}}^{+} \xi(x, t) d x d t \leq\langle\bar{u}, \xi\rangle_{Q}
$$

Similarly, we have

$$
\int_{Q}\left[\psi^{-1}(v)\right]^{-} \xi(x, t) d x d t \leq \liminf _{j \rightarrow \infty} \int_{Q} u_{n_{j}}^{-} \xi(x, t) d x d t \leq\langle\widetilde{u}, \xi\rangle_{Q}
$$

for every $\xi \in C_{c}(Q), \xi \geq 0$, thus defining

$$
\lambda_{1}=\bar{u}-\left[\psi^{-1}(v)\right]^{+} \quad \text { and } \quad \lambda_{2}=\widetilde{u}-\left[\psi^{-1}(v)\right]^{-} .
$$

Hence, $\lambda_{1}, \lambda_{2} \in L^{\infty}\left((0, T), \mathcal{M}^{+}(\Omega)\right)$ hods true.
Proposition 5.4. Let u and v be in Proposition 5.3 and Proposition 5.1. Then for almost every $t \in(0, T)$, we have

$$
\begin{gather*}
u_{n_{j}}(\cdot, t) \rightarrow\left[\psi^{-1}(v)\right](\cdot, t) \quad \text { a.e in } \quad \Omega . \tag{5.18}\\
u_{n_{j}}^{+}(t) \stackrel{*}{\rightharpoonup}\left[\psi^{-1}(v)\right]^{+}(\cdot, t)+\lambda_{1}(\cdot, t) \quad \text { in } \tag{5.19}\\
u^{+}(\Omega) . \tag{5.20}\\
u_{n_{j}}^{-}(\cdot, t) \stackrel{*}{\rightharpoonup}\left[\psi^{-1}(v)\right]^{-}(\cdot, t)+\lambda_{2}(\cdot, t) \tag{5.21}\\
u_{n_{j}}(\cdot, t) \stackrel{*}{\rightharpoonup}\left[\psi^{-1}(v)\right](\cdot, t)+\lambda(\cdot, t) \\
\mathcal{M}^{+}(\Omega) . \\
\mathcal{M}^{+}(\Omega) .
\end{gather*}
$$

Proof. This proof is similar to that given in [18, 24]. Let us recall the statement of the function \mathcal{F} which belongs to $C^{2}\left(\mathbb{R}_{+}\right)$(see [18, Proposition 4.3]. Let u_{n} be the solution of the problem $\left(P_{n}\right)$, and $\mathcal{F} \in C^{2}\left(\mathbb{R}_{+}\right)$, then for any $\rho \in C_{c}^{1}(\Omega), \rho(x) \geq 0$ and there exists a zero Lebesgue measure set H such that $(0, T) \backslash H$, the following identity is satisfied

$$
\begin{gather*}
\int_{\Omega} \mathcal{F}\left(u_{n}\right)(x, t) \rho(x) d x-\int_{\Omega} \mathcal{F}\left(u_{n}\right)(x, 0) \rho(x) d x= \\
=\int_{0}^{T} \int_{\Omega}\left\{-\mathcal{F}^{\prime}\left(u_{n}\right) \nabla \psi\left(u_{n}\right) \nabla \rho d x-\frac{\mathcal{F}^{\prime \prime}\left(u_{n}\right)}{\psi^{\prime}\left(u_{n}\right)}\left|\nabla \psi\left(u_{n}\right)\right|^{2} \rho\right\} d x d t+ \\
\quad+\int_{0}^{T} \int_{\Omega} \mu_{n} \mathcal{F}^{\prime}\left(u_{n}\right) \rho d x d t . \tag{5.22}
\end{gather*}
$$

The convergence (5.18) immediately follows from (5.3). Next let us fix $J>1$ and we consider the functions $\mathcal{F}_{J}, \mathcal{R}_{J} \in C^{2}\left(\mathbb{R}_{+}\right)$defined as follows

$$
\mathcal{F}_{J}(s)= \begin{cases}0 & \text { if } 0 \leq s \leq J \\ s-J & \text { if } J \leq s \leq J+1 \\ s-J & \text { if } s \geq J+1\end{cases}
$$

and $\mathcal{R}_{J}(s)=s-\mathcal{F}_{J}(s)\left(s \in \mathbb{R}_{+}\right)$and $\mathcal{R}_{J}(s) \chi_{\{s \geq J+1\}}=J$.
Let us consider the function \mathcal{H}_{n} belongs to $C^{1}\left(\overline{\mathbb{R}}_{+}\right)$by setting

$$
\mathcal{H}_{n, \rho}(t)=\int_{\Omega} \mathcal{F}_{J}\left(u_{n}(x, t)\right) \rho(x) d x
$$

By (4.1), there exists a positive constant C such that

$$
\int_{0}^{T}\left|\mathcal{H}_{n, \rho}(t)\right| d t \leq\|\rho\|_{L^{\infty}(\Omega)} \int_{0}^{T} \int_{\Omega} u_{n}^{+}(x, t) d x d t \leq C
$$

where $C=C\left[T,\|\rho\|_{L^{\infty}(\Omega)},\left\|u_{0}\right\|_{\mathcal{M}^{+}(\Omega)},\|\mu\|_{\mathcal{M}^{+}(Q)}\right]>0$.
Thus $\mathcal{H}_{n, \rho} \in L^{1}(0, T)$ for every $\rho \in C_{c}^{1}(\Omega)$. Furthermore by (5.22) yields

$$
\begin{align*}
& \int_{0}^{T}\left|\frac{d \mathcal{H}_{n, \rho}(t)}{d t}\right| d t \leq \int_{0}^{T} \int_{\Omega} \mathcal{F}_{J}^{\prime}\left(u_{n}\right)\left|\nabla \psi\left(u_{n}\right)\right|^{2}|\nabla \rho| d x d t+ \\
+ & \int_{0}^{T} \int_{\Omega} \frac{\mathcal{F}^{\prime \prime}\left(u_{n}\right)}{\psi^{\prime}\left(u_{n}\right)}\left|\nabla \psi\left(u_{n}\right)\right|^{2} \rho d x d t+\int_{0}^{T} \int_{\Omega} \mu_{n} \mathcal{F}^{\prime}\left(u_{n}\right) \rho d x d t \tag{5.23}
\end{align*}
$$

By properties of sequence $\left\{\mathcal{F}_{J}\left(u_{n}\right)\right\}_{J>1}$ mentioned above and $\rho \in C_{c}^{1}(\Omega)$, there exists a positive constant $C=C\left[\|\rho\|_{L^{\infty}(\Omega)},\left\|u_{0}\right\|_{\mathcal{M}^{+}(\Omega)},\|\mu\|_{\mathcal{M}^{+}(Q)}\right]>0$ such that

$$
\int_{0}^{T}\left|\frac{d \mathcal{H}_{n, \rho}(t)}{d t}\right| d t \leq C
$$

Thus the family $\mathcal{H}_{n, \rho}$ is uniformly bounded in $W^{1,1}(0, T)$.
Hence there exist a subsequence $\left\{\mathcal{H}_{n_{j}, \rho}\right\} \subseteq\left\{\mathcal{H}_{n, \rho}\right\}$ and a function $\mathcal{H}_{\rho} \in L^{1}(0, T)$ such that

$$
\begin{equation*}
\mathcal{H}_{n_{j}, \rho} \rightarrow \mathcal{H}_{\rho} \quad \text { in } \quad L^{1}(0, T) \tag{5.24}
\end{equation*}
$$

By the properties of the function \mathcal{F}_{J}, the function \mathcal{R}_{J} is continuous and bounded in \mathbb{R}_{+}, then the convergence (5.10) and the dominated convergence theorem imply that

$$
\begin{equation*}
\mathcal{R}_{J}\left(u_{n_{j}}\right) \rightarrow \mathcal{R}_{J}\left(\psi^{-1}(v)\right) \quad \text { in } \quad L^{1}(Q) \tag{5.25}
\end{equation*}
$$

By (5.10), (5.11) and the definition of \mathcal{R}_{J}, we have

$$
\begin{equation*}
\mathcal{F}_{J}\left(u_{n_{j}}\right)=u_{n_{j}}^{+}-\mathcal{R}_{J}\left(u_{n_{j}}\right) \stackrel{*}{\sim}\left[\psi^{-1}(v)\right]^{+}+\lambda_{1}-\mathcal{R}_{J}\left(\psi^{-1}(v)\right)=\mathcal{F}_{J}\left(\psi^{-1}(v)\right)+\lambda_{1} \quad \text { in } \quad \mathcal{M}^{+}(Q) \tag{5.26}
\end{equation*}
$$

In view of (5.24) and (5.26), for any $h \in C_{c}(0, T)$ and $\rho \in C_{c}^{1}(\Omega)$ we get

$$
\begin{aligned}
\int_{0}^{T} \mathcal{H}_{\rho}(t) h(t) d t & =\lim _{j \rightarrow \infty} \int_{0}^{T} \mathcal{H}_{n_{j}, \rho}(t) h(t) d t=\lim _{j \rightarrow \infty} \int_{Q} \mathcal{F}_{J}\left(u_{n_{j}}\right) \rho(x) h(t) d x d t= \\
& =\int_{0}^{T} h(t)\left\langle\mathcal{F}_{J}\left(\psi^{-1}(v)(\cdot, t)\right)+\lambda_{1}(\cdot, t), \rho\right\rangle_{\Omega} d t
\end{aligned}
$$

Then by the above equality, we deduce that

$$
\mathcal{H}_{\rho}(t)=\left\langle\mathcal{F}_{J}\left(\psi^{-1}(v)(\cdot, t)\right)+\lambda_{1}(\cdot, t), \rho\right\rangle_{\Omega}
$$

for almost every $t \in(0, T)$ and

$$
\mathcal{H}_{j, \rho} \rightarrow\left\langle\mathcal{F}_{J}\left(\psi^{-1}(v)(\cdot, t)\right)+\lambda_{1}(\cdot, t), \rho\right\rangle_{\Omega} \quad \text { in } \quad L^{1}(0, T)
$$

for any $\rho \in C_{c}^{1}(\Omega)$.
Proof of Theorem 3.3. Let us show that for every $\rho \in C_{c}^{1}(\Omega), \rho \geq 0$ and for almost every $\tau \in(0, T)$, there exists a Radon measure $\nu^{\tau} \in \mathcal{M}^{+}(\Omega)$ such that

$$
\begin{align*}
& \left\langle\lambda_{1}(\tau), \rho\right\rangle_{\Omega} \leq\left\langle\left[u_{0 s}\right]^{+}+\left[\nu_{s}^{\tau}\right]^{+}, \rho\right\rangle_{\Omega} \tag{5.27}\\
& \left\langle\lambda_{2}(\tau), \rho\right\rangle_{\Omega} \leq\left\langle\left[u_{0 s}\right]^{-}+\left[\nu_{s}^{\tau}\right]^{-}, \rho\right\rangle_{\Omega} \tag{5.28}
\end{align*}
$$

We prove the first inequality (5.27) and the second one follows by similar argument. Fix any $\rho \in C_{c}^{1}(\Omega), \rho \geq 0$ and we consider the sequence $\left\{\mathcal{F}_{J}\left(u_{n}\right)\right\}$ as mentioned above and we use it in (5.22), then we obtain for every $\tau \in(0, T)$

$$
\begin{gather*}
\int_{\Omega} \mathcal{F}_{J}\left(u_{n}\right)(x, \tau) \rho(x) d x-\int_{\Omega} \mathcal{F}_{J}\left(u_{0 n}\right)(x) \rho(x) d x \\
\leq-\int_{0}^{\tau} \int_{\Omega} \mathcal{F}_{J}^{\prime}\left(u_{n}\right) \nabla \psi\left(u_{n}\right) \nabla \rho d x d t+\int_{0}^{\tau} \int_{\Omega} \mu_{n} \mathcal{F}_{J}^{\prime}\left(u_{n}\right) \rho d x d t \tag{5.29}
\end{gather*}
$$

Let us consider $\left\{u_{n_{j}}\right\}$ the sequence given in Proposition 5.1 and Proposition 5.2 and let us take the limit as j tends to infinity in (5.29) (with $n=n_{j}$). By (5.2), (5.3) and the fact that $\left\{\mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right)\right\}$ is bounded in $L^{\infty}(Q)$, there holds

$$
\lim _{j \rightarrow \infty} \int_{0}^{\tau} \int_{\Omega} \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \nabla \psi\left(u_{n_{j}}\right) \nabla \rho d x d t=\int_{0}^{\tau} \int_{\Omega} \mathcal{F}_{J}^{\prime}\left(\psi^{-1}(v)\right) \nabla v \nabla \rho d x d t
$$

In view of the definition of the sequence $\left\{\mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right)\right\}$, yields

$$
0 \leq \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \leq 1, \quad \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \rightarrow 0 \text { as } J \rightarrow \infty \text { and } \psi^{-1}(v) \in L^{1}(Q)
$$

It follows that

$$
\begin{equation*}
\lim _{J \rightarrow \infty} \lim _{j \rightarrow \infty} \int_{0}^{\tau} \int_{\Omega} \mathcal{F}_{J}^{\prime}\left(\psi^{-1}(v)\right) \nabla v \nabla \rho d x d t=0 \tag{5.30}
\end{equation*}
$$

On the other hand, by (5.26) one has

$$
\lim _{j \rightarrow \infty} \int_{\Omega} \mathcal{F}_{J}\left(u_{n_{j}}(x, \tau)\right) \rho(x) d x=\int_{\Omega} \mathcal{F}_{J}\left(\psi^{-1}(v)\right)(x, \tau) d x+\left\langle\lambda_{1}(\tau), \rho\right\rangle_{\Omega}
$$

Referring to the definition of the sequence $\left\{\mathcal{F}_{J}\left(u_{n}\right)\right\}_{J>1}$, we infer that

$$
0 \leq \mathcal{F}_{J}\left(u_{n_{j}}\right) \leq 1, \mathcal{F}_{J}\left(u_{n_{j}}\right) \rightarrow 0 \text { as } J \rightarrow \infty \text { and } \psi^{-1}(v) \in L^{1}(Q) .
$$

Then we obtain

$$
\begin{equation*}
\lim _{J \rightarrow \infty} \lim _{j \rightarrow \infty} \int_{\Omega} \mathcal{F}_{J}\left(u_{n}(\tau)\right) \rho(x) d x=\left\langle\lambda_{1}(\tau), \rho\right\rangle_{\Omega} \tag{5.31}
\end{equation*}
$$

Let us consider the sequence $\left\{u_{0 n}(x)\right\}$ satisfies (3.3), then

$$
\mathcal{F}_{J}\left(u_{0 n_{j}}\right)=\left[u_{0 n_{j}}\right]^{+}-\mathcal{R}_{J}\left(u_{0 n_{j}}\right) \leq\left[u_{0 r n_{j}}\right]^{+}+\left[u_{0 s n}\right]^{+}-\mathcal{R}_{J}\left(u_{0 n_{j}}\right) .
$$

Since $u_{0 r n_{j}} \rightarrow u_{0 r}$ in $L^{1}(\Omega)$ and the sequence $\left\{\mathcal{R}_{J}\left(u_{0 r n_{j}}\right)\right\}$ is bounded in $L^{\infty}(\Omega)$, we obtain

$$
\left[u_{0 r n_{j}}\right]^{+}-\mathcal{R}_{J}\left(u_{0 n_{j}}\right) \rightarrow\left[u_{0 r}\right]^{+}-\mathcal{R}_{J}\left(u_{0 r}\right)=\mathcal{F}_{J}\left(u_{0 r}\right) \quad \text { in } \quad L^{1}(\Omega)
$$

which leads to

$$
\begin{equation*}
\lim _{J \rightarrow \infty} \limsup _{j \rightarrow \infty} \int_{\Omega} \mathcal{F}_{J}\left(u_{0 n_{j}}\right) \rho(x) d x \leq\left\langle\left[u_{0 s}\right]^{+}, \rho\right\rangle_{\Omega} . \tag{5.32}
\end{equation*}
$$

Let us now consider the function $\bar{\eta}_{r, s}$ constructs from the function $\eta_{r, s}$ given in Proposition 5.2 as follows

$$
\bar{\eta}_{r, s}(t)=\int_{t+r+2 s}^{t} \eta_{r, s}(\theta) d \theta \quad \text { for every } \theta \in(0, T)
$$

we deduce that

$$
\begin{align*}
\int_{0}^{\tau} \int_{\Omega} \mu_{n_{j}} \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \rho d x d t & =\int_{0}^{\tau} \int_{\Omega} \mu_{n_{j}}\left(1-\bar{\eta}_{r, s}(t)\right) \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \rho d x d t+ \\
& +\int_{0}^{\tau} \int_{\Omega} \mu_{n_{j}} \bar{\eta}_{r, s}(t) \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \rho d x d t . \tag{5.33}
\end{align*}
$$

Since $\left\{\mu_{n_{j}}\right\}$ is a nonnegative bounded Radon-measure, and the function $1-\bar{\eta}_{r, s}(t)$ is bounded in \mathbb{R}_{+}, there holds

$$
\underset{j \rightarrow \infty}{\limsup } \int_{0}^{\tau} \int_{\Omega} \mu_{n_{j}}\left(1-\bar{\eta}_{r, s}(t)\right) \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \rho d x d t \leq \int_{0}^{\tau}\left\langle\mu, \rho \mathcal{F}_{J}\left(\psi^{-1}(v)\right)\left(1-\bar{\eta}_{r, s}(t)\right)\right\rangle d t .
$$

Letting J to infinity, we obtain

$$
\begin{equation*}
\lim _{J \rightarrow \infty} \limsup _{j \rightarrow \infty} \int_{0}^{\tau} \int_{\Omega} \mu_{n_{j}}\left(1-\bar{\eta}_{r, s}(t)\right) \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \rho d x d t=0 \tag{5.34}
\end{equation*}
$$

By [11, Theorem 8, p.85], there exist $\nu_{n_{j}}^{t} \in \mathcal{M}^{+}(\Omega)$ and $\delta_{0} \in \mathcal{M}^{+}(0, T)$ for $\mu_{n_{j}} \in \mathcal{M}^{+}(Q)$ such that (5.33), becomes

$$
\int_{0}^{\tau} \int_{\Omega} \mu_{n_{j}} \bar{\eta}_{r, s}(t) \mathcal{F}_{J}^{\prime}\left(u_{n_{k}}\right) \rho d x d t \leq \bar{\eta}_{r, s}(0) \int_{\Omega} \nu_{n_{j}}^{\tau} \mathcal{F}_{J}\left(u_{n_{j}}\right) \rho d x \leq(4 r+2 s) \int_{\Omega} \nu_{n_{j}}^{\tau} \mathcal{F}_{J}\left(u_{n_{j}}\right) \rho d x .
$$

Setting $r=\frac{1}{8}$ and $s=\frac{1}{4}$, then

$$
\int_{0}^{\tau} \int_{\Omega} \mu_{n_{j}} \bar{\eta}_{r, s}(t) \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \rho d x d t \leq \int_{\Omega}\left[\nu_{s}^{\tau}\right]_{n_{j}}^{+} \rho d x+\int_{\Omega}\left[\nu_{r}^{\tau}\right]_{n_{j}}^{+} \mathcal{F}_{J}\left(u_{n_{j}}\right) \rho d x .
$$

Therefore,

$$
\begin{equation*}
\lim _{J \rightarrow \infty} \limsup _{j \rightarrow \infty} \int_{0}^{\tau} \int_{\Omega} \mu_{n_{j}} \mathcal{F}_{J}^{\prime}\left(u_{n_{j}}\right) \rho d x d t \leq\left\langle\left[\nu_{s}^{\tau}\right]^{+}, \rho\right\rangle_{\Omega} \tag{5.35}
\end{equation*}
$$

Combining (5.30), (5.31), (5.32), (5.34) and (5.35) together. Hence (5.27) holds true.
Remark 5.1. By the assumptions (I) and (J), it has been proved that
(i) the set

$$
\widetilde{S}=\left\{(x, t) \in \Omega / \psi\left(u_{r}\right)(x, t)=\gamma\right\}
$$

has zero Lebesgue measure (see [23, Proposition 5.2]).
(ii) There hold

$$
\operatorname{supp}(u(x, t)) \subseteq \widetilde{S} \text { and } u_{r}=\psi^{-1}(v) \text { a.e in } Q \backslash \widetilde{S}
$$

(see [30, Proposition 4.1]).

6. Monotonicity and Uniqueness Results

Lemma 6.1. Under assumption (I). If u is a weak solution of the problem (P). Then
(i) there exist a zero Lebesgue measure set $D \subseteq(0, T)$ and a positive constant c such that

$$
\begin{equation*}
\mathrm{ess} \lim _{t \rightarrow 0^{+}} \int_{\Omega} u(\cdot, t) d x=c \tag{6.1}
\end{equation*}
$$

(ii) for any $\rho \in C_{0}^{2}(\Omega), \rho \geq 0$, there holds

$$
\begin{equation*}
\underset{t \rightarrow 0^{+}}{\operatorname{ess}} \lim \langle u(\cdot, t), \rho\rangle_{\Omega}=\left\langle u_{0}, \rho\right\rangle_{\Omega} \tag{6.2}
\end{equation*}
$$

for almost every $t \in(0, T) \backslash D$.
Proof. Let us consider for every $\tau>0$, the smooth function $\eta_{\tau} \in C_{0}^{1}(0, T), 0 \leq \eta_{\tau} \leq 1$ such that

$$
\eta_{\tau}(t)= \begin{cases}0 & \text { if } 0 \leq t \leq t_{1}-\tau \\ \frac{1}{\tau}\left(t+\tau-t_{1}\right) & \text { if } t_{1}-\tau \leq t \leq t_{1} \\ 1 & \text { if } t_{1} \leq t \leq t_{2} \\ \frac{1}{\tau}\left(-t+\tau+t_{2}\right) & \text { if } t_{2} \leq t \leq t_{2}+\tau \\ 0 & \text { if } t_{2}+\tau \leq t \leq T\end{cases}
$$

Let us choose $\rho_{j}(x) \eta_{\tau}(t)$ as a test function in (P), there holds

$$
\int_{0}^{T} \int_{\Omega}\left\{-u \rho_{j}(x) \eta_{\tau}^{\prime}(t)-\psi\left(u_{r}\right) \eta_{\tau}(t) \Delta \rho_{j}(x)\right\} d x d t=\int_{0}^{T} \int_{\Omega} \mu \rho_{j}(x) \eta_{\tau}(t) d x d t
$$

It is worth observing that the first term of the left hand side of the above equality becomes

$$
\int_{0}^{T} \int_{\Omega}-u \rho_{j}(x) \eta_{\tau}^{\prime}(t) d x d t=-\frac{1}{\tau} \int_{t_{1}-\tau}^{t_{1}} \int_{\Omega} u(x, t) \rho_{j}(x) d x d t+\frac{1}{\tau} \int_{t_{2}}^{t_{2}+\tau} \int_{\Omega} u(x, t) \rho_{j}(x) d x d t
$$

Let us consider a zero Lebesgue measure set D_{j} in $(0, T)$ such that for any $t_{1}, t_{2} \in$ $(0, T) \backslash D_{j}$, one has

$$
\lim _{\tau \rightarrow 0} \int_{0}^{T} \int_{\Omega}-u \rho_{j}(x) \eta_{\tau}^{\prime}(x, t) d x d t=-\int_{\Omega} u\left(x, t_{1}\right) \rho_{j}(x) d x+\int_{\Omega} u\left(x, t_{2}\right) \rho_{j}(x) d x
$$

We use a sequence $\left\{\rho_{j}(x)\right\}_{j \in \mathbb{N}}$ of test functions in Ω such that
$\rho_{j}(x) \in C_{0}^{2}(\bar{\Omega}), 0 \leq \rho_{j}(x) \leq 1, \rho_{j}(x) \rightarrow 1$ in Ω and $-\Delta \rho_{j}(x) \geq 0$ (for instance, $\rho_{j}(x)=$ $1-(1-\phi)^{j}$, where ϕ is the first eigenfunction of $-\Delta$ in $H_{0}^{1}(\Omega)$, with normalization max $\phi=$ 1)(see [6] reference therein). For every $s \in(0, T) \backslash D_{j}$, there holds

$$
\int_{\Omega} u(x, t) \rho_{j}(x) d x-\int_{Q_{t}} \psi\left(u_{r}\right) \Delta \rho_{j}(x) d x d s=\int_{Q_{t}} \rho_{j}(x) d \mu+\int_{\Omega} \rho_{j}(x) d u_{0} .
$$

Let j goes to infinity, then we get that

$$
D \equiv \bigcup_{j \in N} D_{j}
$$

which leads to

$$
\int_{\Omega} u(x, t) d x \leq \int_{Q_{t}} d \mu+\int_{\Omega} d u_{0} .
$$

Now let us consider $\left\{\phi_{k}\right\}$ be a sequence of $C_{0}(\Omega)$ functions such that $0 \leq \phi_{j} \leq 1, \phi_{k} \rightarrow 1$ as $j \rightarrow \infty$.
By [12, Lemma 5.1], the following statement hold

$$
\int_{\Omega} \phi_{j} d u_{0} \leq \frac{1}{j} \quad \text { and } \quad \int_{Q_{t}} \phi_{j} d \mu \leq \frac{1}{j}
$$

then

$$
\begin{gathered}
\int_{Q_{t}} d \mu+\int_{\Omega} d u_{0}-\int_{\Omega} u(x, t) d x=\int_{Q_{t}}\left(1-\phi_{j}\right) d \mu+\int_{Q_{t}} \phi_{j} d \mu+\int_{\Omega}\left(1-\phi_{j}\right) d u_{0}+\int_{\Omega} \phi_{j} d u_{0}- \\
-\int_{\Omega} u(x, t) \phi_{j} d x+\int_{\Omega} u(x, t)\left(\phi_{j}-1\right) d x .
\end{gathered}
$$

Since $\phi_{j} \leq 1$ yields

$$
\int_{Q_{t}} d \mu+\int_{\Omega} d u_{0}-\int_{\Omega} u(x, t) d x \leq \int_{Q_{t}}\left(1-\phi_{j}\right) d \mu+\int_{\Omega}\left(1-\phi_{j}\right) d u_{0}-\int_{\Omega} u(x, t) \phi_{j} d x+\frac{2}{j} .
$$

Since $u(x, t)$ converges to δ_{x}, we get

$$
\limsup _{t \rightarrow 0^{+}}\left|\int_{\Omega} d u_{0}-\int_{\Omega} u(x, t) d x\right| \leq \int_{\Omega}\left(1-\phi_{j}\right) d u_{0}+\frac{2}{j}
$$

Let j to infinity, there exists a positive constant c such that (6.1) holds. Using the same method as the previous, it is obvious that for every $\rho \in C_{0}^{2}(\Omega)$

$$
\text { ess } \lim _{t \rightarrow 0^{+}}\langle u(x, t), \rho\rangle_{\Omega}=\left\langle u_{0}, \rho\right\rangle_{\Omega}
$$

Hence (6.2) is satisfied.
For every $g \in C^{1}(\mathbb{R})$

$$
\begin{equation*}
G(s)=\int_{0}^{s} g(\psi(z)) d z \tag{6.3}
\end{equation*}
$$

Assuming (I) holds. Let us state the following definition.
Definition 6.1. For any $\mu \in \mathcal{M}_{d, 2}^{+}(Q)$ and $u_{0} \in \mathcal{M}_{d, 2}^{+}(\Omega)$, a measure u is called a weak entropy solution, if u is a weak solution of (P) such that for every $g \in C^{1}(\mathbb{R}), g^{\prime} \geq 0$, $g(\gamma)=0$, the inequality holds

$$
\begin{align*}
\int_{Q}\left\{g^{\prime}\left(\psi\left(u_{r}\right)\right) \mid\right. & \left.\left.\nabla \psi\left(u_{r}\right)\right|^{2} \phi+g\left(\psi\left(u_{r}\right)\right) \nabla \psi\left(u_{r}\right) \nabla \phi-G\left(u_{r}\right) \phi_{t}\right\} d x d t \\
& \leq \int_{Q} g\left(\psi\left(u_{r}\right)\right) \phi d \mu+\int_{\Omega} G\left(u_{0 r}\right) \phi(0) d x \tag{6.4}
\end{align*}
$$

for every $\phi \in C^{1}\left([0, T], C_{0}^{1}(\Omega)\right), \phi(., T)=0$ in Ω and $\phi \geq 0$.
By the Definition 6.1, the existence of weak entropy solutions of problem (P) is the same as stated in [23, Theorem 2.8]. For that we use entropy inequality to prove the monotonicity of solutions given by the following proposition.

Proposition 6.1. Suppose that the assumption (I) holds. Let u be a weak entropy solution to the problem (P).
For any $\rho \in H_{0}^{1}(\Omega), \rho \geq 0$, then

$$
\begin{equation*}
\left\langle u_{s}\left(\cdot, t_{2}\right), \rho\right\rangle_{\Omega} \leq\left\langle u_{s}\left(\cdot, t_{1}\right), \rho\right\rangle_{\Omega} \leq\left\langle u_{0 s}, \rho\right\rangle_{\Omega} \tag{6.5}
\end{equation*}
$$

hols, for almost every $t_{1}, t_{2} \in(0, T) ; t_{1}<t_{2}$.
Proof. Let G_{j} be the function given in (6.3) and we take $g=g_{j}$ for any $j \in \mathbb{N}$. By the Definition 6.1, we obtain

$$
\begin{align*}
\int_{Q}\left\{g_{j}^{\prime}\left(\psi\left(u_{r}\right)\right) \mid\right. & \left.\left.\nabla \psi\left(u_{r}\right)\right|^{2} \phi+g_{j}\left(\psi\left(u_{r}\right)\right) \nabla \psi\left(u_{r}\right) \nabla \phi-G_{j}\left(u_{r}\right) \phi_{t}\right\} d x d t \\
& \leq \int_{Q} g_{j}\left(\psi\left(u_{r}\right)\right) \phi d \mu+\int_{\Omega} G_{j}\left(u_{0 r}\right) \phi(0) d x \tag{6.6}
\end{align*}
$$

for every $\phi \in C^{1}\left([0, T], C_{0}^{1}(\Omega)\right), \phi(\cdot, T)=0$ in Ω and $\phi \geq 0$, where

$$
g_{j}(s)= \begin{cases}-1 & \text { if } s \leq \gamma-\frac{1}{j} \\ j(s-\gamma) & \text { if } \gamma-\frac{1}{j} \leq s \leq \gamma \\ 0 & \text { if } s \geq \gamma\end{cases}
$$

To avoid repeating the same calculation we refer to the proof of [23, Theorem 2.9].
Then by letting j to infinity, we get

$$
\begin{equation*}
\int_{Q}\left\{u_{r} \phi_{t}-\nabla \psi\left(u_{r}\right) \nabla \phi\right\} d x d t \leq-\int_{Q} \phi d \mu-\int_{\Omega} u_{0 r} \phi(0) d x \tag{6.7}
\end{equation*}
$$

Combining (6.7) with (3.1), we have

$$
\begin{equation*}
-\int_{0}^{T}\left\langle u_{s}(\cdot, t), \phi_{t}\right\rangle_{\Omega} d t \leq\left\langle u_{0 s}, \phi(0)\right\rangle_{\Omega} \tag{6.8}
\end{equation*}
$$

For any fix $0 \leq t_{1}<t_{2} \leq T$. We consider

$$
\chi_{r}(t)= \begin{cases}\frac{1}{r}\left(t-t_{1}+\frac{r}{2}\right) & \text { if } t_{1}-\frac{r}{2}<t<t_{1}+\frac{r}{2} \\ 1 & \text { if } t_{1}+\frac{r}{2}<t<t_{2}-\frac{r}{2} \\ -\frac{1}{r}\left(t-t_{2}-\frac{r}{2}\right) & \text { if } t_{2}-\frac{r}{2}<t<t_{2}+\frac{r}{2} \\ 0 & \text { otherwise }\end{cases}
$$

where $0<r<t_{2}-t_{1}$, such that $\left[t_{1}-\frac{r}{2}, t_{2}+\frac{r}{2}\right] \subset(0, T)$ (see [30, Theorem 2.5]. For any $\phi \in C_{0}^{1}(\Omega), \rho \geq 0$ we choose $\phi(x, t)=\rho(x) \chi_{r}(t)$ as a test function in (6.8), one has

$$
-\frac{1}{r} \int_{t_{1}-\frac{r}{1}}^{t_{1}+\frac{r}{2}}\left\langle u_{s}(t), \rho\right\rangle_{\Omega} d t+\frac{1}{r} \int_{t_{2}-\frac{r}{2}}^{t_{2}+\frac{r}{2}}\left\langle u_{s}(t), \rho\right\rangle_{\Omega} d t \leq 0
$$

for almost every $0<t_{1}<t_{2}<T$ and letting $r \rightarrow 0$ in the above inequality, there holds

$$
\left\langle u_{s}\left(\cdot, t_{2}\right), \rho\right\rangle_{\Omega} \leq\left\langle u_{s}\left(\cdot, t_{1}\right), \rho\right\rangle_{\Omega}
$$

Similarly, let us consider for every fixed $t_{1} \in(0, T)$

$$
\chi_{r}(t)= \begin{cases}1 & \text { if } 0 \leq t \leq t_{1} \\ -\frac{1}{r}\left(t-t_{1}-r\right) & \text { if } t_{1} \leq t \leq t_{1}+r \\ 0 & \text { if } t \geq t_{1}+r\end{cases}
$$

Therefore, we can deduce that

$$
\frac{1}{r} \int_{t_{1}}^{t_{1}+r}\left\langle u_{s}(\cdot, t), \rho\right\rangle_{\Omega} d t \leq\left\langle u_{0 s}, \rho\right\rangle_{\Omega}
$$

Hence the estimate (6.5) holds true.
Proof of Theorem 3.4. Let u_{1}, u_{2} be two very weak solutions obtained as limit of approximation of (P) with initial data $u_{01 n}$ and $u_{02 n}$ respectively . Let $\left\{u_{1 n}\right\},\left\{u_{2 n}\right\} \subseteq$ $L^{\infty}(Q) \cap L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$ be two approximating sequences of solutions to the approximation problem $\left(P_{n}\right)$ and satisfying the assumption (3.9).
For every $\xi \in C^{2,1}(Q)$ vanishing on $\partial \Omega \times(0, T)$ and $\xi(\cdot, T)=0$ in Ω, there holds

$$
\begin{align*}
& \int_{Q}\left(u_{1 n}-u_{2 n}\right) \xi_{t} d x d t=-\int_{Q}\left(\psi\left(u_{1 n}\right)-\psi\left(u_{2 n}\right)\right) \Delta \xi d x d t- \\
& \quad-\int_{Q}\left(\mu_{1 n}-\mu_{2 n}\right) \xi d x d t-\int_{\Omega}\left(u_{01 n}-u_{02 n}\right) \xi(x, 0) d x \tag{6.9}
\end{align*}
$$

where $\left\{\mu_{1 n}\right\},\left\{\mu_{2 n}\right\},\left\{u_{01 n}\right\}$, and $\left\{u_{02 n}\right\}$ are approximating Radon measures satisfying (3.10).

For almost every $(x, t) \in Q$, we consider the function $a_{n}(x, t)$ defined by

$$
a_{n}(x, t)= \begin{cases}\frac{\psi\left(u_{1 n}(x, t)\right)-\psi\left(u_{2 n}(x, t)\right)}{u_{1 n}(x, t)-u_{2 n}(x, t)} & \text { if } u_{1 n}(x, t) \neq u_{2 n}(x, t) \tag{6.10}\\ \psi^{\prime}\left(u_{1 n}(x, t)\right) & \text { if } u_{1 n}(x, t)=u_{2 n}(x, t)\end{cases}
$$

Obviously $a_{n} \in L^{\infty}(Q)$ and for every $n \in \mathbb{N}$ there exists a positive constant C_{n} such that

$$
\text { ess } \inf _{(x, t) \in Q} a_{n}(x, t) \geq C_{n}>0
$$

This ensures that for every $z \in C_{c}^{2}(Q)$, the problem

$$
\begin{cases}\xi_{n t}+a_{n} \Delta \xi_{n}+z=0 & \text { in } Q \tag{6.11}\\ \xi_{n}=0 & \text { on } \partial \Omega \times(0, T) \\ \xi_{n}(\cdot, T)=0 & \text { in } \Omega\end{cases}
$$

has a unique solution $\xi_{n} \in L^{\infty}\left((0, T), H^{2}(\Omega)\right) \cap L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$ with $\xi_{n t} \in L^{2}(Q)$ (see [8, 19]).
Moreover, it can be seen that

$$
\begin{equation*}
\left|\xi_{n}(x, t)\right| \leq(T-t)\|z\|_{L^{\infty}(Q)} \tag{6.12}
\end{equation*}
$$

Let us consider the function η such that for any $t_{1}+1<t_{2}$ and $t_{1}, t_{2} \in(0, T)$

$$
\eta(t)= \begin{cases}0 & \text { if } 0 \leq t \leq t_{1} \\ t-t_{1} & \text { if } t_{1}<t<t_{2} \\ t_{2}-t_{1} & \text { if } t \geq t_{2}\end{cases}
$$

Choosing $\eta \Delta \xi_{n}$ as a test function in (6.11), then we obtain

$$
\begin{equation*}
\int_{Q} \xi_{n t} \eta(t) \Delta \xi_{n} d x d t+\int_{Q} \eta(t) a_{n}(x, t)\left[\Delta \xi_{n}\right]^{2} d x d t+\int_{Q} z \eta(t) \Delta \xi_{n} d x d t=0 \tag{6.13}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\frac{1}{2} \int_{Q}\left|\nabla \xi_{n}\right|^{2} d x d t+\int_{Q} a_{n}(x, t)\left[\Delta \xi_{n}\right]^{2} d x d t \leq C_{0}(T, z) \tag{6.14}
\end{equation*}
$$

holds, for some constant $C_{0}(T, z)$ independent on n.
From (6.12) and (6.14), there exists a constant $C_{1}(T, z)$ such that

$$
\begin{equation*}
\left\|\xi_{n}\right\|_{L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)}+\left\|\sqrt{a_{n}} \Delta \xi_{n}\right\|_{L^{2}(Q)} \leq C_{1}(T, z) \tag{6.15}
\end{equation*}
$$

On the other hand, multiplying (6.11) by $\Delta \xi_{n}$, we obtain

$$
-\int_{Q} \nabla \xi_{n} \nabla \xi_{n t}+\int_{Q} a_{n}\left[\Delta \xi_{n}\right]^{2} d x d t=-\int_{Q} \xi_{n} \Delta z d x d t
$$

which leads to

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega}\left|\nabla \xi_{n}\right|^{2}(x, 0) d x+\int_{Q} a_{n}\left[\Delta \xi_{n}\right]^{2} d x d t \leq C_{2}(T, z) \tag{6.16}
\end{equation*}
$$

where $C_{2}(T, z)=\left\|\xi_{n}\right\|_{L^{\infty}(Q)}\|z\|_{C^{2}(\bar{Q})}$. Therefore, we get

$$
\begin{equation*}
\left\|\xi_{n}(., 0)\right\|_{H_{0}^{1}(\Omega)}+\left\|\sqrt{a_{n}} \Delta \xi_{n}\right\|_{L^{2}(Q)} \leq C_{2}(T, z) \tag{6.17}
\end{equation*}
$$

By standard density argument and for $\xi=\xi_{n}$ a test function in (6.9). Moreover, by recalling (6.10) and (6.9), there holds

$$
\begin{equation*}
\int_{Q}\left(u_{1 n}-u_{2 n}\right) z d x d t=\int_{Q}\left(\mu_{1 n}-\mu_{2 n}\right) \xi(x, t) d x d t+\int_{\Omega}\left(u_{01 n}-u_{02 n}\right) \xi(x, 0) d x \tag{6.18}
\end{equation*}
$$

Letting n to infinity in (6.18). Then it is enough to observe from (6.15), there exists $\xi_{n} \in$ $L^{\infty}\left((0, T), H^{2}(\Omega)\right) \cap L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)$ which is obtained by extracting the subsequence of the sequence $\left\{\xi_{n}\right\}$, such that

$$
\begin{gather*}
\xi_{n}(x, t) \stackrel{*}{\rightharpoonup} \xi(x, t) \text { in } L^{\infty}(Q) . \tag{6.19}\\
\nabla \xi_{n}(x, t) \rightharpoonup \nabla \xi(x, t) \text { in }\left[L^{2}(Q)\right]^{N} . \tag{6.20}
\end{gather*}
$$

Since $\xi_{n t} \in L^{2}(Q)$, as stated in [19], we deduce that

$$
\begin{align*}
\xi_{n t}(x, t) & \rightarrow \xi_{t}(x, t) \text { in } L^{2}(Q) \tag{6.21}\\
\xi_{n}(x, t) & \rightarrow \xi(x, t) \text { a.e in } Q \tag{6.22}
\end{align*}
$$

On one hand, it is enough to observe that from (6.17), there exists $\xi(\cdot, 0) \in L^{\infty}(\Omega) \cap H_{0}^{1}(\Omega)$ such that the following statements

$$
\begin{align*}
& \xi_{n}(x, 0) \stackrel{*}{\rightharpoonup} \xi(x, 0) \text { in } L^{\infty}(\Omega) \tag{6.23}\\
& \xi_{n}(x, 0) \rightharpoonup \xi(x, 0) \text { in } H_{0}^{1}(\Omega) \tag{6.24}
\end{align*}
$$

holds true.
Combining (6.18)-(6.24) and (3.10), there holds

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \int_{Q}\left(u_{1 n}-u_{2 n}\right) z d x d t=\lim _{n \rightarrow \infty} \int_{Q}\left(f_{1 n}-f_{2 n}\right) \xi(x, t) d x d t+ \\
+\lim _{n \rightarrow \infty} \int_{Q}\left(F_{1 n}-F_{2 n}\right) \xi(x, t) d x d t-\lim _{n \rightarrow \infty} \int_{Q}\left(g_{1 n}-g_{2 n}\right) \xi_{t}(x, t) d x d t+ \\
+\lim _{n \rightarrow \infty} \int_{\Omega}\left(g_{01 n}-g_{02 n}\right) \xi(x, 0) d x d t+\lim _{n \rightarrow \infty} \int_{\Omega}\left(F_{01 n}-F_{02 n}\right) \xi(x, 0) d x=0 .
\end{gathered}
$$

Therefore the following equality holds

$$
\left\langle u_{1}-u_{2}, z\right\rangle_{Q}=0 .
$$

As we stated above in the previous proof

$$
u_{1 n} \stackrel{*}{\rightharpoonup} u_{1} \quad \text { in } \mathcal{M}^{+}(Q) \text { and } u_{2 n} \stackrel{*}{\rightharpoonup} u_{2} \quad \text { in } \mathcal{M}^{+}(Q) .
$$

Thus we can deduce $u_{1}=u_{1}$ holds.

Acknowledgements

This work was partially supported by National Natural Sciences Foundation of China, No: 11571057.

References

[1] A. Mercaldo A. Fiorenza and J. M. Rakotoson. Regularity and uniqueness results in grand sobolev spaces for parabolic equations with measure data. Discrete Contin. Dyn. Syst., 8:893-906, 2002.
[2] C. Ponce Augusto. Elliptic PDEs, Measures and Capacities. From the Poisson Equations to Nonlinear Thomas-Fermi Problems. EMS Tracts in Mathematics, volume 23. Zurich, 2016.
[3] M. Bertsch. A class of degenerate diffusion equations with a singular nonlinear term. Nonlinear Anal., 7:117-127, 1983.
[4] L. Boccardo and M. M. Porzio. Bounded solutions for a class of quasi-linear parabolic problems with a quadratic gradient term. evolution equations, semigroups and functional analysis (milano, 2000) 39-48. Progr. Nonlinear Differential Equations Appl., 50, Birkhauser, Basel, 2002.
[5] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer, New York, 2011.
[6] E. Chasseigne. Initial trace for a porous medium equation. i. the strong absorption case. Ann. Mat. Pura Appl., 179:413-458, 2001.
[7] A. Dall'Aglio, D. Giachetti, C. Leone, and S. Segura de Léon. Quasilinear parabolic equations with degenerate coercivity having a quadratic gradient term. Ann. Inst. H. Poincare Anal. Non Lineaire, 23:97-126, 2006.
[8] L. C. Evans. Partial Differential Equations.Second Edition. Graduate Studies in Mathematics. $A M S$., 19:xxii+749 pp, 2010.
[9] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, pages viii+268 pp, 1992.
[10] A. C. Ponce F. Petitta and A. Porretta. Approximation of diffuse measures for parabolic capacities. C. R. Math. Acad. Sci. Paris, 346:161-166, 2008.
[11] A. C. Ponce F. Petitta and A. Porretta. Diffuse measures and nonlinear parabolic equations. J. Evol. Equ., 11:861-905, 2011.
[12] L. Orsina G. Dal Masso, F. Murat and A. Prignet. Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28:741808, 1999.
[13] U. Gianazza. Degenerate and singular porous medium type equations with measure data. elliptic and parabolic equation, 139-158. Springer Proc. Math. Stat., 119, 2015.
[14] M. Giaquinta, G. Moadica, and J. Souček. Cartesian Currents in the Calculus of Variations. I. Cartesian Currents. Springer-Verlag, Berlin, 37:xxiv+711 pp, 1998.
[15] M. Marcus H. Brezis and A. C. Ponce. Nonlinear elliptic equations with measures revisited, mathematics aspects of nonlinear dispersive equations, 55-109. Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007.
[16] A. Porretta J. Droniou and A. Prignet. Parabolic capacity and soft measures for nonlinear equations. Potential Anal., 19:99-161, 2003.
[17] M. Rokyta J. Málek, J. Nečas and M. Ru̇žička. Weak and Measure-valued Solutions to Evolutionary PDEs., volume 13. Chapman and Hall, London, 1996.
[18] M. Porzio L. Orsina and F. Smarrazzo. Measure-valued solutions of nonlinear parabolic equations with logarithmic diffusion. J. Evol. Equ., 15:609-645, 2015.
[19] J. L. Lions. Quelques Methodes de Resolutions des Problemes aux Limites non Lineaires (French). Paris, Gauthier-Villars, Dunod, pages xx+554 pp, 1969.
[20] P DE Mottoni M Bertsch and L. A. Peletier. Degenerate diffusion and stefan problem. Nonlinear Anal., 8:1311-1336, 1984.
[21] L. Veron M. Francoise-Bidaut and Quoc-H Nguyen. Pointwise estimates and existence of solutions of porous pedium and p-laplacian evolution equations with absorption and measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci., 16:675-705, 2016.
[22] M. Porzio M. Papi and F. Smarrazzo. Existence of solutions to a class of weakly coercive diffusion equations with singular initial data. Adv. Differential Equations, 22:893-962, 2017.
[23] F. Smarrazzo M. Porzio and A. Tesei. Radon measure-valued solutions for a class of quasilinear parabolic equations. Arch. Ration. Mech. Anal., 210:713-772, 2013.
[24] F. Smarrazzo M. Porzio and A. Tesei. Radon measure-valued solutions of nonlinear strongly degenerate parabolic equations. Calc. Var. Partial Differential Equations, 51:401-437, 2014.
[25] M. Marcus and L. Veron. Nonlinear Second Order Elliptic Equations Involving Measures, volume 21. De Gruyter, Berlin, 2014.
[26] O. A. Oleinik and S. N. Kruzhkov. Quasilinear second order parabolic equations with many independent variables. Russ. Math. Surv., 16:105-148, 1961.
[27] B. Pierre and P. Michel. Problemes paraboliques semi-linaires avec donnees mesures (french). Applicable Anal., 18:111-149, 1984.
[28] M. M. Porzio and F. Smarrazzo. Radon measure-valued solutions for some quasilinear degenerate elliptic equations. Ann. Mat. Pura Appl., 194:495-532, 2015.
[29] J. Simon. Compact sets in the space $l^{p}(0, t ; b)$. Ann. Mat. Pura Appl., 146:65-96, 1987.
[30] F. Smarrazzo and A. Tesei. Degenerate regularization of forward-backward parabolic equations: the regularized problem. Arch. Ration. Mech. Anal., 204:85-139, 2012.
[31] F. Smarrazzo and A. Tesei. Degenerate regularization of forward-backward parabolic equations: the vanishing viscosity limit. Math. Ann., 355:551-584, 2013.
[32] F. Duzaar V. Bögelein and G. Ugo. Porous medium equations with measure data and potential estimates. Math. Ann., 45:3283-3330, 2013.
[33] J. L. Vázquez. The Porous Meduim Equation. Mathematical Theory. Oxford Mathematical Monographs, Oxford, 2007.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v14i1.3877
 Email addresses: quincysnk@yahoo.fr (Q. S. Nkombo), fqli@dlut.edu.cn (F. Li)

