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1. Introduction

The double exponential distribution was first published as Laplace’s first law of error in

the year 1774 and stated that the frequency of an error could be expressed as an exponential

function of the numerical magnitude of the error, disregarding sign.

This distribution comes up as a model in many statistical problems. It is also considered

in robustness studies, which suggests that it provides a model with different characteristics
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than other symmetric distributions. In particular, the tails are thicker than those of the normal

distribution, but not as thick as the Cauchy distribution. This distribution has not gained much

exposure, possibly partly due to a lack of available statistical techniques and partly due to the

sharpness of the peak. Many applications are concerned with tail probabilities and the double

exponential distribution would be a good choice when exponential tails are required.

The skewed double exponential distribution (SDE), proposed here, is a good addition to

the family of skewed distributions in the sense that, like the skew normal distribution, it is

a skewed distribution that possesses many of the properties that symmetric distributions do,

while at the same time, being skewed, provides a better fit to real life data that is seldom

symmetric in nature.

There are many SDE type random variables in literature including those introduced by

McGill(1962), Holla and Bhattacharya(1968), Lingappaiah(1988), Poiraud-Cassanova and

Thomas-Agnan(2000), Hinkley and Revankar(1977), and Kozubowski and Podgórski(2000)

to name a few. One of the approaches that we take in this paper is to look at the mixture of a

double exponential random variable and an exponential random variable. The other approach

is similar to that of Azzalini(1985) in generating skew normal random variables. There are

advantages and disadvantages to both models as will be evident in later sections of this paper.

Section 2 deals with preliminary results necessary for results in this paper. Section 3 talks

about the SDE1 distribution and its various representations. Section 4 discusses the SDE2

distribution and its characterization in terms of the double exponential distribution.

2. Preliminary Results and Definitions

Definiton 1. Consider a random variable U distributed as a double exponential distribution

(U ∼ DE(η,θ)) if it has probability density function(p.d.f.) given by

fU (u) =
1

2θ
e|u−η|/θ , u ∈ R.
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where η ∈ R and θ > 0. The corresponding cumulative distribution function(c.d.f.) is given

by

FU(u) =







1

2
e(u−η)/θ i f u< η

1− 1

2
e−(u−η)/θ i f u≥ η

Note that if U ∼ DE(0,1), then V = θ(U) +η has a double exponential (η,θ) distribution,

i.e V ∼ DE(η,θ). As a special case, let U be a standard double exponential (DE) random

variable, i.e U ∼ DE(0,1). Then, |U | is distributed as |U | ∼ E x p(1).

There are two approaches taken in generating the SDE random variables. The first (SDE1)

involves the scaled mixture of exponential and double exponential random variables. The

second (SDE2) deals with the product of the p.d.f. and scaled c.d.f. of the double exponential

distribution(DE(0,1)). The following sections treat each of the two methods in detail.

3. The SDE1 Distribution : Definition and Stochastic Representation

In this section, we present the distribution function of the different models of the skewed

double exponential(SDE1) distribution.

Theorem 3.1. Consider two i.i.d random variables U,V distributed as DE(0,1). Then, the ran-

dom variable Y defined as a|U |+ bV , for a > 0 , b ∈ R+ , a 6= b is defined to be distributed as

SDE1(a, b) and has the c.d.f.

FY (y) =







b

2(a+b)
e y/b, i f y < 0

1+ a2

b2−a2 e−y/a − b

2(b−a)
e−y/b, i f y ≥ 0

and it’s p.d.f. is given by

fY (y) =







e y/b

2(a+b)
, i f y < 0

e−y/b

2(b−a)
− a

(b2−a2)
e−y/a, i f y ≥ 0 .

If a = b, then the c.d.f. is

FY (y) =







1

4
e y/a, i f y < 0

1− �3a+2y

4a
e−y/a
�
, i f y ≥ 0
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and it’s p.d.f. is given by

fY (y) =







e y/a

4a
, i f y < 0

� a+2y

4a2

�
e−y/a, i f y ≥ 0 .

Proof. We give a proof that is similar to the one given by Henze(1986). Consider

P[Y ≤ y] =

∫ ∞

0

P[V ≤ y − au

b
] · f|U |(u) du

=

∫ ∞

0

�∫ y−au

b

−∞

1

2
e−|v| dv

�

e−u du. (3.1)

If y < 0, then, since a > 0 and the support of |U | is (0,∞), y − au

b
< 0 ,∀u. Hence, (1)

becomes

P[Y ≤ y] =

∫ ∞

0

�∫ y−au

b

−∞

1

2
ev dv

�

e−u du

=
b

2(a+ b)
e y/b , y < 0.

On the other hand, if y ≥ 0, then either
y − au

b
< 0 for u > y/a or

y − au

b
> 0 for u < y/a.

So, (1) is equivalent to

P[Y ≤ y] =

∫ y

a

0

�1

2
+

∫ y−au

b

0

1

2
e−v dv
�

e−u du

︸ ︷︷ ︸

(i)

+

∫ ∞

y

a

�∫ y−au

b

−∞

1

2
ev dv

�

e−u du

︸ ︷︷ ︸

(ii)

. (3.2)
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Consider :

(i) =

∫ y

a

0

1

2
e−u du+

∫ y

a

0

∫ y−au

b

0

1

2
e−v dv e−u du

=
1

2

�
1− e−y/a
�
+

∫ y

a

0

1

2

�
1− e−

y−au

b

�
e−u du

= 1− e−y/a − b

2(b− a)
e−y/b +

b

2(b− a)
e−y/a. (3.3)

Also,

(ii) =

∫ ∞

y

a

�∫ y−au

b

−∞

1

2
ev dv

�

e−u du

=
b

2(a+ b)
e−y/a. (3.4)

Adding the right hand sides of (3) and (4), as required by (2), we get via some elementary

algebra that the c.d.f. of the SDE1(a, b) is as follows:

FY (y) =







b

2(a+b)
e y/b, i f y < 0

1+ a2

(b2−a2)
e−y/a − b

2(b−a)
e−y/b, i f y ≥ 0 .

(3.5)

Differentiating (3.5) with respect to y, we get the p.d.f. of an SDE1(a, b) random variable to

be

fY (y) =







e y/b

2(a+b)
, i f y < 0

e−y/b

2(b−a)
− a

(b2−a2)
e−y/a, i f y ≥ 0 .

A similar approach can be taken in the case when a = b to find the c.d.f. and p.d.f. of the

SDE1(a, b) random variable.

Note. In the above theorem the value of "b" is restricted to the positive half line. Since

V ∼ DE(0,1), bV
d
= −bV . Thus, we can restrict our attention to the case when b ≥ 0 as the

results will be the same when b < 0.
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The following result given by Theorem(3.2) is obtained by using the fact that

FYa,b
(y) = P(a|U |+ bV ≤ y) = P(−a|U |+ bV ≥ −y) = 1− FY−a,b

(−y)

and the result of Theorem(3.1).

Theorem 3.2. Consider two i.i.d random variables U,V distributed as DE(0,1). Then, the ran-

dom variable Y defined as a|U |+ bV , for a < 0 , b ∈ R+ , a 6= −b has the c.d.f.

FY (y) =







b

2(a+b)
e y/b − a2

b2−a2 e−y/a, i f y < 0

1− b

2(b−a)
e−y/b, i f y ≥ 0

and it’s p.d.f. is given by

fY (y) =







e y/b

2(a+b)
+ a

(b2−a2)
e−y/a, i f y < 0

e−y/b

2(b−a)
, i f y ≥ 0 .

If a = −b, then the c.d.f. is

FY (y) =







�3a+2y

4a

�
e−y/a, i f y < 0

1− 1

4
e y/a, i f y ≥ 0

and it’s p.d.f. is given by

fY (y) =







−� a+2y

4a2

�
e−y/a, i f y < 0

− 1

4a
e y/a, i f y ≥ 0 .

Corollary 3.1. Consider the random variable Y as defined in Theorem 3.1. Then the random

variable X defined as X = θ(Y ) + (a+ b)η, for a > 0 , b ∈ R+ with a 6= b has c.d.f.

FX (x) =







b

2(a+b)
e

x−(a+b)η

bθ , i f x < (a+ b)η

1+ a2

(b2−a2)
e−

x−(a+b)η

aθ − b

2(b−a)
e−

x−(a+b)η

bθ , i f x ≥ (a+ b)η

and it’s p.d.f. is given by

fX (x) =







1

2θ (a+b)
e

x−(a+b)η

bθ , i f x < (a+ b)η

1

2θ (b−a)
e−

x−(a+b)η

bθ − a

θ (b2−a2)
e−

x−(a+b)η

aθ , i f x ≥ (a+ b)η .
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If a = b, then the c.d.f. is given by

FX (x) =







1

4
e

x−2aη

aθ , i f x < 2aη

1− � a(3θ−4η)+2x

4aθ

�
e−

x−2aη

aθ , i f x ≥ 2aη

and it’s p.d.f. is given by

fX (x) =







1

4aθ
e

x−2aη

aθ , i f x < 2aη

� a(θ−4η)+2x

4a2θ 2

�
e−

x−2aη

aθ , i f x ≥ 2aη .

Y is said to have a skewed double exponential distribution with parameters η and θ , i.e Y ∼
SDE1(a, b,η,θ).

Proof. The proof of this assertion is an exercise in transformations of random variables. We

are transform the variable Y as in Theorem 3.1 and Theorem 3.2 to
Y − (a+ b)η

θ
. The trans-

formed random variable will have the appropriate c.d.f. and p.d.f. as mentioned in the state-

ment of the corollary.

In the case when a < 0 in the above Corollary, we have the following corollary to Theorem

3.2, which we state without proof.

Corollary 3.2. Consider the random variable Y as defined in Theorem 3.1. Then the random

variable X defined as X = θ(Y ) + (a+ b)η, for a < 0 , b ∈ R+ with a 6= −b has c.d.f.

FX (x) =







b

2(a+b)
e

x−(a+b)η

bθ − a2

(b2−a2)
e−

x−(a+b)η

aθ , i f x < (a+ b)η

1− b

2(b−a)
e−

x−(a+b)η

bθ , i f x ≥ (a+ b)η

and it’s p.d.f. is given by

fX (x) =







1

2θ (a+b)
e

x−(a+b)η

bθ + a

θ (b2−a2)
e−

x−(a+b)η

aθ , i f x < (a+ b)η

1

2θ (b−a)
e−

x−(a+b)η

bθ , i f x ≥ (a+ b)η .

If a = −b then the c.d.f. is given by

FX (x) =







� a(3θ−4θ+2x

4aθ

�
e−

x−2aη

aθ , i f x < 2aη

1− 1

4
e

x−2aη

aθ , i f x ≥ 2aη
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and it’s p.d.f. is given by

fX (x) =







−� a(θ−4η)+2x

4a2θ 2

�
e−

x−2aη

aθ , i f x < 2aη

− 1

4aθ
e

x−2aη

aθ , i f x ≥ 2aη .

In Fig.1 through Fig.4, graphs of the SDE1(a, b) density functions are presented for a =

−90,−20,−5,5,20,90 and b = .1,1,10,50. Fig.1 deals with the graphs of SDE1(a, b) density

functions when a = −90 while Fig.2 deals with the case when a = −20,−5. Fig.3 portrays

the case when a = 5,20 and Fig.4 deals with the case when a = 90.

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.002

0.004

0.006

0.008

0.01

0.012

a=-90,b=.1
a=-90,b=1
a=-90,b=10
a=-90,b=50

Figure 1: Graphs of the SDE1(a, b) density fun
tion for a=-90 and b = .1,1,10,50.
Remark 3.1. Appealing to the fact that the measure of skewness of a distribution is invariant

to changes of scale, we can reparametrize the mixing parameters a and b to
a

a2 + b2
and

b

a2 + b2
. If we substitute the variable "c" for

a

a2 + b2
, we obtain that

b

a2 + b2
=
p

1− c2.
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Notice that the variable c is now bounded between -1 and 1. This model is easier to use in

estimating the skewness as it has the advantage of having one less parameter. We present the

c.d.f. and p.d.f. of this model in the following theorem.

Theorem 3.3. Consider two i.i.d random variables U,V distributed as DE(0,1). Then, the ran-

dom variable Y defined as c|U |+
p

1− c2V , for −1< c < 1.

If 0< c < 1 , c 6=
p

1/2, then Y has c.d.f.

FY (y) =







p
1−c2

2(c+
p

1−c2)
e y/
p

1−c2
, i f y < 0

1+ c2

1−2c2 e−y/c −
p

1−c2

2(
p

1−c2−c)
e−y/
p

1−c2
, i f y ≥ 0

and it’s p.d.f. is given by

fY (y) =







e y/
p

1−c2

2(c+
p

1−c2)
, i f y < 0

e−y/
p

1−c2

2(
p

1−c2−c)
− c

(1−2c2)
e−y/c , i f y ≥ 0 .

If −1< c < 0 , c 6= −
p

1/2, then Y has c.d.f.

FY (y) =







p
1−c2

2(c+
p

1−c2)
e y/
p

1−c2 − c2

1−2c2 e−y/c , i f y < 0

1−
p

1−c2

2(
p

1−c2−c)
e−y/
p

1−c2
, i f y ≥ 0

and it’s p.d.f. is given by

fY (y) =







e y/
p

1−c2

2(c+
p

1−c2)
+ c

(1−2c2)
e−y/c , i f y < 0

e−y/
p

1−c2

2(
p

1−c2−c)
, i f y ≥ 0 .

If c =
p

1/2, then Y has c.d.f.

FY (y) =







1

4
e
p

2y , i f y < 0

1− �3+2
p

2y

2
p

2

�
e−
p

2y , i f y ≥ 0

and it’s p.d.f. is given by

fY (y) =







1

2
p

2
e
p

2y , i f y < 0

�1+
p

2yp
2

�
e−
p

2y , i f y ≥ 0 .
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If c = −
p

1/2, then Y has c.d.f.

FY (y) =







�3−2
p

2y

4

�
e
p

2y , i f y < 0

1− 1

4
e−
p

2y , i f y ≥ 0

and it’s p.d.f. is given by

fY (y) =







�1−2
p

2y

2
p

2

�
e
p

2y , i f y < 0

1

2
p

2
e−
p

2y , i f y ≥ 0 .

Remark 3.2. Notice that the proofs of the above theorems mirror the proofs of Theorem 3.1

and Theorem 3.2 respectively. Further, the generalizations that were made following Theo-

rem 3.1 and Theorem 3.2 can also be made in this incarnation of the SDE1 distribution.

4. The SDE2 Distribution : Definition and Stochastic Representation

Azzalini(1985) introduced the skew-normal distribution, i.e ( fY (y) = 2φX (y)ΦX (λy))

where φ and Φ represent the standard normal p.d.f. and c.d.f. respectively. Although credit

is given to Azzalini, Roberts(1966) had already used this distribution in studying twin data.

Gupta, Nguyen and Sanqui(2004) have given a characterization of this distribution. Azzalini

however, introduced a way to "skew" symmetric distributions by considering similar products

of p.d.f.’s and c.d.f.’s of symmetric distributions. Also see Gupta et al.(2002) and Gupta and

Chang(2003). We can utilize Azzalini’s method to produce the SDE2 distributions.

Before presenting the c.d.f. and p.d.f. of the SDE2 distribution, we state the following

(Azzalini(1985), Gupta et. al.(2002))

Lemma 4.1. Let f be a density function symmetric about 0, and G an absolutely continuous

distribution function such that G’ is symmetric about 0. Then,

2 f (y)G(λy) (−∞< y <∞) (4.1)

is a density function for any real λ.
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The above result is used in the proof of the following result.

Theorem 4.1. Gupta et al. (2002) Consider a random variable X ∼ DE(0,1). Then, the

variable Y with p.d.f. defined as fY (y) = 2 fX (y)FX (λy), for λ ∈ R has the p.d.f. given by

fY (y) =
1

2
e−|y|
�
1+ si gn(λy)(1− e−|λy|)

�

If Y has the form above, we will say Y ∼ SDE2(λ).

Graphs of the SDE2(λ) density function for values of λ = −100,−50,−10,−1,1,10,50,100

are given in Fig. 5.

Definiton 2. Generator of SDE2(λ).

A distribution function F is said to be a generator of the SDE2(λ) distribution if the function

2 f (·)F(λ·), where f (·) is the p.d.f. of the distribution function F , is the density function of

the SDE2(λ) distribution.

The following theorem is a statement of the uniqueness of the generator of the SDE2(λ) family

of distributions.

Theorem 4.2. The double exponential distribution is the unique generator of the SDE2(λ) dis-

tribution.

Proof. Let F be a generator of the SDE2(λ) family with p.d.f. f , that is 2 f (x)F(λx) = g(x),

for all λ, where g(x) is the p.d.f. of the SDE2(λ) distribution.

Consider first the case when x < 0.

Then,

2 f (x) F(λx) = 2
�1

2
ex
� �1

2
eλx
�

⇒ 4 f (x)

ex
=

eλx

F(λx)
. (4.2)

Since
4 f (x)

ex
=

eλx

F(λx)
, none of the terms in the above expression depend on λ. Hence, we

can set
4 f (x)

ex
=

eλx

F(λx)
= c(x), where c(x) is a function of x only. Further, without loss of

generality, we can set λ= 1. Now, (4.2) leads to the following equations.
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f (x) =
c(x) ex

4
(4.3)

F(x) =
ex

c(x)
. (4.4)

Taking derivatives of (4.4) with respect to x , we get

f (x) =
c(x) ex − ex c′(x)

(c(x))2
. (4.5)

Equating (4.3) and (4.5), we get

c(x) ex

4
=

c(x) ex − ex c′(x)
(c(x))2

. (4.6)

Solving the above differential equation, we get that

c(x) =
ex

q

e2x

4
+ c

(4.7)

where c is a constant. Using the value of c(x) obtained in (4.7) in (4.4), we get that

F(x) =

r

e2x

4
+ c.

Taking limits as x →−∞, we get

lim
x→−∞ F(x) =

p
c. (4.8)

Then, from (4.8) and (4.7), c = 0 and c(x) = 2. Hence, from (4.3), f (x) =
1

2
ex .

Now, if x > 0, then

2 f (x) F(λx) = 2
�1

2
e−x
� �

1− 1

2
e−λx
�

⇒ 2 f (x)

e−x
=

2− e−λx

2
F(λx). (4.9)

Again, for the same reasons as above, we can set
2 f (x)

e−x
=

2− e−λx

F(λx)
= c(x), where c(x) is a

function of x only. Further, without loss of generality, we can set λ= 1.

(4.9) leads to the following equations.
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f (x) =
c(x) e−x

2
(4.10)

F(x) =
2− e−x

2c(x)
. (4.11)

Taking derivatives of (4.11) with respect to x , we get

f (x) =
c(x) e−x − (2− e−x ) c′(x)

2(c(x))2
. (4.12)

Equating (4.10) and (4.12), we get

c(x) e−x

2
=

c(x) e−x − (2− e−x) c′(x)
2(c(x))2

. (4.13)

Solving the above differential equation, we get that

c(x) =
2− e−x

p

−e−x(4− e−x ) + c
(4.14)

where c is a constant. Using the value of c(x) obtained in (4.14) in (4.11), we get that

F(x) =

p

−e−x (4− e−x ) + c

2
. (4.15)

Taking limits as x →∞, we get

lim
x→∞ F(x) =

p
c

2
.

Then, from (4.16) and (4.14), c = 4 and c(x) = 1. Hence, from (4.10), f (x) =
1

2
e−x .

Thus, f (x) = 1

2
e−|x |, and F is a DE(0,1) distribution. Hence, the DE(0,1) is the unique

generator of the SDE2(λ) distribution.

The direct simulation of random variables from the SDE2 distribution tends to be prob-

lematic due to the difficulties with inversion of the c.d.f. In order to simulate a SDE2 random

variable with ease, we present the following stochastic representation.

Theorem 4.3. Let X be a random variable with c.d.f. FX and p.d.f. f . Suppose V = |X | with

c.d.f. GV and p.d.f. g. Define the variable S|V by

S|V =







−1, with probability 1− FX (λv)

1, with probability FX (λv) .

(4.16)

Then, the random variable Y = (S|V )V is distributed as SDE2.
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Proof. Consider

P(Y ≤ y) =

∫ ∞

0

FS|V (y/v) g(v) dv

=

∫

y/v<−1

0 · g(v) dv+

∫

−1≤y/v<1

(1− FX (λv)) · g(v) dv

+

∫

y/v≥1

1 · g(v) dv. (4.17)

If y > 0, then y/v > 0. Then the condition −1≤ y/v < 1 is equivalent to 0≤ y/v < 1, which

in turn is equivalent to v > y. The condition y/v ≥ 1 is then equivalent to v ≤ y. So, (8)

becomes

P(Y ≤ y) =

∫ y

0

1 · g(v) dv+

∫ ∞

y

(1− FX (λv)) · g(v) dv.

Taking derivatives on both sides of the above equation, we get

d

d y
P(Y ≤ y) = g(y)− [g(y)− FX (λy) · g(y)]

= g(y)FX (λy).

Recall that V = |X |. Hence, g(y) = 2 f (y) and we get that fY (y) = 2 f (y)F(λy). So, in the

case when y > 0, Y ∼ SDE2(λ).

If y < 0, then y/v < 0. Then the condition y/v ≥ 1 is never satisfied and the condition

−1≤ y/v < 1 is equivalent to v ≥ −y. So, (8) becomes

P(Y ≤ y) =

∫ ∞

−y

(1− FX (λv)) · g(v) dv.

Taking derivatives on both sides again, we get

d

d y
P(Y ≤ y) = −�1− FX (−λy)

� · g(−y).

Again, −g(−y) = g(y) = 2 f (y) since f (.) is a symmetric p.d.f. Also,

1− F(−λy) = F(λy) and so, fY (y) = 2 f (y)F(λy) and Y ∼ SDE2(λ).
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Note. The above theorem is helpful in obtaining a stochastic representation of any symmetric

distribution function F , that we wish to use as a generator of a skewed family of distributions.
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Figure 2: Graphs of the SDE1(a, b) density fun
tion for a=-20, -5 and b = .1,1,10,50.



K. Jagannathan, A. Gupta, and T. Nguyen / Eur. J. Pure Appl. Math, 2 (2009), (1-20) 17

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

a=5,b=.1
a=5,b=1
a=5,b=10
a=5,b=50

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

a=20,b=.1
a=20,b=1
a=20,b=10
a=20,b=50

Figure 3: Graphs of the SDE1(a, b) density fun
tion for a=5,20 and b = .1,1,10,50.
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Figure 4: Graphs of the SDE1(a, b) density fun
tion for a=90 and b = .1,1,10,50.
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Figure 5: Graphs of the SDE2(λ) density fun
tion for λ =−100,−50,−10,−1, 1, 10, 50, 100.
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