A Note on the (Weighted) Bivariate Poisson Distribution
DOI:
https://doi.org/10.29020/nybg.ejpam.v14i1.3895Keywords:
Keywords, generalized Poisson distribution, convergence in distribution, conditional ditribution, generalized bivariateAbstract
In the recent statistical literature, the univariate Poisson distribution has been generalized by many authors, among them: the univariate weighted Poisson distribution [13], the generalized univariate Poisson distribution [7], the bivariate Poisson distribution according to Holgate [11], the bivariate Poisson distribution according to Lakshminarayana, Pandit and Srinivasa Rao [15], the bivariate Poisson distribution according to Berkhout and Plug [4], the bivariate weighted Poisson distribution according to Elion et al. [8] and the generalized bivariate Poisson distribution according to Famoye [9]. In this paper, We highlight the weighted bivariate Poisson distribution and show that it is the synthesis of all the bivariate Poisson distributions which, under certain conditions, converge in distribution towards the bivariate Poisson distribution according to Berkhout and Plug [4] which can be considered like the standard distribution in N2 as is the univariate Poisson distribution in N.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.