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On the E-infinity algebras
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Abstract. In this paper we study an elementary use of E-infinity modules and E-infinity algebras
as together they have a use in terms of describing triangulated categories. Also, we show an
interpretation of E-infinity algebras where the modules are fibrant objects within the categories of
differential graded co-algebras and co-modules.
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1. Introduction

An operad homology theory appeared in Mays investigation of iterated loop spaces in
[11]. The operad model has some properties of the operations there in, for example, com-
mutativity and associativity encoded in every operad as realized by the algebra involved.
The classification of the DG-modules over ring k is defined by dg-mod. Examples of al-
gebra over the operads in dg-mod include A∞-algebras and E∞-algebras generalizing the
concept of associativity and commutativity.An E∞-algebra is a DG-module with multipli-
cation present which is the associativity and commutativity up to all higher homotopies.
An example of E∞-algebras corresponding to n = ∞ has been given in [1].We present
the essential explanations and meaningsof E∞-algebras, E∞-modulesand their fundamen-
tal properties in this study. This is in addition to the presentation of aderived category,
finishing up with the depiction of triangulated classes using E∞-algebras.
We present an understanding of E∞-algebras and E∞-modules as the fibrant objects in
the category of the model of certain DG-co-algebras (co-modules) following [9]. From the
idea of [9], we provide conceptual construction of the E∞-functor categories and use it
to construct the canonical bi-algebra structure of the cobar-construction of the simplicial
complex of an associative algebra.
In the second section, we will present the definition of E∞-algebra with some examples
and study some theories and properties of it.
In the third part: we explain the idea of co-algebras and the bar-cobar construction. This
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is followed by some relationships and examples.
The fourth section is concerned with the study of morphisms and relationships in E∞-
algebra.
In the fifth section, we will discuss some important theories in E∞-algebra with its proof,
and we will also present examples as an application.

2. Mathematical background

We start by briefly recalling the fundamental definitions of E∞-algebras and E∞-
modules. This is to build up a picture of the different relations between them. We‘ll
provide and concentrate on the interpretation of the fibrant objects of the E∞-algebras as
in the model category of the differential graded co-algebras. For a gentler introduction,
see [3], [2] and [10].
For the associated absolute field, we have used F . Since W is denoted as the graded vector
space, i.e. W = ⊗

p∈Z
Wp,we define SW or W[1] as the graded space with (SW)p = Wp+1

for each p ∈ Z. SW is the shift of W.

Definition 1. [12]
An operad = is comprised of a symmetric monoidal category as part of a collection
=(j)j≥0. Each =(j) is enriched by the activity of the symmetric group, Σj and that of
the morphisms.

γs,r1,r2,··· ,rs : =(s)⊗=(r1)⊗ · · · ⊗ =(rs) −→ =(r1 + · · · rs) (1)

for every decision of the components; s, r1, · · · , rs ≥ 0, to the associativity and unit axioms,
are fulfilled.
An E∞ F-algebra A is a graded space with a map, θj : =(j) ⊗ (SA)(j) −→ (SA) and
unit, η : x −→ A to such an extent that the clear associativity, commutativity and the unit
diagrams are commutative.

Example 1. [2]
A graded space A = M[ε]/(ε2) with the trivial A-infinity structure given by map m2 by
multiplication ofM, since the maps mn = 0 for each value n 6= 2, whereM is the ordinary
algebra for N ≥ 1 and ε be uncertain of degree (2 −N). We characterize the linear map
f :M⊗N −→M and the deformed multiplication,

m
′
n =

{
mn n 6= N

mN + εf n = N

}
A endowed with m

′
n is A-infinity algebra if and only if f is Hochschild cocycle for M.

Definition 2. A weak E∞-F-algebra A is the graded space with map, θ0 : =(j) ⊗ x −→
(SA), θj , j ≥ 0. The morphisms, f : A −→ B of E∞-algebras are the maps θn : =(j) ⊗
(SA)(n) −→ (SA) homogeneous of the degree zero with the ultimate objective that, ∀ n ≥ 1
we get; ∑

i+j+l=n

fi+1+l ◦ (1⊗i ⊗ bj ⊗ 1⊗l) =
∑

i1+···+is=n
bs ◦ (fi1 ⊗ · · · ⊗ fis) (2)
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For any two morphisms (f, g) as (f ◦ g) is given as,

(f ◦ g)j =
∑

i1+···+is=j
fs ◦ (gi1 ⊗ · · · ⊗ gis) (3)

Proposition 1. [10]
For each E-infinity algebra A, there is the universal E-infinity algebra morphism φ :
U(A) −→ A to a differential graded algebra U(A). Moreover, the morphism φ is an
E-infinity quasi isomorphism.

Proposition 2. If A be E-infinity algebra and f1 : A −→ V is a quasi-isomorphism (semi-
isomorphism) of complexes since V is the complex. Then the complex V admits a structure
of E-infinity algebra s.h. f1 extends to an E-infinity quasi-isomorphism f1 : A −→ V.

Theorem 1. If A is an E-infinity algebra, then H∗(A) admits an E-infinity algebra
structure since:
(1) b1 = 0, b2 is induced from bA2 ,
(2) The identity element in the homology is induced by the E-infinity quasi-isomorphism
A −→ H∗(A).
Note that E∞-quasi-isomorphism is trivial. If, b1 = 0 then E∞-algebra is minimal. The
minimal model of an E-infinity algebra A is the space H∗(A) endowed by the structure
provided by the theorem.

Definition 3. The Yoneda product is characterized between Ext-groups over general rings.
However, for algebras over fields, the presentation can be simplified using canonical resolu-
tions. For any associative algebra B with a unital, there is a projective resolution P −→M
and a right B-module M. Let the DG-endomorphism algebra A = HomB(P, P ) of P with
the nth part of A comprise of the graded object morphisms of degree n where its differential
is the super commutator with a differential of P . Thus, A is specifically an E-infinity alge-
bra with a minimal model. The homology HEn

∗ (A) is isomorphic for m2 to Ext∗B(M,M),
which is the Yoneda algebra.

Definition 4. Let A be the strict unit for an E-infinity algebra. It is an element, 1 ∈ E0,
which is the unit of m2 and such that, for n 6= 2, the map bn takes the value 0 when one of
its contentions rises to 1. HEn

∗ (A) is the homological unit for associative algebra A with
the multiplication induced by m2. Consequently, the Homological unitality is saved under
E-infinity quasi-isomorphism.

Proposition 3. Each homologically unital E-infinity algebra is E-infinity quasi-isomorphic
to a strictly unital E-infinity algebra. An E-infinity module over A is a spectrum M with
maps,

λj : =(j)× (Aj−1 ∧M) −→M (4)

that are λj, namely suitably, unital, associative, and equivalent.
An E-infinity module M is an F-module with the unital, equivariant, and associative
systems within the action maps

λj : =(j)⊗Aj−1 ⊗ SM −→ SM (5)
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That homogeneous of degree 1 is such that the identity of the definition 1 holds for j ≥ 1.
We define an ∞-algebra A as a module over itself.
The map of A-modules is semi-isomorphic if there is an actuating isomorphism on the
homology.

Definition 5. A derived category is characterized as the stable homotopic category of
spectra and signified by h̄=. If the map of spectra induces an isomorphism in the homotopy
groups, then it is weak equivalence and h̄= is constructed from a homotopy category of the
spectra by formally altering the weak equivalences.
The derived category of A-modules DA = h̄MA is constructed from the homotopy category
of A-modules by formally altering a semi-isomorphisms.

The exact triangle sequence, M f−→ N −→ Cf −→
∑
M prompts a triangulation of the

derived category, for a map f :M−→ N .

Definition 6. [9]
The derived category D∞(A) is the localization of the category E-infinity modules with
degree 0 morphisms regarding a class of a quasi-isomorphisms.
Note that, the objects of the derived category D∞(A) are E-infinity modules, and its mor-
phisms are obtained from the morphisms of E-infinity modules by formally rearranging
every single semi isomorphisms and, D(ModA) −→ D∞A.

Theorem 2. [11] The category of F-linear algebraiclly triangulated T with the split idem-
potent and the generator G. Then for m1 = 0, the structure of E-infinity algebra is as
follows:

A =
⊗
n∈ZHomT (G,G[n]) (6)

m2 is given as composition and that the functor;

T −→ Grmod(A,m2), U 7−→
⊗
n∈ZHomT (G,G[n])

wgich lifts to the triangle equivalence, T −→ per(A).

Definition 7. [8]
A cyclic fibration (co-fibration) is the map with fibration (co-fibration) and weak equiva-
lence.
A cofibrant object is a one of a kind morphism (φ −→ X ) from the underlying item that
is a co-fibration. The fibrant object is the special morphism (X −→ ∗) concerning the
terminal object which is a fibration.

Definition 8. The classes are supposed to satisfy the Quillen axioms as following:
(1) C Have limits and co-limits which is finite.
(2) If µ and γ are composable in C , and for any two of µ, γ and µ, γ are weak equivalences,
at that point also is the third.
(3) A The draw in the morphism’s category of C of a weak equivalence, fibration, or
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cofibration is individually a weak equivalence, fibration, or cofibration.
(4) The following commuting arrow diagram

A −→ X
i ↓ l↗ ↓ p
B −→ Y

(7)

with a cofibration i and a fibration p, if i or p is weak equivalence, then the lifting l exists
making both triangles commute.
Every morphism can be considered as (1) a cyclic cofibration taken after by a fibration,
and as (2) a cofibration took after by a cyclic fibration.

Definition 9. [12]
The morphisms (W ∩ fib) of W are called trivial fibrations. The morphisms in (W ∩ C)
of W called trivial cofibrations. Fibration involves the morphisms with privilege lifting
property for any trivial cofibrations and complex C of the morphisms with the left lifting
property concerning all trivial fibration. A left (right) legitimate model class is a one where
the weak equivalences are steady under push forward along cofibrations.

Example 2. [11]
The class on the form C = C+(ModA) of the left bounded complex

· · · −→ 0 −→ · · · −→ Xp −→ Xp+1 −→ · · ·

of right modules over the ring A.
For an arbitrary W be a class of a semi-isomorphisms C, the set of morphism i : X −→ Y
, ∀ in, n ∈ Z, is injective and fib is the set of morphisms p : X −→ Y with morphism
pn, n ∈ Z, is surjective. From [10], we get C is a model classification. Since C is the
underlying and the terminal protest, consequently the morphism 0 −→ X is dependably a
cofibration, since the morphism X −→ 0 is fibration iff the all components X n, n ∈ Z are
injective

X −→ 0
∼↘ ↗

I
(8)

For a self-assertive class C, an object X is fibrant if the morphism X −→ ∗ is a fibration.
Correspondingly, if the morphism φ −→ Y is a cofibration, then the object Y is cofibrant.
All complexes X are cofibrant and a complex Y is fibrant if and only if it has injective
parts.

In the following section, we study the co-algebras With examples illustrated.

3. Co-algebras and the cobar construction

In this part, we recall the idea of co-algebras and the bar-cobar construction. This is
followed by some relations and examples. The fundamental references are [13],[5] and [14].
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Definition 10. An algebraic operad comprises a gathering of the chain complexes, O(n), n ≥
0, an accumulation of a chain maps

γ : O(k)⊗O(j1)⊗ · · ·O(jK) −→ O(j1 + · · ·+ jk) (9)

An O-coalgebra is a chain complex C together with chain maps

θ : O(j)⊗ C −→ Cj

Where, O is an operad, fulfilling the conditions;
(i) Associativity: For

∑k
s=1 js = j, then the diagram;

O(k)⊗O(j1)⊗ · · ·O(jK)⊗ C γ⊗id
−→ O(j)⊗ C

↓ θ
id⊗ θ ↓ Cj

↑ θk
O(j1)⊗ · · ·O(jK)⊗ Ck −→

shuffle O(j1)⊗ · · ·O(jK)⊗ C

(10)

is commutes.
(ii) Unity: The accompanying diagram commutes:

R⊗ C ∼=
−→ C

γ ⊗ id ↓ ↗ θ
O(1)⊗ C

(11)

(iii) Equivariance: For a discretionary component σ ∈ Σj , the accompanying graph com-
mutes:

O(j)⊗ C σ⊗id
−→ O(j)⊗ C

θ ↓ ↓ θ
Cj −→

σ Cj
(12)

The morphism in O-coalgebras are the map commuting strictly with the above structure.
The class O-coalgebras will be referred to by CoAlgO.
We characterize W as the class semi-isomorphisms and Fib as the arrangement of sur-
jective morphisms. Consider (C ◦ f) as the set of morphisms i to such an extent that it is
present in each commutative square of strong bolts in Alg.

Definition 11. [7]
A graded coalgebra over K is graded K-module C with a comultiplication of degree 0, to
such an extent that the accompanying diagram commutes:

C 4
−→ C ⊗ C

4 ↓ ↓ 4
C ⊗ C 1⊗4

−→ C ⊗ C ⊗ C

this called co-associativit A coderivation on co-algebra is the map G : C −→ C satisfying
co-Leibnizs rule, that is, the accompanying diagram commutes:
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C G
−→ C

4 ↓ ↓ 4
C ⊗ C G⊗+1⊗G

−→ C ⊗ C

Definition 12. [4]
A DG-coalgebra is graded coalgebra with co-derivation P : C −→ C of degree (-1) such
that, P 2 = 0.

Example 3. The fundamental cause of an evaluated graded co-algebra is co-tensor co-
algebra of graded K-module:

T (V ) =
∞∑
n=0

V ⊗n (13)

The co-multiplication is formed as;

4(v1, · · · , vn) =

n∑
i=0

⊗(vi+1, · · · , vn) (14)

since (v1, · · · , vn) stands for v1 ⊗ · · · ⊗ vn.
So, for every graded co-algebra C and the linear map C −→ V , there is one of a kind
expansion to co-algebra map C −→ T (V ) with the end goal that the diagram;

C −→ T (V )
↓ ↓
V = V

is commutes.

Definition 13. [12]
A co-algebra C is a co-complete if the union of the compositions of the canonical projection
as the kernel’s maps

C −→ C⊗n −→ (CK )⊗n, n ≥ 2

with the iterated co-multiplication.

Definition 14. [11]
For the nth complex Hom•k(C,A) is n degree space of homogeneous K-linear maps f :
C −→ A and differential maps f to (d ◦ f − (−1)nf ◦ d). This complex turns into a
differential graded algebra for the convolution characterized by;

f ∗ g = µ ◦ (f ⊗ g) ◦ 4

The maps τ : C −→ A, which is homogeneous k-linear of degree 1, is twisting cochain if
it is homogeneous and fulfills

d(τ) + τ ∗ τ = 0, ε ◦ τ ◦ ε = 0 (15)
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Proposition 4. [14]
Define Tw(C,A) a class of the twisting cochains. Then for A ∈ Alg, the functor

C ◦ g −→ Sets, C 7−→ Tw(C,A)

is representable.

In the following section, we study the relation and morphisms in E∞-algebra and we
introduce the definition of Massy sequence and Massy product.

4. Basic statement on E-infinity algebras

In the current part,we consider the fundamental relations in the E∞-modules. The
augmented E∞-algebra is equipped with morphism ε : A −→ k.

Definition 15. [13]
The complex H•k(C,A) becomes an augmented E∞-algebra for the convolution operation;

bn(g1, · · · , gn) = bAn ◦ (g1 ⊗ · · · ⊗ g)n) ◦ 4(n) (16)

Where, 4(n) is iterate of taking values in ⊗n for a coalgebra ∈ ◦ g and an augmented

∞-algebra A.
Let ∞(, A) be the arrangement of all arrangement of the ”Maurer-Cartan equation”,∑

n≥1 bn(τ, · · · , τ) = 0

Proposition 5. [2]
B∞A is T c(SA) enriched with the one of a kind co-derivation whose composition with a
basic projection BA ↓ SA has the segments

bn : (SA)⊗n −→ SA, n ≥ 1 (17)

Example 4. Let A = TV , where V = k is concentrated with degree 1. Endow A with the
novel differential whose confinement to V ⊂ TV is

V = k∼−→k ⊗ k = V ⊗2 ⊂ TV (18)

Then A is the semi isomorphic to its sub-algebra k, which is fibrant-cofibrant.
If A was fibrant-cofibrant, then the inclusion k −→ TV should admit a left inverse up to
homotopy in the feeling of C. Since there are non-zero maps h : A −→ k with degree -1
such that ε◦h = 0, then A cannot be fibrant or cofibrant, since A is the cobra construction
on a non-complete dg-coalgebra.

Definition 16. A C-comodule is a chain complex D together with chains maps, λ : O(j)⊗
D −→ D ⊗ Cj−1 for O is an operad and C is an O-coalgebra, fulfilling the conditions:
(i) Associativity:

∑k
s=1 js = j, and
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O(k)⊗O(j1)⊗ · · ·O(jK)⊗D γ⊗id
−→ O(j)⊗ C

↓ θ
id⊗ λ ↓ D ⊗ Cj−1

↑ λ⊗ θk−1
O(j1)⊗ · · ·O(jK)⊗D ⊗ Ck−1 −→

shuffle O(j1)⊗D ⊗ · · ·O(jK)⊗ C

is commutes.
(ii) Unity: the accompanying outline commutes:

R⊗D ∼=
−→ D

γ ⊗ id ↓ ↗ θ
O(1)⊗D

(iii) Equivariance: Let σ ∈ Σj − 1 ⊂ Σj , then the accompanying outline is a commute:

O(j)⊗D σ⊗id
−→ O(j)⊗D

θ ↓ ↓ θ
D ⊗ Cj−1 −→

id⊗σ D ⊗ Cj−1

A morphism in C-comodules is a homeomorphism of abelian groups commuting with the
above structure, see [10].

Definition 17. For all classes of all right dg- A-modules and category dg −C-comodules
M . Then M is co-complete, M −→M ⊗ C̄⊗n, n ≥ 2 . Then the match

ModA
!⊗τ A ↑↓ !⊗τ C

ComcC

is a couple of adjoint functors.

Theorem 3. .
(i) The category ComcC concedes to a special structure of model category whose weak
equivalences are the morphisms f such that f ⊗τ A be a semi isomorphism and whose
cofibrations are injective morphisms.
(ii) The functors !⊗τ C and !⊗τ A induce semi-inverse equivalences

D(A)∼−→D(C)

since D(C) the localization of ComcC is regarding classes of weak equivalences.
By comparing the adjunction morphism, B∞A = C −→ BΩC = B∞(ΩC) to canonical E-
infinity morphism A −→ ΩB∞A, which is a semi-isomorphism which is universal among
the E-infinity morphisms from A to a dg-algebra, since A be an augmented E∞-algebra
and B∞A = C.

Definition 18. If we let U(A) = ΩB∞A, at that point there is canonical cyclic twisting
cochain τ : B∞(A) −→ U(A). From theorem 3 we have an equivalence
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D(U(A))∼−→D(B∞(A))

Definition 19. [6]
Assume that Mod∞A is the grouping of E∞-modules over AbMn , n ≥ 2 which are vanish
when one of the contentions is 1. The morphisms gn, n ≥ 2 are strictly unital (vanish if
the arguments is 1). This category is isomorphic to the order of all E-infinity modules
and all E-infinity morphisms (to more see [11]).
Suppose that M is in (Mod∞A). The datum of the arbitrary E-infinity module structure
over Ā and the datum of its strictly unital E-infinity module structure over A are equivalent
each to other. it is also equivalent to a co-module differential in the induced co-module
(M⊗B∞A). (B∞M) is the induced co-module supplied with the differential corresponding
to a given E-infinity module structure on M . The functor,

Mod∞A −→ ComcB∞(A),M −→ B∞M

exists.

Proposition 6. [1]
The functor M −→ B∞M induces the following equivalence:
(i) The equivalence onto subcategory fibrant (cofibrant) objects (ComcB∞(A))cf of ComcB∞(A).
(ii) (Mod∞A)/homotopy∼−→D(C).

Definition 20. [2]
The derived classification for a non-augmented E-infinity algebra D∞A, is the kernel of
the functor D∞(A+) −→ D∞(k), since A+ = A ⊕ k be the increased E-infinity algebra
obtained by adjoining k and the augmentation A+ −→ k yields a functor

Mod∞A
+ −→Mod∞k

Proposition 7. The cohomology H∗(M) is unital H∗(A)-module i.e. M includes a place
with the kernel iff M is homologically unital since A is homologically unital. The category
D∞(A) is compactly created a triangulated category and has the free A-module of the rank
one as a generator of the compact.

Definition 21. [9]
Let B be a differential polynormal algebra with,

B = B1 ⊃ B2 ⊃ · · · ⊃ Bn ⊃ · · · (19)

if a natural map f : B −→ B̂ is an isomorphism, then B is perfect algebra. Since B̂ is
polynormal algebra and given by; B̂ = limB/Bn.

Definition 22. Let the E∞-algebra A. Outline the Massy sequence (a2, · · · , an) of the
elements ai ∈ SA⊗i such that,

(π(2)⊗ · · · ⊗ 1 + 1⊗ · · · ⊗ π(2))(an) = 0

(π(3)⊗ · · · ⊗ 1 + 1⊗ · · · ⊗ π(3))(an) + (π(2)⊗ · · · ⊗ 1 + 1⊗ · · · ⊗ π(2))(an−1) = 0
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(π(n− 1)⊗ 1 + 1⊗ π(n− 1))(an) + (π(n− 2)⊗ 1 + 1⊗ (π(n− 2))(an−1) + · · ·+ (π(2)⊗
1 + 1⊗ π(2))(a3) = 0

and the Massy product is given by;

µ(a2, · · · , an) = π(2)(a2) + · · ·+ π(2)(an)

all parts in A are decomposable if they’re images of Massy product. And therefore, the
module of the indecomposable elements JA is that factor A concerning the decomposable
elements.

Definition 23. Let B be the graded E∞-algebra and F̂B is that the B-construction. From
the short exact sequence; 0 −→ F̂ 1Bi

−→F̂B
p
−→ −→ 0 we’ve got the long exact sequence;

· · · −→ Hn(F̂B)pn−→B
vn
−→Hn(F̂ 1B) −→ · · · (20)

with the projections; i : F̂ 1B −→ F̂B, p : F̂B −→ B. And for all x ∈ B, if x ∈ kervn :
B −→ Hn(F̂ 1B). Then x is a primitive element.

Now we can present the results that we studied to clarify important relationships of
morphisms in the homology and cohomology theory of E∞-algebra.

5. Main Result

Through our study of E∞-algebra and providing some definitions of perfect algebra
and primitive and indecomposable elements, we will study and prove the relationships
between them in the (co)homology theory through the following theories:

Theorem 4. Let A and NA are the perfect algebra and N -construction, respectively.
For the homology of NA, the space of the primitive elements PHn(NA) is isomorphic to
indecomposable elements space; PHn(NA) ∼= JA.

Proof. Since PHn(NA) is primitive space then;

PHn(NA) = Im{Hn(F̂Hn(NA)) 7−→ Hn(NA)}

since Hn(F̂NA) ∼= A, then PHn(NA) ∼= ImA −→ Hn(NA) ∼= JA.

Theorem 5. Consider JHn(FU) be the space of indecomposable components in Hn(FU),
wherever U is perfect algebra and PU be the primitive space. Then JHn(FU) ∼= PU .

Proof. For the indecomposable elements of E∞-algebra we tend to get;

JHn(FU) = Im{Hn(FU) −→ Hn(BHn(FU))}

since Hn(BHn(FU)) = U , we get

JHn(FU) ∼= Im{Hn(FU) −→ U} ∼= PA
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Theorem 6. For the ideal algebra U , and therefore the nth-homology Un = Hn(BA) is
the graded space with the approximation property. Then we get of Un = Hn(BA) in
E∞-algebra as, ∑

n≥0
πn( ¯q ⊗ · · · ⊗ q)π̄(n+ 2)(x) = 0, x ∈ K̄ (21)

Now we present some examples as an application to what we got as results from
previous theories.

Example 5. Consider perfect algebra U = =(m)
1 . For the cohomology Hn(U), we discover

the generator a1 ∈ H1(U) corresponding e1 ∈ =m1 and satisfy that,

πn−2(a1 ⊗ · · · ⊗ a2) = 0, 2 ≤ n ≤ m

and we get the even-dimensional of cohomologies have the generators an2 = a2 · · · a2 ∈
H2n(U) and isomorphic to C. However, the odd-dimensional cohomology has the genera-
tors an2 · pa1 ∈ H2n+1(A) and isomorphic to C.

Example 6. For the ideal algebra U = =(m)
1 and also the short exact sequence 0 −→

=(m)
1 −→ =1 −→ =m1 −→ 0, we discover that the cohomology H1(U) has generators

am+1, · · · , a2m+1 that like em+1, · · · , e2m+1 ∈ U and satisfy that;

am+1am+1 = 0,

am+1am+2 + am+2am+1 = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

am+1a2m+1 + · · ·+ a2m+1am+1 = 0,

π1(am+1 ⊗ am+1 ⊗ am+1) + am+2a2m+1 + · · ·+ a2m+1am+2 = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

6. Conclusion

We have studied the basic statements previously made on E-infinity modules and E-
infinity algebras. We also demonstrate an interpretation of the E-infinity algebras and
modules as fibrant objects within the category differential graded co-algebras and co-
modules. We have also presented new properties and examples to explain the idea.
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