
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 1, 2021, 164-172
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

Ore Extension Rings Satisfy the Weak PS-Rings
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Abstract. The main result of this paper is that: If R is a weak right PS-ring, then A = R[x;α, δ],
the Ore extension ring, is a weak right PS-ring whenever the following conditions hold on R is an
(α, δ)-compatible NI-ring with nil(R) nilpotent, α(e) = e and δ(e) = 0 for every idempotent e ∈ R.
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1. Introduction

Throughout this article, all rings are associative with unity (R denotes such a ring)
and all modules are unital R-modules unless explicitly indicated otherwise.

According to Nicholson and Watters [6], MR is called a PS-module if every simple
submodule is projective, equivalently if its socle, Soc (MR) , is projective. Examples of
PS-modules include nonsingular modules and modules with zero socle. A left PS-module

RM is defined analogously. A ring R is said to be a left PS-ring if RR is a PS-module.
Equivalently, if the left annihilator of every maximal right ideal of R is a principal left ideal
generated by an idempotent. Some examples of PS-rings include semiprime and p.p.-rings
are PS-rings. In particular every Baer ring is a PS-ring. The notion of PS-rings is not
left-right symmetric (cf. [6]). In [6], the authors proved that, if R is a PS-ring so also are
R[x] and R[[x]]. The converse of this result is false in general by the following example:

Example 1 ([6], Example 3.2). If R = Z4, then R[x] and R[[x]] are PS-rings but R is not
PS-ring.

Many authors investigated the behavior of PS-rings with respect to their extensions.
Salem et. al., in ([9], 2015), characterized PS-modules over Ore extensions and skew gen-
eralized power series extensions. Also, Farahat and Al-Harthy, in ([3], 2017), investigated
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PS-modules over generalized Mal’cev-Neumann series rings. In ([8], 2017), Paykan proved
that, under suitable conditions, if R is a right PS-ring, then so the skew inverse power
series rings.

Recently, Farahat and Al-Bogamy, in ([2], 2018), extend the notation of PS-rings to
weak PS-rings. Recall the definition of weak PS-rings from [2]: A ring R satisfies the
right weak PS-condition if, the weak annihilator of every maximal right ideal of R is a
principal left ideal generated by an idempotent. Similarly, the left weak PS-condition was
defined. A ring R satisfies the weak PS-condition if it satisfies both the right and the
left weak PS-conditions. The following are some examples of rings satisfy the right weak
PS-condition.

Example 2 ([2]). 1) Any local ring is a right weak PS-ring.
2) The ring Zpq of integers modulo pq, where p and q are distinct prime numbers, is a
reduced (weak) PS-ring.

3) Let F be a field and R =

(
F F
F F

)
is a right weak PS-ring.

4) A semisimple NI ring is a right weak PS-ring.

In this paper, we study the transfer of right weak PS-condition between a base ring R
and its Ore extension A = R[x;α, δ].

2. Notations

(1) Id (R) denotes idempotents of R.

(2) nil (R) denotes nilpotents of R.

(3) For a nonempty subset X of R, NR(X) denotes the weak annihilator of X over R,
i.e.,

NR(X) = {a ∈ R |ax ∈ nil (R) for all x ∈ X } .

It can be easily shown that

ab ∈ nil (R)⇔ ba ∈ nil (R) for all a, b ∈ R.

(4) R is NI if nil (R) is a two sided ideal in R.

3. Ore extension rings satisfy the weak PS-condition

Ore extensions, named after Øystein Ore (1899–1968), are special types of ring ex-
tensions whose properties are relatively well understood. These extensions cover a large
class of noncommutative polynomial extensions. are special types of ring extensions whose
properties are relatively well understood. The definition of noncommutative polynomial
rings with identity was first introduced by Øystein Ore [7]. Ever since the appearance of
Ore’s fundamental paper [7], Ore extensions have played an important role in noncom-
mutative. Ore extensions have wide applications. Not only do they provide interesting
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examples in noncommutative algebra, they have also been a valuable tool used first by
David Hilbert (1862–1943) in the study of the independence of geometry axioms.

Let R be a ring with identity 1 and α an endomorphism of R. Then a map δ : R −→ R
is called an α-derivation of R if

δ (a+ b) = δ (a) + δ (b) and δ (ab) = δ (a) b+ α (a) δ (b) ,

for all a, b ∈ R.
We denote by A = R [x;α, δ] , the Ore extension of R whose elements are polynomials

over R, the addition is defined as usual and the multiplication is subject to the relation
(Ore commutation rule)

xa = α (a)x+ δ (a) , for each a ∈ R.

We assume that 1 is the identity element of A = R [x;α, δ] . This means that α(1) = 1 and
δ (1) = 0, since

x = x1 = α (1)x+ δ (1)⇒ α(1) = 1 and δ (1) = 0.

Notation ([5]). For integers i, j with j ≥ i ≥ 0, λji ∈ End(R,+) denotes the map which
is the sum of all possible ”words” in α and δ built with i letters of α and j − i letters of
δ. For instance

λ00 = IdR, λ
j
j = αj , λj0 = δj and

λjj−1 = αj−1δ + αj−2δα+ ...+ δαj−1.

Lemma 1 ([5]). For any positive integer n and r ∈ R, we have

xnr =
n∑

i=0

λni (r)xi.

This formula uniquely determines a general product of (left) polynomials in R [x;α, δ] and
will be used freely in what follows.

The ring-theoretical properties of Ore extension have been investigated by many au-
thors (see [9], [8], [5], [1], [4], for instance). There are many other papers addressed δ = 0
and α an automorphism or the case where α is the identity. However the recent surge of
interest in quantum groups and quantized algebras has brought renewed interest in general
Ore extensions, due to the fact that many of these quantized algebras and their repre-
sentations can be expressed in terms of Ore extension rings. When we move from these
“unmixed” polynomials to the general case with an endomorphism α and an α-derivation
δ, we face a much greater challenge.

Annin [1] introduced the notion of (α, δ)-compatibility as follows:

Definition 1 ([1]). Given a module MR, an endomorphism α : R −→ R and an α-
derivation δ : R −→ R. We say that MR is α-compatible if for each m ∈M and r ∈ R, we
have mr = 0⇔ mα(r) = 0. Moreover, we say that MR is δ-compatible if for each m ∈M
and r ∈ R, we have mr = 0 =⇒ mδ(r) = 0. If MR is both α-compatible and δ-compatible,
we say that MR is (α, δ)-compatible.



M. A. Farahat, Salha T. Al-Bogamy / Eur. J. Pure Appl. Math, 14 (1) (2021), 164-172 167

A ring R is called (α, δ)-compatible if RR is an (α, δ)-compatible module. The (α, δ)-
compatible condition on the module MR is a natural, independently interesting condition
from which we can derive a number of interesting properties, and it will be of invaluable
service in the proof of our main results.

Remark ([1]). (1) If MR is α-compatible, then MR is αi-compatible for all i ≥ 1,
(2) If MR is δ-compatible, then MR is δi-compatible for all i ≥ 1,
(3) If MR is (α, δ)-compatible, then for each m ∈ M and r ∈ R, we have mr = 0 =⇒
mλji (r) = 0 for all j ≥ i ≥ 0.

In what follows, we characterize Ore extension rings that satisfy the weak PS-condition.
We need first the following Lemmas which will help us in our target.

Lemma 2. Let R be an (α, δ)-compatible NI ring. If a ∈ nil (R) , then λji (a) ∈ nil (R) for
all j ≥ i ≥ 0.

Proof. Clearly for any R-endomorphism α, we have αk (nil (R)) ⊆ nil (R) , for any positive
integer k. Since R is an (α, δ)-compatible ring, we have also that δk (nil (R)) ⊆ nil (R) .
Since R is an NI ring, we conclude that λji (a) ∈ nil (R) for any a ∈ nil (R) and for all
j ≥ i ≥ 0.

Lemma 3. Let R be an (α, δ)-compatible NI ring with nil (R) nilpotent and f(x) =
n∑

i=0
aix

i ∈ A = R [x;α, δ] . Then f(x) ∈ nil (A) if and only if ai ∈ nil (R) for all inte-

gers 0 ≤ i ≤ n.

Proof. (=⇒) Suppose that f(x) ∈ nil (A) . Then there exists some positive integer k such
that

0 = (f(x))k =
(
a0 + a1x+ a2x

2 + ...+ anx
n
)k
.

Then
0 = (f(x))k = “lower terms” + anα

n(an)α2n(an)...α(k−1)n(an)xkn.

Hence anα
n(an)α2n(an)...α(k−1)n(an) = 0, and α-compatiblility of R, gives an ∈ nil (R) .

So λji (an) ∈ nil (R) for all j ≥ i ≥ 0. Let Q = a0 + a1x+ a2x
2 + ...+ an−1x

n−1. Then we
have

0 = (Q+ anx
n)k = (Q+ anx

n) (Q+ anx
n) ... (Q+ anx

n)︸ ︷︷ ︸
k-factor

=
(
Q2 +Qanx

n + anx
nQ+ anx

nanx
n
)
... (Q+ anx

n)

= Qk + ∆,

where ∆ ∈ A. Note that the coefficients of ∆ can be written as sums of monomials in ai
and λvu(aj), where ai, aj ∈ {a0, a1, a2, ..., an} and v ≥ u ≥ 0, and each monomial has an
and λvu(an) as a factor. Since nil (R) is an ideal, we obtain that each monomial of ∆ is in
nil (R) and so ∆ ∈ nil (R) [x;α, δ] . Thus we obtain

Qk =
(
a0 + a1x+ a2x

2 + ...+ an−1x
n−1
)k
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= “lower terms” + an−1α
n−1(an−1)...α

(k−1)(n−1)(an−1)x
k(n−1)

∈ nil (R) [x;α, δ] .

Therefore an−1α
n−1(an−1)...α

(k−1)(n−1)(an−1) ∈ nil (R) and so an−1 ∈ nil (R) . By using
induction on n we obtain ai ∈ nil (R) for all 0 ≤ i ≤ n.
(⇐=) Consider the finite subset S = {a0, a1, a2, ..., an} ⊆ nil (R) . Since R is an NI ring
with nil (R) nilpotent, there exist integers ki such that

(aiR)ki = 0, 0 ≤ i ≤ n.

Let k = k0 + k1 + ...+ kn + 1. Then we have (aiR)k = 0, 0 ≤ i ≤ n. We have

(f(x))k =
(
a0 + a1x+ a2x

2 + ...+ anx
n
)k

=

n∑
i=0

aiλ
i
0(a0) +

(
n∑

i=0

a0λ
i
0(a1) +

n∑
i=1

aiλ
i
1(a0)

)
x

+

(
n∑

i=0

aiλ
i
0(a2) +

n∑
i=1

aiλ
i
1(a1) +

n∑
i=2

aiλ
i
2(a0)

)
x2

+...+

(
k∑

s=0

(
n∑

i=s

aiλ
i
s(ak−s)

))
xk + ...+ anα

n(an)xn.

We show that the coefficients of (f(x))k can be written as sums of monomials of length k
in ai and λvu(aj), where ai, aj ∈ {a0, a1, a2, ..., an} and v ≥ u ≥ 0 are integers. By using

(α, δ)-compatiblility of R and (aiR)k = 0, 0 ≤ i ≤ n, we have

ai1λ
vi2
ui2

(ai2)λ
vi3
ui3

(ai3)...λ
vik
uik

(aik) = 0,

where {ai1 , ai2 , ..., aik} ⊆ S. Thus (f(x))k = 0. Hence f(x) is a nilpotent of A = R [x;α, δ] .

Corollary 1. If f(x) = a0 + a1x + a2x
2 + ... + anx

n ∈ A = R [x;α, δ] , R is an (α, δ)-
compatible ring and satisfies any one of the following conditions:
1) R is a Noetherian ring,
2) R has either the ACC or DCC on left annihilators,
then f(x) ∈ nil (A) if and only if ai ∈ nil (R) for all 0 ≤ i ≤ n.

Proof. If R satisfies any one of the conditions (1) and (2), then R is an NI ring with
nil (R) nilpotent. Hence the result follows directly from Lemma 3.

Lemma 4. Let R be an (α, δ)-compatible NI ring with nil (R) nilpotent and a, b ∈ R. Then
ab ∈ nil (R) if and only if aλvu(b) ∈ nil (R) , where v ≥ u ≥ 0 are integers.

Proof. (=⇒) Suppose that ab ∈ nil (R) , so ba ∈ nil (R) . Assume that f(x) = b and
g(x) = ax ∈ A = R [x;α, δ] . Then f(x)g(x) ∈ nil (A) , so g(x)f(x) = aδ(b) + aα(b)x ∈
nil (R) [x;α, δ] . Thus aδ(b), aα(b) ∈ nil (R) . Now suppose that h(x) = α(b) and k(x) =
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ax ∈ A = R [x;α, δ] . Then h(x)k(x) ∈ nil (A) , so k(x)h(x) = aδ(α(b)) + aα2(b)x ∈
nil (R) [x;α, δ] . Thus aδ(α(b)), aα2(b) ∈ nil (R) . Since aδ(b) ∈ nil (R) , for p(x) = δ(b) and
q(x) = ax ∈ A = R [x;α, δ] , we have p(x)q(x) ∈ nil (A) , so q(x)p(x) = aδ2(b)+aα(δ(b))x ∈
nil (R) [x;α, δ] . Thus aδ2(b), aα(δ(b)) ∈ nil (R) . Continuing in this process we get

aαn1(δm1(αn2(δm2 ...αni(δmj (b))))) ∈ nil (R) ,

where ni,mj are nonnegative integers. Thus aλvu(b) ∈ nil (R) , where v ≥ u ≥ 0 are
integers.
(⇐=) Suppose that aλvu(b) ∈ nil (R) , where v ≥ u ≥ 0 are integers. By using (α, δ)-
compatiblility of R, we can conclude that ab ∈ nil (R) .

Proposition 1. Let R be an (α, δ)-compatible NI ring with nil (R) nilpotent, f(x) =
n∑

i=0
aix

i and g(x) =
m∑
j=0

bjx
j ∈ A = R [x;α, δ] . Then f(x)g(x) ∈ nil (A) if and only if

aibj ∈ nil (R) for all integers 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Proof. Suppose that f(x) =
n∑

i=0
aix

i and g(x) =
m∑
j=0

bjx
j ∈ A such that f(x)g(x) ∈

nil (A) . Since R is an (α, δ)-compatible NI ring with nil (R) nilpotent, we get, from Lemma
3, the following:

∆n+m = anα
n(bm) ∈ nil (R) , (1)

∆n+m−1 = anα
n(bm−1) + an−1α

n−1(bm) + anλ
n
n−1(bm) ∈ nil (R) , (2)

∆n+m−2 = anα
n(bm−2) +

n∑
i=n−1

aiλ
i
n−1(bm−1) +

n∑
i=n−2

aiλ
i
n−2(bm) ∈ nil (R) . (3)

From Eq.(1) and Lemma 4, we obtain anbm ∈ nil (R) . So, bman ∈ nil (R) . If we multiply
Eq.(2) on the left side by bm, then we get bman−1α

n−1(bm) ∈ nil (R) . Thus, by Lemma 4,
we obtain an−1bm ∈ nil (R) . Again from Eq.(2) and Lemma 4, we obtain anbm−1 ∈ nil (R) .
Applying the preceding method repeatedly, we deduce that aibj ∈ nil (R) for all integers
0 ≤ i ≤ n and 0 ≤ j ≤ m.
Conversely, suppose that f(x) =

n∑
i=0

aix
i and g(x) =

m∑
j=0

bjx
j ∈ A such that aibj ∈ nil (R)

for all integers 0 ≤ i ≤ n and 0 ≤ j ≤ m. We show that f(x)g(x) ∈ nil (A) . From Lemma
3 and Lemma 4, we get the following:

aλvu(b) ∈ nil (R) , where v ≥ u ≥ 0 are integers.

Hence f(x)g(x) ∈ nil (A) .

Now we can turn to our main Theorems in the paper.

Theorem 1. Let R be an (α, δ)-compatible NI ring with nil (R) nilpotent, such that α(e) =
e and δ(e) = 0 for every e ∈ Id(R). If R is a weak right PS-ring, then A = R [x;α, δ] is
a weak right PS-ring.
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Proof. Let L be a maximal right ideal of A = R [x;α, δ] . We will show that either
NA (L) ⊆ nil(A) or NA (L) = Aq, where q ∈ Id(A). Let I be the set of all coefficients of
all polynomials in L and let J be the right ideal of R generated by I, i.e.,

J = 〈I〉r = IR.

If J = R, then there exist a1, a2, ..., an ∈ I and r1, r2, ..., rn ∈ R, such that

1 = a1r1 + a2r2 + ...+ anrn.

Suppose that ϕ(x) =
k∑

i=0
bix

i ∈ NA (L) , then for every f(x) =
n∑

j=0
ajx

j ∈ L, we have

ϕ(x)f(x) =

(
k∑

i=0

bix
i

) n∑
j=0

ajx
j

 ∈ nil(A).

Since R is an (α, δ)-compatible NI ring with nil (R) nilpotent, from Lemma 1, we get that
biaj ∈ nil(R), for all integers 0 ≤ i ≤ k and 0 ≤ j ≤ n. Consequently, for every a ∈ I,
bia ∈ nil(R), for all integers 0 ≤ i ≤ k. Hence bi ∈ NR (J) = NR (R) = nil(R), for all
integers 0 ≤ i ≤ k. Therefore ϕ(x) ∈ nil(A). Hence NA (L) ⊆ nil(A).
If J 6= R, we show that J is a maximal right ideal of R. Let r ∈ R−J. If r ∈ L, then r ∈ I
and so r ∈ J, which is a contradiction. Thus r /∈ L. Since L is a maximal right ideal of A,
we have

A = L+ rA.

It follows that there exist f(x) =
n∑

i=0
aix

i ∈ L and h(x) =
m∑
j=0

bjx
j ∈ A, such that

1 = a0 + rb0.

If a0 = 0, then 1 = rb0 ∈ rR and so R = J + rR.
If a0 6= 0, then a0 ∈ I ⊂ J which implies that R = J + rR. Hence J is a maximal right
ideal of R.
Since R is a weak right PS-ring, it follows that either NR (J) ⊆ nil(R) or NR (J) = Re,
where e ∈ Id(R).
Case (1): Assume that NR (J) ⊆ nil(R). We will show that NA (L) ⊆ nil(A). Let ϕ (x) =
k∑

i=0
mix

i ∈ NA (L) . Then for every g (x) =
n∑

j=0
ajx

j ∈ L, we have

ϕ (x) g (x) =

(
k∑

i=0

mix
i

) n∑
j=0

ajx
j

 ∈ nil(A).

Since R is an (α, δ)-compatible NI ring with nil (R) nilpotent, from Lemma 1, we get that
biaj ∈ nil(R), for all integers 0 ≤ i and 0 ≤ j. Consequently, for every a ∈ I, bia ∈ nil(R),
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for all integers 0 ≤ i. Hence bi ∈ NR (J) = NR (R) = nil(R), for all integers 0 ≤ i.
Therefore ϕ(x) ∈ nil(A) and we have NA (L) ⊆ nil(A).
Case (2): Assume that NR (J) = Re, where e ∈ Id(R). We will show that NA (L) = Ah,

where h ∈ Id(A). Let ϕ(x) =
k∑

i=0
bix

i ∈ NA (L) and ϕ(x) /∈ nil(A), then for every f(x) =

n∑
j=0

ajx
j ∈ L, we have

ϕ(x)f(x) =

(
k∑

i=0

bix
i

) n∑
j=0

ajx
j

 ∈ nil(A).

Since R is an (α, δ)-compatible NI ring with nil (R) nilpotent, from Lemma 1, we get that
biaj ∈ nil(R), for all integers 0 ≤ i ≤ k and 0 ≤ j ≤ n. Consequently, for every a ∈ I,
bia ∈ nil(R), for all integers 0 ≤ i ≤ k. For any m ∈ J, there exist a1, a2, ..., an ∈ I and
r1, r2, ..., rn ∈ R, such that

q = a1r1 + a2r2 + ...+ anrn,

biq = (bia1) r1 + (bia2) r2 + ...+ (bian) rn,

hence biq ∈ nil(R), for all integers 0 ≤ i ≤ k, so bi ∈ NR (J) = Re, for all integers
0 ≤ i ≤ k. Therefore there exist ti ∈ R such that bi = tie, for all integers 0 ≤ i ≤ k. Since
for any idempotent e ∈ R we have α(e) = e and δ(e) = 0, we can conclude that

ϕ(x) =

k∑
i=0

bix
i =

k∑
i=0

tiex
i =

(
k∑

i=0

tix
i

)
e ∈ Ah,

where h = e = e2 = h2 ∈ A.

Therefore NA (L) = Ah, where h ∈ Id(A) and the result is proved.

Theorem 2. Let R be an (α, δ)-compatible NI ring with nil (R) nilpotent. If R is a weak
left PS-ring, then A = R [x;α, δ] is a weak left PS-ring.

Proof. The proof is similar to the previous proof of Theorem 1. The only thing we need
to note here is that, If L is a maximal left ideal of A = R [x;α, δ] , then, by analogue
manner as above, we get in case (2) that bi ∈ NR (J) = Re, for all integers 0 ≤ i ≤ k.
Therefore there exist ti ∈ R such that bi = eti, for all integers 0 ≤ i ≤ k. So

ϕ(x) =

k∑
i=0

bix
i =

k∑
i=0

etix
i = e

(
k∑

i=0

tix
i

)
∈ hA,

where h = e = e2 = h2 ∈ A.

Therefore NA (L) = hA, where h ∈ Id(A) and the result is proved.
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Assume that δ is the zero map, then A = R [x;α] , the usual skew polynomial ring over
R, and we get the following corollaries:

Corollary 2. Let R be an α-compatible NI ring with nil (R) nilpotent, such that α(e) = e
for every e ∈ Id(R). If R is a weak right PS-ring, then A = R [x;α] is a weak right
PS-ring.

Corollary 3. Let R be an α-compatible NI ring with nil (R) nilpotent. If R is a weak left
PS-ring, then A = R [x;α] is a weak left PS-ring.

Assume that α is the identity map, then A = R [x; δ] , the differential polynomial ring
over R, and we get the following corollaries:

Corollary 4. Let R be a δ-compatible NI ring with nil (R) nilpotent, such that δ(e) = 0 for
every e ∈ Id(R). If R is a weak right PS-ring, then A = R [x; δ] is a weak right PS-ring.

Corollary 5. Let R be a δ-compatible NI ring with nil (R) nilpotent. If R is a weak left
PS-ring, then A = R [x; δ] is a weak left PS-ring.

Assume that α is the identity map and δ is the zero map, then A = R [x] , the usual
polynomial ring over R, and we get the following corollary:

Corollary 6. Let R be an NI ring with nil (R) nilpotent. If R is a weak right (left)
PS-ring, then A = R [x] is a weak right (left) PS-ring.
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