Localization of Hopfian and Cohopfian Objects in the Categories of A − Mod, AGr(A − Mod) and COMP(AGr(A − Mod))
DOI:
https://doi.org/10.29020/nybg.ejpam.v14i2.3889Keywords:
graded ring, a saturated multiplicative part formed by the non-zero homogeneous elements of A, Ore conditions, hopfian, cohopfian, sequence complex, chain complex, quasi-injective and quasi-prjective.Abstract
The aim of this paper is to study the localization of hopfian and cohopfian objects in the categories A-Mod of left A-modules, AGr(A-Mod) of graded left A-modules and COMP(AGr(A-Mod)) of complex sequences associated to graded left A-modules.
We have among others the main following results :
1. Let M be a noetherian graded left A-module, S a saturated multiplicative part formed by the non-zero homogeneous elements of A verifying the left Ore conditions, N a submodule of M, M_{*} is a noetherian quasi-injective complex sequence associated with M and N_{*} is an essential and completely invariant complex sub\--sequence of M_{*}. Then, S^{-1}(N_{*}) the complex sequence of morphisms of left S^{-1}A\--modules is cohopfian if, and only, if S^{-1}(M_{*}) is cohopfian ;
2. let M be a graded left A\--module and S a saturated multiplicative part formed by the non-zero homogeneous elements of A verifying the left Ore conditions. If M_{*} is a hopfian, noetherian and quasi-injective complex sequence associated with M, then the complex sequence of morphisms of left S^{-1}(A)-modules S^{-1}(M_{*}) has the following property :
{any epimorphism of sub-complex S^{-1}(N_{*}) of S^{-1}(M_{*}) is an isomorphism } ;
3. let M be a graded left A-module, N a graded submodule of M, S a saturated multiplicative part formed by the non-zero homogeneous elements of A verifying the left Ore conditions. M_{*} the quasi-projective complex sequence associated with M and $N_{*}$ a superfluous and completely invariant complex sub\--sequence of $M_{*}$. Then the complex morphism sequence of left $S^{-1}(A)$\--modules $S^{-1}(N_{*})$ is hopfian if, and only if, $S^{-1}(M_{*}/N_{*})$ the complex sequence associated with S^{-1}(M/N) is hopfian.
Â
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.