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Abstract. The aim of this paper is to study the localization of hopfian and cohopfian objects
in the categories A — Mod of left A-modules, AGr(A — Mod) of graded left A-modules and
COMP(AGr(A — Mod)) of complex sequences associated to graded left A-modules.

We have among others the main following results

(i) Let M be a noetherian graded left A-module, S a saturated multiplicative part formed by the
non-zero homogeneous elements of A verifying the left Ore conditions, N a submodule of M,
M, is a noetherian quasi-injective complex sequence associated with M and N, is an essential
and completely invariant complex sub-sequence of M,. Then, S~™!(IV,) the complex sequence
of morphisms of left S~!A-modules is cohopfian if, and only, if S~!(M,) is cohopfian ;

(ii) let M be a graded left A-module and S a saturated multiplicative part formed by the non-zero
homogeneous elements of A verifying the left Ore conditions. If M, is a hopfian, noetherian
and quasi-injective complex sequence associated with M, then the complex sequence of mor-
phisms of left S~1(A)-modules S~!(M,) has the following property : <any epimorphism of
sub-complex S~Y(N,) of STY(M.) is an isomorphism > ;

(iii) let M be a graded left A-module, N a graded submodule of M, S a saturated multiplicative
part formed by the non-zero homogeneous elements of A verifying the left Ore conditions.
M, the quasi-projective complex sequence associated with M and N, a superfluous and
completely invariant complex sub-sequence of M,. Then the complex morphism sequence of
left S~1(A)-modules S~1(N,) is hopfian if, and only if, S~(M.,/N,) the complex sequence
associated with S~!(M/N) is hopfian.
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1. Introduction

In this paper, the ring A is supposed to be associative, unitary, not necessairly com-
mutative, and any left A-modules is unifary.
In this article, we study the localization of hopfian and cohopfian objects in the categories
A—Mod of left A-modules, AGr(A— Mod) of graded left A-modules and COM P(AGr(A-
— Mod)) of complex sequences associated to graded left A-modules. We rely on the ar-
ticles, < Graduation of Module of Fraction on a Graded Domain Ring not Necessarily
Commutative>[2], < Factorization of Graded Modules of Fractions >[3], < Module de
Fractions, Sous-modules S—saturée et Foncteur S~! >> [18] and < Hopfian and Cohopfian
Objects in the Categories of Gr(A — Mod) and COM P(Gr(A — Mod)) >[23], which are
used as a basis for studying the notions of localization, hopficity and cohopficity. The tran-
sition to localization and the study of hopficity and cohopficity from the category of left
A — Mod whose objects are the left A-modules and the morphisms are the left A-module
morphisms to the category AGr(A — Mod) whose objects are the graded left A-module
and the morphisms are the graded left A-module graded morphisms and AGr(A — Mod)
to the category of COM P(AGr(A — Mod)) whose the objects are the complex sequences
of graded left A-modules and the morphisms are the chain complexes associated to the
graded morphims of graded left A-modules is not easy. In our opinion, these reasons jus-
tify our work. Thus, the paper is organized as follows

In the section 2, we study the localization of hopfian and cohopfian objects in the category
A — Mod and we show the following results :

(i) Let A be a ring, S a saturated multiplicative part of A verifying the left Ore condi-
tions, M a left A-module. If S~'M is hopfian, then M is hopfian ;

(ii) Let A be a ring, S a saturated multiplicative part of A verifying the left Ore condi-
tions, M a left A-module. If M is a cohopfian and completely invariant submodule
of left A-module S~!(M), then S~1(M) is a cohopfian left S~1(A)(respectively A)-
module ;

(iii) Let M be a noetherian quasi-injective left A-module, N be an essential and com-
pletely invariant submodule of M and S a saturated multiplicative part of A verifying
the left Ore conditions. Then, the left S7!(A)-modules S~!(N) is cohopfian if, and
only, if S71(M) is cohopfian left S~1(A)-module ;

(iv) Let M be a quasi-projective left A-module, N a superfluous and completely invariant
sub-module of M, S a saturated multiplicative part of A verifying the left Ore con-
ditions. Then the left S~!(A)-modules S~!(N) is hopfian if, and only if, S~*(M/N)
is hopfian.

In section 3, we study the localization of hopfian and cohopfian objects in the category
AGr(A — Mod) and we prove the following results :
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(i)

(vii)

Let A = @ A, be a graded ring, S a saturated multiplicative part formed by the

nez
non-zero homogeneous elements of A verifying the left Ore conditions and M =

@ M,, a graded left A-module, then S~!(M) = @(S‘lM)i is hopfian(respectively
nez €L
cohopfian) if, and only, if (S~1M); is a hopfian(respectiveley cohopfien) group ;

let A be a graded ring, S a saturated multiplicative part formed by the non-zero
homogeneous elements of A verifying the left Ore conditions, M a graded left A-
-module. Then, if S~1(M) is a hopfian left graded S~!(A)-module, implies that M
is a hopfian left graded A-module ;

if S71(M) is a left graded hopfian S~!(A)-module, then M, for all n € Z is a hopfian
group ;

let A be a graded ring, S a saturated multiplicative part formed by the non-zero
homogeneous elements of A verifying the left Ore conditions, M left graded A-
-module. Then, if M is a cohopfian and completely invariant submodule of left
A-module S~(M), implies that, S~!(M) is a cohopfian graded left S—!(A)-module;

if M is a cohopfian and completely invariant submodule of the left A-module S~1(M),
then (S~'M); is a cohopfian group ;

Let M be a noetherian quasi-injective graded left A-module, NV be an essential and
completely invariant graded submodule of M and S a saturated multiplicative part
formed by the non-zero homogeneous elements of A verifying the left Ore conditions.
Then, the graded left S~!(A)-modules S~!(M) is cohopfian if, and only, if S~(V)
is cohopfian graded left S~1(A4)-module ;

Let M be a graded quasi-projective left A-module, N a superfluous and completely
invariant graded sub-module of M, S a saturated multiplicative part formed by the
non-zero homogeneous elements of A verifying the left Ore conditions. Then the left
S~1(A)-modules S~1(N) is hopfian if, and only if, S~!(M/N) is hopfian.

In the section 4, we study the localization of hopfian and cohopfian objects in the category
COMP(AGr(A — Mod)) and we show the following results :

(i)

Let A be a graded ring, S a saturated multiplicative part formed by the non-zero ho-
mogeneous elements of A verifying the left Ore conditions, M a graded left A-module
and M, the complex sequence of morphisms of graded left A-modules associated with
M. Then, if the complexe S~!(M.) of morphisms of graded left S~!(A)-module is
hopfian, implies that M, is hopfian ;

Let A be a graded ring, S a saturated multiplicative part formed by the non-zero
homogeneous elements of A verifying the left Ore conditions, M a graded left A-
module. If M, the complex sequence associated with M, is cohopfian and completely
invariant, then S~!(M,), the complex sequence associated with S~1(M) is cohopfian;
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(iii) let M be a noetherian graded left A-module, S a saturated multiplicative part formed
by the non-zero homogeneous elements of A verifying the left Ore conditions, N a
submodule of M, M, is a noetherian quasi-injective complex sequence associated
with M and N, is an essential and completely invariant complex sub-sequence of
M,. Then, S~(N,) the complex sequence of morphisms of left S~!(A)-modules is
cohopfian if, and only, if S~!(M,) is cohopfian ;

(iv) let M be a graded left A-module and S a saturated multiplicative part formed
by the non-zero homogeneous elements of A verifying the left Ore conditions. If
M, is a hopfian, noetherian and quasi-injective complex sequence associated with
M, then the complex sequence of morphisms of left S~!'A-modules S~'M, has the
following property : <any epimorphism of sub-compler S~1(N,) of S~1(M,) is an
isomorphism > ;

(v) let M be a graded left A-module, N a graded submodule of M, S a saturated
multiplicative part formed by the non-zero homogeneous elements of A verifying the
left Ore conditions. M, the quasi-projective complex sequence associated with M
and N, a superfluous and completely invariant complex sub-sequence of M,. Then
the complex morphism sequence of left S~!(A)-modules S~1(V,) is hopfian if, and
only if, S~(M./N,) the complex sequence associated with S~(M/N) is hopfian.

2. Preliminaries

Definition 1.
Let A be a ring and {Ay}nez a family of sub-group of A. If

neL
(ii) Ap - Am C Aptm, ¥V 0, m € Z.

Then we say that A is a graded ring. FElse, if A, = 0,Vn < 0. Then A is called positively
graded ring.

Definition 2.
Let A a graded ring, x be a non-zero element of A, we say that x is homogeneous of degree
n, if there exists n such that x € A, and we note deg(x) = n.

such that x € A,, and we note that deg(z) = n.

Definition 3.
Let A = @An be a graded ring and M be a left A—module, then M is called a graded left

neL
A—module if there exists a sequence (My,)nez of sub-group of M such that

(i) M = PM,;

neL
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ﬁO A, My C A4n+d,v n, d € Z.

Definition 4.

Let A = @An be a graded ring, M = @Mn be a graded left A—module and N is a

nez neZ
sub-module of M, then N is called a graded sub-module of M, ifVx =)

T, € M, then x,, € N, Vn € Z.

nez Tn € N, with

Definition 5.

Let A= @D, ., An be agraded ring, M = @Mn N = @Nn are two graded left A—modules

nez nez
and f : M — N is a morphism of left A—modules, then f is called a graded morphism if for

any mg € My then f(mg) € Ns.

Theorem 1.

Let A be a graded ring, the category of graded left A—module is the category denoted by
AGr(A — Mod) whose

(i) The objects are the graded left A—modules;

(ii) The morphisms are the graded morphisms.

Proof.
See [23]

Theorem 2.
Let A be a graded ring, M a graded left A-module and S S a saturated multiplicative part
formed by the non-zero homogeneous elements of A verifying the left Ore conditions, then :

(i) S71A = @(S_lA)i is a graded ring, where
1€EZ
(S7TA); ={2 € S71A,3k,a € Ay and deg(s) = k —i}.

(i) S™T1M = @(SilM)i is a graded left S~ A-module, where
1E€EL
(S7'M); ={2 € S™*M,3p,m € M, and deg(s) = p — i}.
Proof.
See [1]

Proposition 1.

Let A = @An be a graded ring, M = @Mn and N = @Nn are two graded left
neN nez neZ
A-modules, f : M — N 1is graded morphism and S the set of non-zero homogeneous

elements of A, then we have :

(i) the following complex sequences :

STUM,) : - — S~ (M (nt1)) %) 51 (M (n))
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(ii) the following chain complexes :

—1 —1
STt - — ST (M(n + 1) 251 (M () T8 1 (M (0 — 1) — -
Sl(f*)l Sl(f(n+1))l Sl(f(n))l Sl(f(n—l))i

THd 1)

SUNL) ¢ e e S YN+ 13) 51N (n)) T L1 (N (= 1)) —> - -

Proof.
See [3]

Theorem 3.

Let M, : ... M(n+1) 2% M(n) % M(n—1) — ... be an object of COMP(AGr(A-
—Mod)). M, is quasi-injective in COM P(Gr(A — Mod)) if, and only, if for alln € Z, M (n)
is a quasi-injective in COM P(AGr(A — Mod)).

Proof.
See [23]

Theorem 4.

Let M, :...M(n+1) ot M (n) n, M(n —1) — ... be an object of COM P(Gr(A-
— Mod)). M, is quasi-projective if, and only, if for all n € Z, M (n) is a quasi-projective left
A-modules .

Proof.
See [23]

3. Localization of hopfian and cohopfian objects in the category of
A — Mod

Definition 6.
Let M a left A-module. Then M is said hopfian (respectively cohopfian), if any epimorphism
(respectively monomorphism) of M is an automorphism of M.

Theorem 5.
Let A be a ring, S a saturated multiplicative part of A verifying the left Ore conditions, M a
left A-module. If S=1(M) is a hopfian left S~1(A)-module, then M is a hopfian left A-module.

Proof.
Let f: M — M an epimorphism of left A-module. Then S~(f) : S~ (M) — S~1(M)
define by [ST1(f)](2) = @ is an endomorphisme of S~1(A)-Mod. Let m?l € S~Y(Mm),

as f is an epimorphism, then there exists m € M, f(m) = m/.

So [STH( () = GO m?/, thus S~1(f) is an epimorphism, since S~!(M) is hopfian,

S

so S7L(f) is an automorphism of S~1M.
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Let mq and my € M such that

f(ma) = f(ma)

— L) — me — (571 (ma) = [$7H()] (m)
— M1 = Mo

Thus f is an automorphism of M, so M is hopfian.

Theorem 6.

Let A be a ring, S a saturated multiplicative part of A verifying the left Ore conditions, M
a left A-module. If M is a cohopfian and completely invariant submodule of left A-module
S=Y(M), then S~1M is a cohopfian left S~1(A)(respectively A)-module.

Proof.
Let g : S™Y(M) — S~Y(M) be a S~! A-morphism, we remark also that g is a A-morphism.
As M is a completely invariant submodule of left A-module S™!(M), so g(M) C M.
Suppose that g is a monomorphism.
Thus the induce morphism ¢;,q : M — M is a monomorphisme of M, since M is
cohopfian, then g;,q is an automorphism of M.
Let’s consider

Or g is a S~!(A)-morphisme, so 1 M = gmd(é%) = gind(%) = S~ gind) = g

g is a monomorphism, then g;,q 1s a monomorphism.

As M is cohopfian, then g;,q is an automorphism of M.

Let ™ € S~H(M) = m’ € M, so there exists m € M : gina(m) = m’
thus 2 € 1M, [S™1(ging)] () = 2 — m!

S S
/

hence (g(2)) = ™.
Thus S~'M is a cohopfian left S~!A-module.
Let’s prove now that S~!(M) is a cohopfian left A-module

Let f : S~Y(M) — S~1(M) be amonomorphism of left A-module, then f : S~1(M) —
S~1(M) is a monomorphism, indeed,
let 2 and %' € STLM : [S7H()](2) = [STHAHN(E) = L) = J0m) s 35y € 5 such
that :

— / _ / ot

I I

!
/ / / :}—:ﬂ:>
s = 1Ys s =1Ys s = 1Ys $ $

S~1(f) is a monomorphisme, or S~!(M) is cohopfian, then S~1(f) is an automorphism.

Let ’?—,, € SH(M), since S7I(f) is an automorphism, then there exists 2 € S~'M
such that

- rk ' F2) W o
ST = 5 = K = i = 0 M
thus there exists % € S7'M such that f(%) = - — f is an epimorphism, hence

E)

S~1(M) is cohopfian.
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Theorem 7.

Let M be a noetherian quasi-injective left A-module, N be an essential and completely invari-
ant submodule of M and S a saturated multiplicative of A verifying the left Ore conditions.
Then, the left S=1(A)-modules S~(N) is cohopfian if, and only, if S=1(M) is cohopfian left
S~1(A)-module.

Proof.
Suppose that S~1(M) is cohopfian and left S~1(f) : S~1(N) — S~1(IN) be a monomor-
phism. As S~1(M) is quasi-injective because M is noetherian. Then, there exists S~!(g) €
End(S~'(M)) such that S_l(g‘s—lN) =S~ f).
S~1(g) is injective since ST(N) is essential in S~! (M), and as S~1(M) is ohopﬁan
S~1(g) is invertible. Let £ € S~(NV), there exists ¥ € S™1(M) such that Z =[S~ (g)](¥).
Or S~Y(g71) € End(S~Y()N)) and S~1(N) is completely invariant, so ¥ = [S*I(gfl)](f €
S~Y(N), thus S~1(f) is an automorphisme, consequentely S~!(N) is cohopfian.
Reciprocally, suppose that S~'(NN) is cohopfian and let S=!(f) : S™1(M) — S=Y(M)
a monomorphism. Then S~!(fig-1(y)) is a monomorphism of S™*(N). Thus, S7(f) €
Aut(S7Y(N)), hence [STLHAI(STHN)) = STHN). As S7Y(M) is quasi-injective, then
there exists S™!(L) a submodule of S~1(M) such that S™1(M) = [STL()](S~H(M)) &
S~Y(L). Thus, we have 0 = [STYH()](STIN)NS~HL) = S~HN)NS~H(L), since ST1(N)
is essential, then S~Y(L) = 0, hence S~1(M) = [SL(f)](S~tM), thus S~1(f) is an epi-
morphism, so S~1(M) is cohopfian.

Theorem 8.

Let M be a quasi-projective left A-module, N an superfluous and completely invariant sub-
module of M, S a saturated multiplicative part of A verifying the left Ore conditions. Then
the left S~(A)-modules S~Y(N) is hopfian if, and only if, S™*(M/N) is hopfian.

Proof.
Suppose that S~1(M/N) is hopfian and let S~!(f) : S~Y{(M) — S~1(M) an epimor-
phism.
As S7Y(N) is completely invariant then [SL(f)](S~H(N)) € STHN), implies S™L(f)
induces an epimorphism S~!(f) : S™Y(M/N) — S~Y (M /N) since S~Y(M/N) is hop-
fian, then S~1(f) is a graded automorphlsm Put S7Y(K) = ker(S7(f)) and S~(x) :
S~ (M) — S~Y(M/N) the canonical projection, we have :
STH) o [STHm(STHE)) = S™H(m o f(K)) =
Indeed, VZ € S7'(K), we have :

H(Fom](5) =[S mo HI(F), so

(571 (o NI(E) = [STHmI(LE) = [S7H(m)(2) = 0, thus [S7(F o m)](K) = 0.
we have :
S1(F o mI(K) =[Sm0 I(K) = 0 =[S PI(r(K)) = 0 =[S (mI(K)
S~YN) = S~1(K) c SHN)
Since M is quasi- projective = S~1(M) is quasi-projective, there exists an endomor-
phism S~1(s) : S71(M) — S~1(M) such that S~!(f os) = S~ (idg-1(apy), this implies
S~HM) = STHK @ Im(s)), or K = N and S™Y(N) is superfluous in S~(M), then
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S=HM) = S~ Im(s)), so STHK) = ker[S™'(f)] = 0, thus S~!(f) is a monomorphism,

finally, S~1(f) is a monomorphism, so S~1(M) is a hopfian left S~!(A)-module.

Reciprocally,

let S~1(M) be hopfian, show that S~1(M/N) is hopfian.

Let S~(¢) : STY(M/N) — S~Y(M/N) be an epimorphism of left S~!A-module, as

M is quasi-projective, then S~1(M) is quasi-projective. Consider S~1(x) : S~Y(M) —
~1(M/N), then there exists S~!(f) € End(S™(M)) such that S~ (7o f) = S~ (pom).

Since S~1(y) is an epimorphism, VZ € S~1(M/N),3(¥) € S~!(M/N) such that

57N = T = [ (@)

[S~H(mo )(%) (S~ om)](¥)

[S7Hm)(H2) =[5~ o

=[S I =[S NI =%

= % -2=0

= {0 2z ¢ g-1(N),

then S™Y(M) = Im(S~(f)) + S~H(IN), as S~1(N) is superfluous, then Im(S~1(f)) =

I
S~Y(M) = S~(f) is an epimorphism. So, S~!f is an automorphism, because S~!(M)

So the restriction of S~1(f) over S~!(N) is a automorphism of S~!(N).

If [Sil(g))](g) = [Sfl(?)](f) = 0, then [Sil(f)](f) € STH(N), or STI(N) is completely
invariant, then £ € S7H(N), so £ =0 = ker(S7!(¢)) = S7I(N) =0 = S (p) is a
monomorphism == ¢ is an automorphism, lastly S~!(M/N) is hopfian, hence S~*(M/N)
is a hopfian left S~1(A)-module.

4. Localization of hopfian and cohopfian objects in the category of
AGr(A — Mod)

Definition 7.
Let M a graded left A-module. Then M is said hopfian (respectively cohopfian), if any
epimorphism (respectively monomorphism) of M is an automorphism of M.

Lemma 1.
Let A = @An be a graded ring, M = @Mn a graded left A-module, then M is hop-

neL nez
fian(respectively cohopfian) if, and only if, M, is a hopfian(respectiveley cohopfien) groupe.

Proof.
Suppose that M = @ M, is hopfian, show that M, is a hopfian group.
nez

Let f: M = @Mn — M = @Mn be a graded morphism, so we have the induce

nez neL
morphism of groups : f, : M,, — M,, for all x € M,,, we have f,(x) = f(z,). We see

that f, is well defined because f is graded, moreover, for all z,, and vy, € M,, we have
fo(@n +yn) = f(@n +yn) = f(@n) + f(yn) = fu(2n) + fulyn) = fn is a morphism of
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groups.
let h : M,, — M, be an epimorphism of groups.
Put for all z;,i # n, f(z;) = z; and for all x,, € M,, f(x,) = h(x,), it is easy to prove
that f is a graded epimorphism of graded left A-modules.
Since f is an automorphism because M hopfian by hypothesis, so h is an automorphism,
thus M, is hopfien.
Suppose that M, is hopfian, show that M = @ M, is hopfian.
nez
Let f: M = @ M, — M = @ M,, be an epimorphism of left A-module. Show that f

neL neL
is an automorphism. Prove that f, : M,, — M, is epimorphism of groups for all n € Z

Let y,, € M, then there exists x € M = @ A,

nez
Suppose that z = Zfim-e xy, or for all ¢, f(xzy) € M,y

if t #mn, f(zy) = 0, since f(z) = yn € My, so for all y,, € M, there exists x, € M, such
that f(zn) = yn, or f(zn) = fu(zn) = fu(Tn) = yn, so f, is an epimorphism, as M,, is
hopfian, so f, is an automorphism = f is also an automorphism, consequentely, M is
hopfian.

For the hopfian case, the proof is similary.

Theorem 9.
Let A = @ A, be a graded ring, S a saturated multiplicative part formed by the non-zero

nez
homogeneous elements of A verifying the left Ore conditions and M = @ M, a graded left
nez
A-module, then S~Y(M) = @(SilM)i is hopfian(respectively cohopfian) if, and only, if
1€Z
(S~IM); is a hopfian(respectiveley cohopfien) group.
Proof.
It suffices to prove that (S71f) : S~ (M) = @(S‘lM)i — ST M) = @(S‘lM)i is
1€Z 1€EZ

graded.

Since (S7'M); = {2 € S7*M,3p,m € M, and deg(s) = p — i} , we have [S™H(f)](2) =

S
@ or f is graded = f(m) € M, = @ € (S71M);, so S7L(f) is a graded morphism.

Then, by Lemma(1), we obtain the result.

Theorem 10.

Let A = @ A, be a graded ring, S a saturated multiplicative part formed by the non-zero
nez

homogeneous elements of A verifying the left Ore conditions, M = @Mn a graded left

neZ
A-module. Then, if STY(M) is a hopfian left graded S~'(A)-module, implies that M is a

hopfian left graded A-module.
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Proof.
Let f : M — M be a graded epimorphism of M. Then S~1f : S~1(M) = @(S_lM)Z- —
1€EZ
STH(M) = EB(S_IM)i defined by [ST'(f)](2) = f(;n) is a graded endomorphism of

€L
graded left S~ (A)-module, because [S™1(f)](™2) = @, since f is graded, then f(m;) €
M;, thus @ € (S™IM);. Let m?l € S71(M), as f is a graded epimorphism, then there
exists m € M, f(m) =m'.
So [STHMH(2) = f(gn) = m?/, hence S™1(f) is a graded epimorphism, since S~!(M) is

hopfian, then S~1(f) is a graded automorphism of S~!(1).

Let m; and mo € M such that

f(m1) = f(mo)

— Hp) = H2) — [§71(f)](ma) = [S71(f)](m2)

— M1 = Mo

Thus f is a graded automorphism of M, so M is a hopfian graded left A-module.

Corollary 1.
Under the same conditions of the previous theorem. If S~Y(M) is a hopfian graded left
S~Y(A)-module, then M, for all n € Z is a hopfian group.

Proof.
It’s obvious by Theorem(10)

Theorem 11.

Let A graded ring, S a saturated multiplicative part formed by the non-zero homogeneous
elements of A verifying the left Ore conditions, M left graded A-module. Then, if M is a
cohopfian and completely invariant submodule of the left A-module S~1(M), implies that,
S~Y(M) is a left cohopfian graded S~'(A)-module.

Proof.
Let g : S7Y(M) — S7Y(M) a graded S~!(A)-morphisme, we remark also that g is a
graded A-morphisme. As M is completely invariant as graded submodule of graded left
A-module S~'M, so g(M) C M.
Suppose that g is a graded monomorphism.
So the induce graded morphism g¢;,q : M — M is a graded monomorphism of M and, as
M is cohopfian, then g;,q is a graded automorphism of M.
Consider
$ Y gina) : STHM) —» S7H(M)
e 20
Thus @ = %@
Or g is a graded S~!(A)-morphism, so 1 = @ =g(12) = g(2) = S gina) = 9
g is a graded monomorphism, then g;,q is a graded monomorphism.
Since M is cohopfian, then g;,q is a graded automorphism of M.
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Let m?’ € S7HM) = m/ € M, so there exists m € M : gipq(m) = m/
hence % S S_I(A), [S_l(gind)](m) =)

s0 (g(%)) = "¢
Thus S~(M) is a cohopfian left S~ A-module.

Corollary 2.
Under the same conditions of the previous theorem If M is a cohopfian and completely invariant
submodule of the left A-module S~*M, then (S~'M); is a cohopfian group.

Proof.
By Theorem(11)

Theorem 12.

Let M be a noetherian quasi-injective graded left A-module, N be an essential and completely
invariant graded submodule of M and S a saturated multiplicative part formed by the non-zero
homogeneous elements of A verifying the left Ore conditions. Then, the garded left S—'A-
modules S~ (M) is cohopfian if, and only, if S~1(N) is cohopfian garded left S~1(A)-module.

Proof.
Suppose that S~!(M) is cohopfian and let S~(f) : S~Y(N) — S~1(N) be a graded
monomorphism. As S~1(M) is quasi-injective because M is noetherian. Then, there ex-
ists a graded morphism S~!(g) € End(S~!(M)) such that S‘l(g|5_1(N)) = S7(f).
S~1(g) is injective since ST!(N) is essential in S~1(M), and as S~1(M) is cohopfian,
S5~1(g) is invertible. Let £ € S~H(N), there exists ¥ € S1(M) such that £ = [S™1(g)](¥).

Or S71(g7') € End(S~(N)) and S~*(N) is completely invariant, so ¥ = [Sfl(gfl)](f)t €

S~Y(N), thus S~1(f) is an automorphisme, consequentely S~!(N) is cohopfian.

Reciprocally, suppose that S~'(NN) is cohopfian and let S~!(f) : S™' (M) — S~1(M)

a graded monomorphism. Then S~( fis-1(wv)) is a graded monomorphism of S—Y(N).

Thus, S~(f) € Aut(S7Y(N)), hence [S~H(f)](STHN)) = S~YN). As S™1(M) is quasi-
injective, then there exists S~!(L) a submodule of S™1(M) such that S™1(M) = [S~L()](S~H(M))®
S~Y(L). Thus, we have 0 = [S~1(f)](S~HN))NSL(L) = S~HN)NS~L(L), since S~L(N)

is essential, then S™(L) = 0, hence S~1(M) = S~L(f)](S~1(M)), thus S~L(f) is an epi-
morphism, so S~(M) is cohopfian left S~ A-module.

Theorem 13.

Let M be a graded quasi-projective left A-module, N a superfluous and completely invariant
graded sub-module of M and S a saturated multiplicative part formed by the non-zero ho-
mogeneous elements of A verifying the left Ore conditions. Then the left S~1(A)-modules
S~Y(N) is hopfian if, and only if, S~Y(M/N) is hopfian.

Proof.
Suppose that S~!1(M/N) is hopfian and let S~!(f) : S~1(M) — S~1(M) a graded epi-
morphism.
As STY(N) is completely invariant, then [S™1(f)](N) C S™1(S™H()), implies S7L(f)
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induces a graded epimorphism S~'((f)) : S~'(M/N) — S~'(M/N), since S~'(M/N)

is hopfian, then S™!((f)) is a graded automorphism. Put S~ (K) = ker(S~'(f)) and

S=Ym): S~ (M) — S7Y(M/N) the canonical projection, we have :

STH)) o [STHMI(STH(K)) = §7Hm o f(K)) =

Indeed, V< € S7H(K), we have :

[STHfom(§) = [S7H(mo )I(F), so

15 (o ANE) =[S I = [s1(m)(2) = 0, thus [$(F o m](K) = 0.

we have :

S71(F o mI(K) = S o f(K) = 0 =[S (PI(K) = 0 = (S (m)(K)

S~YN) = S~1(K) c SHN)

Since M is graded quasi- projective = S~1(M) is graded quasi-projective, there ex-

ists a graded endomorphism S~1(s) : S~Y(M) — S~1(M) such that S~(f os) =

S~ (idg-1(pr)), this implies S™1(M) = SHK @® I'm(s)), or K = N and S™!(N) is su-

perfluous in S1(M), then S~H(M) = S~1(Im(s)), so S~HK) = ker(S~(f)) = 0, thus

S~L(f) is a monomorphism,

finally, S~!(f) is a monomorphism, so S~!(M) is a graded hopfian left S~!(A)-module.

Reciprocally, suppose that S~!(M) is hopfian, show that S~!(M/N) is hopfian.

Let S~1(¢) : STY(M/N) — S~Y(M/N) a graded epimorphism of left S~!(A)-module, as

M is quasi-projective, then , Sil(M) is quasi-projective. Consider S~!(7) : S~Y(M) —
_I(M/N) then there exists S~ (f) € End(S™(M)) such that S~ (7o f) = S~ (pom).

Since S—1 (cp) is an epimorphism, V ( )y e S~YM/N),3 (%) € S~Y(M/N) such that
[S* (I =5 =[5 @)

Yo f )](%) [S~Hpom)(%)

I = (s e

[5 L) =[S HIE) = ¢

M T e g ( ),

then S YM) = Im(S7H(f)) + STH(N), as S7Y(N) is superfluous, then Im(S~L(f)) =
S~ (M) = S~I(f) is a graded epimorphism. So, S~!(f) is a graded automorphism,
because S~1(M) is hopfian.

So the restriction of S~1(f) over ST!(N) is a graded automorphism of S~1(V).

I [S 1 (@))(T) = (S (DIE) = 0, then [S(F)](Z) € S1(N), or §~1(N) is completely
invariant, then £ € S7Y(N), so £ =0 = ker(S7'(p)) = STHN) =0 = S (p) is
a monomorphism == S~!(p) is an automorphism, lastly S~!(M/N) is hopfian, hence

“1(M/N) is a hopfian left S~!A-module.

5. Localization of hopfian and cohopfian objects in the
COMP(AGr(A — Mod)) category

Definition 8.
Let M, an object of COM P(AGr(A—Mod)). Then M., is said to be hopfian (resp. cohopfian)
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if any epimorphism (resp. monomorphism) f. of M, is an automorphism.

Lemma 2.

Let M be a graded left A-module, f : M — M a graded morphism and S a saturated
multiplicative part formed by the non-zero homogeneous elements of A verifying the left Ore
conditions. If f is an epimorphism (respectively a monomorphism), then S~1(f(n)) is an
epimorphism (respectively monomorphism).

Proof.
Since f(n) is the induce of f, then S7!(f(n)) is an epimorphism (respectively a monomor-
phisme).

Lemma 3.

Let M be a graded left A-module and S a saturated multiplicative part formed by the non-zero
homogeneous elements of A verifying the left Ore conditions. Then S~1(M) is a hopfian (re-
spectively cohopfian) garded left A-module if anyn € 7, S~'(M(n)) is a hopfian (respectively
cohopfian) graded left A-module.

Proof.
Let S~Y(g): S (M (n)) — S~1(M(n)) be a graded epimorphism (respectively a monomor-
phism), since S~1(M) = S~Y(M(n) GBMHHg ~ g1 @Mnﬂe . Put S7I(f) =

k>n k>n
S~Y(g) + S~ '(idn,,, ), where STI(f) is an epimorphism (respectively a monomorphism)
of S~Y(M).
As M is hopfian (respectively cohopfian) this implies that f is an isomorphism, i.e S~1(f)
is an isomorphism of S~!(M), thus S~!(g) is an isomorphism of S™*M(n)), so S~ (M (n))
is hopfian (respectivement cohopfian).

Theorem 14.

Let A be a graded ring, S a saturated multiplicative part formed by the non-zero homogeneous
elements of A verifying the left Ore conditions, M a graded left A-module and M, the complex
sequence of morphisms of graded left A-modules associated with M. Then, if the complexe
complex S~1(M,) of morphisms of graded left S~'(A)-modules is hopfian, implies that M, is
hopfian.

Proof.
Let f. : M, — M, be an epimorphism of M,. Then S~(f(n)) : S~ Y M(n)) —
S~1(M(n)) is a graded epimorphism of graded left S~!(A)-module for all n € Z. as
S~1M(n) is hopfian for all n € Z, so S~1(f(n)) is a graded automorphism of S~1(M(n)).
Let m; and my € M(n) such that
f(n)(my) = f(n)(m2)
= Hlfd = Homel — (874 (f(n)))m) = [S7H(/ ()] (ma)
= M1 = M2
Thus f(n) is a graded automorphism of M (n) for any n € Z, so M is hopfian.
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Theorem 15.

Let A be a graded ring, S a saturated multiplicative part formed by the non-zero homoge-
neous elements of A verifying the left Ore conditions, M a graded left A-module. If M, the
complex sequence associated with M, is cohopfian and completely invariant, then S—'(M.,),
the complex sequence associated with S~1(M) is cohopfian.

Proof.
Let g : S7Y(M,.) — S~Y(M.,) be a graded S~1(A)-morphism, we remark also that g is
a graded A-morphism. Since M, is completely invariant complex sequence of left S—1A-
modules , so g(M,) C M,.
Suppose that g is an monomorphism.
Thus the induce morphism ¢;pq : My — M, is a monomorphism of M, and since M, is
cohopfian, then g;,q is an automorphism graded of M,.
Consider

S7H(gina(n)) : STHM(n)) — S™H(M(n))

S 90m)_ 1 g(m)m)

s s 1
Or g(n) is a graded S~!(A)-morphism , thus 1 = w =g(n)(12) = g(n)(2) =
S™Hgina(n)) = g(n)
g(n) is a graded monomorphism, then g;,4(n) is a graded monomorphism.
As M(n) is cohopfian for all n € Z, then g;,4(n) is a graded automorphism of M (n).
Let m?l € SH(M(n)) = m' € M(n), so there exists m € M(n) : gina(n)(m) = m/
hence € S™H(M(n)), [S™H(gina(n))](2) = w - %’
thus (g(n)(22)) = 2.
hence S~1(M (n)) for all n € Z is cohopfian, consequentely S~1(M,) is cohopfian.

Theorem 16.

Let M be a noetherian graded left A-module, S a saturated multiplicative part formed by the
non-zero homogeneous elements of A verifying the left Ore conditions, N a submodule of M,
M, is a noetherian quasi-injective complex sequence associated with M and N, is an essential
and completely invariant complex sub-sequence of M,. Then, S™'(N,) the complex sequence
of morphisms of left S~1(A)-modules is cohopfian if, and only, if ST1(M.,) is cohopfian.

Proof.

Suppose that S~1(M,) is cohopfian and let S~1(f.) : S~1(N,) — S~(NV,) be a monomor-
phism. As M, is noetherian, then S~1!(M,) is noetherian quasi-injective, so for all
n € Z,S7Y(M(n)) is noetherian and quasi-injective. Then, there exists S~1(g(n)) €
End(S~Y(M(n))) ¥n € Z such that S_l(g|5—1(N(n))) = S71(f(n)).

S~1(g(n)) is injective since S~1(N,) is essential in S~!(M,), hence Vn € Z, S™1(N(n))
is essential, and as S~*(M,) is cohopfian, S~!(g) is invertible. Let £ € S™'(N(n)), there
exists ¥ € S71(M(n)) such that £ = [S~!(g(n))](¥). Or S~ (g~ (n)) € End(S~1(N(n)))
and S™'(N(n)) is completely invariant, so ¥ = S~ (g71)(2) € STY(N), thus S~*(f(n)) is
an epimorphism for all n € Z. Thus S~!(f,) is an automorphisme, consequentely S~1(N,)
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is cohopfian.

Reciprocally, suppose that S~1(V,) is cohopfian and let S™1(f.) : S~H(M.) — S™H(M.)

a monomorphism. Then S™!(f,g-1y,) is a monomorphism of S7Y(N,), so for all n €

Z, S_I(f(n)‘s_lN(n)) is a monomorphism of §71 (N(n)) Thus, S~(f(n)) € Aut(S~YH(N(n))),
hence [STL(f(n)](STYN(n))) = S~HN(n)). As S~ (M ( )) is quasi-injective, then there
exists S1(L(n)) a submodule ofS L(M(n)) such that S~ (M (n)) = [STLHf(n)](S~ M (n))®
S71(L(n)). Thus, we have 0 = [S~1(f(n))(ST'N)NS~H(L(n)) = S™(N(n))NS(L(n)),
since S71(N(n)) is essential, then S~1(L(n)) = 0, hence S~H(M(n)) = [S~L(f(n))](S~ M (n)),
thus S~!(f(n)) is an epimorphism for all n € Z = S~1(f.) is an epimorphism of chain
complex, so S~(M,) is cohopfian complex sequence.

Proposition 2.

let M be a graded left A-module and S a saturated multiplicative part formed by the non-zero
homogeneous elements of A verifying the left Ore conditions. If M, is a hopfian, noetherian and
quasi-injective complex sequence associated with M, then the complex sequence of morphisms
of left S~1(A)-modules S~1(M,) has the following property : < any epimorphism of sub-
complex S~Y(N.) of S~Y(M,) is an isomorphism >>.

Proof.

Let N, be a subcomplex of M, and S‘l(f*) : S7IN, — S~'M, an epimorphism of chain
complex. Since M, is quasi-injective, then for all n € Z, M(n) is quasi-injective =
S—1(M(n)) is quasi-injective for all n € Z, so, there exists S~1(f(n)) € End(S~'(M(n)))
such that S~'(f(n n))is-1 (N(n)) = S71(f(n)). Or S71(f(n)) is surjective, then for all £ €
S~1(M(n)), there exists £ € S™1(N(n)) such that £ = [S~!(f(n))](¥), hence S=Y(f(n)) is
surjective, as S~H(M(n )) is hopfian, thus S—1(f)(n) € Aut(S—1(N(n))) for all n € Z. We
deduce that S~!(f(n)) is a monomorphism of S~1(N(n)) into S~(M(n)), for all n € Z.
Consequentely, S~!(f.) is an isomorphism of chain complex.

Theorem 17.

Let M be a graded left A-module, N a graded submodule of M, S a saturated multiplicative
part formed by the non-zero homogeneous elements of A verifying the left Ore conditions. M,
the quasi-projective complex sequence associated with M and N, a superfluous and completely
invariant complex sub-sequence of M,. Then the complex morphism sequence of left S~1(A)-
-modules S~Y(N,) is hopfian if, and only if, S~'(M,/N,) the complex sequence associated
with S~Y(M/N) is hopfian.

Proof.
Suppose that S_I(M*/N*) is hopfian and let f, : My, — M, an epimorphism.
As ST1(N,) is completely invariant, then Vn € Z, [S_l(f(n))](S_l(N(n))) cS- ( (n))
implies that S~1(f(n ))mducesaneplmorphlsmS LA)(n): STY M (n)/N(n)) — S~HM(n)/N(n)),
since S™1(M,/N,) is hopﬁan then S~'(f)(n) is an automorphism. Put S~'(K (n)) =
ker(S71f(n)) and S~Y(x(n)) : S™HM(n)) — S~Y(M(n)/N(n)) the canonical projec-

tion, we have :

STHA(n) o [STH()ISTH K (n)) = [STH(m(n) o f(n)))(K) =0
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Indeed, VZ € ST'(K(n)), we have :
(S7L(F(n) o m(n n)I(§) =[S~ (m(n)o f ( m)I(5); s B

(S~ (w(n) o f()](2) =[S (m(n))) (F22) = [S_ (m(n)](§) =0, thus [S~H(ST'(f)(n) o
W(nl)l)](K) = 0.

1S71(F(n) om(m) (K () = [S~1(x(n) o F)I(K (n)) = 0 = [S~L(Fm)](x(m) (K (n)) =
0= [S7(x(n))](K(n)) C STHN(n)) = S™H(K(n)) C STH(N(n))

Since M, is quasi- projective => S~ M, quasi-projective, there exists an endomorphism
S (s(n)) : STH(M(n)) — S~H(M(n)) such that S~1(f(n) o s(n)) = S~ (id(n)s-1(ri(n)));
this implies S~Y(M(n)) = S~YK(n) ® Ims(n)), or K(n) = N(n) and S™1(N(n)) is
superfluous in S~Y(M(n)),Vn € Z, then S71(M(n)) = S~1(Ims(n)), so S™HK(n)) =
ker(S7(f)(n)) = 0,Vn € Z, thus S~*(f(n)) is a monomorphism, Vn € Z

finally, S~1(f,) is a monomorphism, so S~!(M,) is hopfian.

Reciprocally,

If S—Y(M,) is hopfian, show that S~!(M,/N,) is hopfian.

Let S7Y(p(n)) : S7Y(M,/N.,) — S~1(M,/N.) an epimorphism of chain complex, as
S~1(M,) is quasi-projective, then ¥n € Z, S~ (M (n)) is quasi-projective. Consider S~*(7(n)) :
S~ M(n)) — S~Y(M(n)/N(n)), then there exists S~1(f(n)) € End(S~'(M(n))) such

S
then S~H(M) = S~H(Im(f)(n))+S~1(N(n), as STLH(N(n)) is superfluous, then S~H(Im(f)(n)) =
S=Y(M(n)) = S~ (f(n)) is an epimorphism. So, S~!f(n) is an automorphism, because
S=Y(M(n)) is hopfian for all n € Z.

So the restriction of S~(f(n)) over ST1(N(n)) is an automorphisme of S~!(N(n)).
If[S7He)()](5) = [STHF)I(E) =0, then STH(f(n))I(5) € STH(N(n)), or STH(N(n))

is completely invariant, then £ € S™!(N(n)),s0o £ =0 = ker(S~'(¢(n))) = S~ (N(n)) =

0 = S7(¢(n)) is a monomorphism = ¢(n) is an automorphism for all n € Z, lastly
S=Y(M(n)/N(n)) is hopfian for all n € Z, hence S~!(M,/N,) is a hopfian complex se-
quence.
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