Note on Irreducible Polynomials over Finite Field

Authors

  • Amara Chandoul ISIMS-Sfax-Tunisia
  • Alanod M. Sibih Department of Mathematics Jamoum university college, umm al-qura university, saudi Arabia

DOI:

https://doi.org/10.29020/nybg.ejpam.v14i1.3898

Keywords:

Finite fields, Irreducible polynomials, Vi\'ete theorem.

Abstract

In this note we extend an irreducibility criterion of polynomial over finite fields. We prove the irreducibility of the polynomial P(Y ) = Y n + λn−1Y n−1 + λn−2Y n−2 + · · · + λ1Y + λ0, such that λ0 6= 0, deg λn−2 = 2 deg λn−1 + l > deg λi , for all i 6= n − 2 and odd integer l.

Downloads

Published

2021-01-31

Issue

Section

Nonlinear Analysis

How to Cite

Note on Irreducible Polynomials over Finite Field. (2021). European Journal of Pure and Applied Mathematics, 14(1), 265-267. https://doi.org/10.29020/nybg.ejpam.v14i1.3898