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Forcing Subsets for γ∗tpw
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Abstract. In this paper, the lower and upper bounds of the forcing total dr-power domination
number of any graph are determined. Total dr-power domination number of some special graphs
such as complete graphs, star, fan and wheel graphs are shown. Moreover, the forcing total dr-power
domination number of these graphs, together with paths and cycles, are determined.
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1. Introduction

Let G = (V,E) be a graph representing the electrical power system, where a vertex
represents an electrical node and an edge represents a transmission line joining two electrical
nodes. In order to monitor the power system, some measurement devices must be placed
at selected locations so that all the state variables of the system can be measured. A Phase
Measurement Unit (PMU) is a measurement device placed on a vertex and has the ability
to measure the state of the vertex and the edges connected to the vertex. The vertices and
edges that are measured by PMU’s are said to be observed. In this study, it is necessary
that each vertex with PMU is adjacent to another vertex with PMU also. But because of
the high cost value of a PMU, it is desirable to minimize their number while maintaining
the ability to monitor the entire power system.

All graphs considered in this study are simple, undirected and without loops or multiple
edges.

Let G = (V (G), E(G)) be a graph and v ∈ V (G). The open neighborhood of v in
G is the set N(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is
the set N [v] = N(v) ∪ {v}. For X ⊆ V (G), the open neighborhood of X is the set
N(X) = ∪v∈XNG(v) and its closed neighborhood is the set N [X] = N(X) ∪X.

A set S ⊆ V (G) is a dominating set (resp. total dominating set) of G if N [S] = V (G)
(resp. N(S) = V (G)). The domination number γ(G) (resp. total domination number
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γt(G)) of G is the minimum cardinality of a dominating set (resp. total dominating set).
If S is a dominating set (resp. a total dominating set) with |S| = γ(G) (resp. |S| = γt(G)),
then we call S a γ-set (resp. a γt-set) of G.

Let G = (V,E) be a simple graph. Let P ⊆ V (G). An edge e = uv of G is directly
observed by P if u ∈ P or v ∈ P . A vertex u of G is directly observed if u is incident to a
directly observed edge. An edge e′ = xy is remotely observed by P if x, y /∈ P and x, y are
directly observed vertices or at least one of x and y is incident to k edges where k − 1 of
these edges are directly observed by P . Clearly, k is a positive integer, k > 1, and k is not
constant for any pair of vertices x and y. A non-directly observed vertex u of G which is
incident to a remotely observed edge is called remotely observed vertex. Let OP

V (G) be the
set of all directly and remotely observed vertices and OP

E(G) be the set of all directly and
remotely observed edges. Then P ⊆ V (G) is a dr-power dominating set (dr-pds) of G if
OP

V (G) = V (G) and OP
E(G) = E(G). The minimum cardinality of a dr-power dominating

set is called the dr-power domination number of G and is denoted by γ∗pw(G). A subset P
of V (G) with cardinality γ∗pw(G) is called a γ∗pw-set of G. A dr-power dominating set D is
said to be a total dr-power dominating set(tdr-pds) if the induced subgraph 〈D〉 has no
isolated vertex. The minimum cardinality of a total dr-power dominating set (tdr-pds) is
called the total dr-power domination number of G and is denoted by γ∗tpw

(G). A subset
T of V (G) with cardinality γ∗tpw

(G) is called a γ∗tpw
-set of G. Moreover, there exists a

connected graph G such that 2 ≤ γ∗tpw
(G) ≤ γt(G).

Let S be a γ∗tpw
-set of a graph G. A subset D of S is said to be a forcing subset for S if

S is the unique γ∗tpw
-set containing D. The forcing total dr-power domination number of S

is given by fγ∗tpw
(S) = min{|D| : D is a forcing subset for S}. The forcing total dr-power

domination number of G is given by

fγ∗tpw
(G) = min{fγ∗tpw

(S) : S is a γ∗tpw
-set of G}.

The join of two graphs G and H, denoted by G+H is the graph with vertex set

V (G+H) = V (G) ∪ V (H)

and edge set

E(G+H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

The total domination is studied by Amos [1]. Chartrand et al. [5] investigated
the relation between forcing and domination concepts and defined "forcing domination
number". Canoy, et al studied the following concepts: total dr-power domination [6], forcing
domination number of graphs under some binary operations [7], forcing total domination
number and forcing connected domination number under the lexicographic product of
graphs [8], forcing independent domination number of a graph [4], and A-differential of
graphs [3]. Also, Armada [2] studied the forcing total dr-power domination of graphs under
some binary operations.
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Illustration 1.1. Consider the cycle graph C5 = [u1, u2, u3, u4, u5, u1]. Let
P ⊆ V (C5). Pick u2, u3 ∈ P . Then u1u2, u2u3 and u3u4 are directly observed edges
in C5. Clearly, u1, u2, u3 and u4 are incident to a directly observed edge, and so, u1, u2,
u3 and u4 are directly observed vertices. The edges u1u5 and u4u5 are remotely observed
edges since u1, u4, u5 /∈ P and there are k = 2 incident edges to the vertices u1 and u4 such
that k − 1 = 2− 1 = 1 edge is directly observed by P which are u1u2 and u3u4. Since u5 is
incident to a remotely observed edge u1u5 or u4u5, then u5 is a remotely observed vertex.
Clearly, OP

V (C5) = V (C5) and OP
E(C5) = E(C5), that is, P is a dr-power dominating

set of C5. Since the induced subgraph 〈P 〉 has no isolated vertex, P is a total dr-power
dominating set of C5. Note that for any connected graph G, γ∗tpw

(G) ≥ 2 and since |P | = 2,
P is a γ∗tpw

-set of C5 and γ∗tpw
(C5) = 2. Clearly, any pair of adjacent vertices in C5 is a

γ∗tpw
-set of C5, that is, S1 = {u1, u2}, S2 = P = {u2, u3}, S3 = {u3, u4}, S4 = {u4, u5},

S5 = {u5, u1}, are the only γ∗tpw
-sets of C5. Clearly, for all i = 1, 2, . . . , 5, no subset {ui}

is contained in a unique γ∗tpw
-set Sj for all j = 1, 2, . . . , 5 and so, fγ∗tpw

(Sj) 6= 1. Therefore,
for all j = 1, 2, . . . , 5, fγ∗tpw

(Sj) = |Sj | = 2 = fγ∗tpw
(C5).

2. Known Results

This section contains known results involving dr-power domination, total domination
and total dr-power domination numbers of a graph G that are useful in proving the main
results of this study.

Remark 2.1. [6] For any graph G without isolated vertices,

γ∗pw(G) ≤ γ∗tpw
(G) ≤ γt(G).

Theorem 2.2. [6] Let n be a positive integer with n ≥ 5. Then

γ∗tpw
(Pn) =



2n
5 , n ≡ 0(mod 5)

2n−2
5 , n ≡ 1(mod 5)

2n+1
5 , n ≡ 2(mod 5)

2n+4
5 , n ≡ 3(mod 5)

2n+2
5 , n ≡ 4(mod 5)

Theorem 2.3. [6] Let n be a positive integer with n ≥ 5. Then

γ∗tpw
(Cn) =



2n
5 , n ≡ 0(mod 5)

2n+3
5 , n ≡ 1(mod 5)

2n+6
5 , n ≡ 2(mod 5)

2n+4
5 , n ≡ 3(mod 5)

2n+2
5 , n ≡ 4(mod 5)
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Proposition 2.4. [1] The total domination number of a cycle Cn or a path Pn on n ≥ 3
vertices is given by

γt(Cn) = γt(Pn) =


n
2 , n ≡ 0(mod 4),
n+2

2 , n ≡ 2(mod 4),
n+1

2 , otherwise.

Theorem 2.5. [6] Let G and H be any graphs. Then P ⊆ V (G+H) is a total dr-power
dominating set of G+H if and only if it satisfies one of the following conditions:
(i) P ⊆ V (G) and is a total dominating set, provided that G is a graph with

no isolated vertex;
(ii) P ⊆ V (H) and is a total dominating set, provided that H is a graph with

no isolated vertex; or
(iii) P = P1 ∪ P2, where ∅ 6= P1 ⊆ V (G) and ∅ 6= P2 ⊆ V (G).

Corollary 2.6. [6] Let G and H be any graphs. Then

γ∗tpw
(G+H) = 2.

3. Main Results

This section contains the lower and upper bounds of fγ∗tpw
(G) and the forcing total

dr-power domination number of some special graphs such as path, cycle, complete graph,
fan, star and wheel graphs.

Theorem 3.1. Let G be a graph. Then

(i) fγ∗tpw
(G) = 0 if and only if G has a unique γ∗tpw

-set.

(ii) fγ∗tpw
(G) = 1 if and only if G has at least two γ∗tpw

-sets and there exists a vertex v
which is contained in exactly one γ∗tpw

-set of G.

Proof. (i) Suppose that fγ∗tpw
(G) = 0. It follows that ∅ is the forcing subset for a

γ∗tpw
-set, say P , in G. Suppose that there is another γ∗tpw

-set of G, say R. Note that ∅ is
also a subset for R, a contradiction since ∅ is a forcing subset for P . Thus, G has a unique
γ∗tpw

-set. Conversely, if G has a unique γ∗tpw
-set, say Q. Clearly, ∅ is a forcing subset for Q.

Consequently, |∅| = 0 = fγ∗tpw
(Q) = fγ∗tpw

(G).
(ii) Suppose that fγ∗tpw

(G) = 1. Hence, G has at least two γ∗tpw
-sets by part (i) and

there exists a γ∗tpw
-set, say P , and v ∈ P such that {v} is a forcing subset for P and

fγ∗tpw
(P ) = |{v}| = 1, that is, there exists a vertex which is contained in exactly one

γ∗tpw
-set of G. Conversely, if G has at least two γ∗tpw

-sets, then fγ∗tpw
(G) > 0 by part (i). By

assumption, there exists a vertex, say x, which is contained in exactly one γ∗tpw
-set of G, say

T , that is, {x} is a forcing subset for T . Therefore, fγ∗tpw
(T ) = |{x}| = 1 = fγ∗tpw

(G).

The next result is a direct consequence of Theorem 3.1 and definition of forcing total
dr-power domination.
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Corollary 3.2. Let G be a connected graph. Then

0 ≤ fγ∗tpw
(G) ≤ γ∗tpw

(G).

Theorem 3.3. Let G be a nontrivial graph. Then fγ∗tpw
(G) = γ∗tpw

(G) if and only if for
every γ∗tpw

-set P of G and for each v ∈ P , there exists u ∈ V (G)\P such that [P\{v}]∪{u}
is a γ∗tpw

-set of G.

Proof. Suppose that fγ∗tpw
(G) = γ∗tpw

(G). Let P be a γ∗tpw
-set of G such that

fγ∗tpw
(G) = |P | = γ∗tpw

(G), that is, P is the only forcing subset for P . Let v ∈ P . Since
P\{v} is not a forcing subset for P , there exists a u ∈ V (G)\P such that [P\{v}] ∪ {u} is
a γ∗tpw

-set of G.
Conversely, suppose that every γ∗tpw

-set P ′ of G satisfies the given
condition. Let P be a γ∗tpw

-set of G such that fγ∗tpw
(G) = fγ∗tpw

(P ). Moreover, suppose that
P has a forcing subset R with |R| < |P |, that is, P = R ∪ S, where
S = {u ∈ P : u /∈ R}. Pick u ∈ S. By assumption, there exists
v ∈ V (G)\P such that [P\{u}] ∪ {v} = Q is a γ∗tpw

-set of G. Thus, Q = R ∪ T , where
T = [S\{u}] ∪ {v}, that is, Q is a γ∗tpw

-set containing R, a contradiction. Thus, |R| = |P |
and P is the only forcing subset for P . Therefore, fγ∗tpw

(G) = |P | = γ∗tpw
(G).

Theorem 3.4. Let n be a positive integer with n ≥ 5. Then

fγ∗tpw
(Pn) =


0, n = 7 or n ≡ 1(mod 5)
2, n ≡ 3(mod 5)
1, otherwise.

Proof. Let the path Pn = [u1, u2, . . . , un]. Note that deg(u1) = 1 = deg(un) and
deg(ui) = 2 for all i = 2, 3, . . . , n − 1. By definition of total dr-power dominating set, a
choosen vertex in a γ∗tpw

-set, say D, of Pn must always have an adjacent vertex in D, say
ui and ui+1 and by Theorem 2.2, the choosen vertex ui+1 must be of at most distance 4
to the next choosen vertex in D since if the next vertex to be choosen is of distance 5,
say u1, u2 ∈ D and choose u7 to be the next vertex, then u3 and u6 are directly observed
vertices while u4 and u5 are remotely observed vertices but the edge u4u5 is neither directly
nor remotely observed edge which is a contradiction. Also, the starting vertex of a γ∗tpw

-set
D, of Pn must be u1, u2 or u3 since if it starts with u4, then u3 is a directly observed
vertex while u2 becomes a remotely observed vertex but the vertex u1 is neither directly
nor remotely observed vertex which is a contradiction. Now, consider the following cases:

Case 1: Suppose that n = 7. By Theorem 2.2, γ∗tpw
(P7) = 2(7)+1

5 = 3. Clearly,
S = {u3, u4, u5} is the only γ∗tpw

-set of P7 since u2 and u6 are the directly observed
vertices while u1 and u7 are the remotely observed vertices, that is, OS

V (P7) = V (P7),
OS

E(P7) = E(P7) and the induced subgraph 〈S〉 has no isolated vertex. By Theorem 3.1(i),
fγ∗tpw

(P7) = 0.
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Case 2: Suppose that n ≡ 1(mod 5). By Theorem 2.2, γ∗tpw
(Pn) = 2n−2

5 . Let
n = 6. Then γ∗tpw

(P6) = 2(6)−2
5 = 2. Clearly, S = {u3, u4} is the only γ∗tpw

-set of P6
since u2 and u5 are the directly observed vertices while u1 and u6 are the remotely observed
vertices, that is, OS

V (P6) = V (P6) and OS
E(P6) = E(P6) and the induced subgraph 〈S〉

has no isolated vertex. By Theorem 3.1(i), fγ∗tpw
(P6) = 0. Now, suppose that n > 6. Let

p = n−1
5 and j = 0, 1, 2, . . . , p− 1, p. Group the vertices of Pn into p+ 1 disjoint subsets Rj

R0 = {u1}
R1 = {u2, u3, u4, u5, u6}
R2 = {u7, u8, u9, u10, u11}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 2, 7, 12, . . . , n− 4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the ver-
tices ui+1, ui+2 form a total dr-power dominating set since ui and ui+3 are directly observed
vertices while u1 and ui+4 are remotely observed vertices for all i = 2, 7, 12, . . . , n− 9, n− 4.
Let the set

R = {ui+1, ui+2 : i = 2, 7, 12, . . . , n− 9, n− 4}
= {u3, u4, u8, u9, . . . , un−8, un−7, un−3, un−2}

where |R| = 2p = 2n−2
5 , OR

V (Pn) = V (Pn), OR
E(Pn) = E(Pn), and the induced subgraph

〈R〉 has no isolated vertex. By Theorem 2.2, R is a γ∗tpw
-set of Pn. Note that the set R

contains pairs of adjacent vertices in each Rj ’s except in R0 and the distance between the
last choosen vertex in Rj and the first choosen vertex in Rj+1 is always 4. Let T be a
γ∗tpw

-set of Pn different from R. Consider the following subcases:

Subcase 1: Let u2, u3 ∈ T . Then the next vertex to be chosen must be of distance 4
from u3, that is, the vertex u7, together with u8, must be in T . Thus, ui, ui+1 ∈ T for
all i = 2, 7, . . . , n− 9, n− 4. It follows that T = {u2, u3, u7, u8, . . . , un−9, un−8, un−4, un−3}
and |T | = |R|. Since un−3 is the last vertex in T , the vertex un−2 is a directly observed
vertex and un−1 is a remotely observed vertex. Hence, un is neither a directly or a remotely
observed vertex. Thus, OT

V (Pn) 6= V (Pn), a contradiction, that is, T is not a γ∗tpw
-set of

Pn. Hence, it is not possible to start with the vertex u2 to form a γ∗tpw
-set T . Similarly, it

is not possible to start with the vertex u1.

Subcase 2: Suppose that u3, u4 ∈ T . Now, replace u8 ∈ R by u7 to form T .
Then the next vertex to be chosen must be u8, that is, the vertex
ui, ui+1 must be in T for all i = 7, 12, . . . , n − 9, n − 4. Then
T = {u3, u4, u7, u8, u13, u14, . . . , un−4, un−3} and |T | = |R|. Since un−3 is the last ver-
tex in T , by previous subcase, T is not a γ∗tpw

-set of Pn. Since u8 is arbitrarily replaced
from R, we cannot replace the vertex ui+1 in R, where i = 7, 12, . . . , n− 9, n− 4 to form



C. Armada / Eur. J. Pure Appl. Math, 14 (2) (2021), 451-470 457

another γ∗tpw
-set of Pn.

Thus, either of the subcases, it is not possible to form another γ∗tpw
-set T of Pn which is

different from R. Therefore, R is a unique γ∗tpw
-set of Pn. By Theorem 3.1(i), fγ∗tpw

(Pn) = 0.

Case 3: Suppose that n 6= 7 and n ≡ 2(mod 5). By Theorem 2.2, γ∗tpw
(Pn) = 2n+1

5 .
Let n = 12. Then γ∗tpw

(P12) = 2(12)+1
5 = 5. Clearly, S1 = {u3, u4, u5, u9, u10} and

S2 = {u3, u4, u8, u9, u10} are the only γ∗tpw
-sets of P12. Since u5 ∈ S1 and u5 /∈ S2,

by Theorem 3.1(ii), fγ∗tpw
(P12) = 1. Now, suppose that n > 12. Let p = n−2

5 and
j = 0, 1, 2, . . . , p− 1, p. Group the vertices of Pn into p+ 1 disjoint subsets Rj

R0 = {u1, u2}
R1 = {u3, u4, u5, u6, u7}
R2 = {u8, u9, u10, u11, u12}
R3 = {u13, u14, u15, u16, u17}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 3, 8, 13, . . . , n − 4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the
vertices u3, ui+1, ui+2 form a total dr-power dominating set since u2, ui and ui+3 are
directly observed vertices while u1 and ui+4 are remotely observed vertices for all i =
3, 8, 13, . . . , n− 9, n− 4. Let the set

R = {u3, ui+1, ui+2 : i = 3, 8, 13, . . . , n− 9, n− 4}
= {u3, u4, u5, u9, u10, u14, u15, . . . , un−8, un−7, un−3, un−2}

where |R| = 2p + 1 = 2
(

n−2
5

)
+ 1 = 2n+1

5 , OR
V (Pn) = V (Pn), OR

E(Pn) = E(Pn), and the
induced subgraph 〈R〉 has no isolated vertex. By Theorem 2.2, R is a γ∗tpw

-set of Pn. Let
m+ 1 be the number of γ∗tpw

-sets of Pn where m is a positive integer. Let k = 1, 2, . . . ,m
and Tk be a γ∗tpw

-set of Pn different from R. Note that in forming R, there are three
vertices in R1 such that the induced subgraph is a graph P3 and two adjacent vertices in
the other Rj ’s with j > 1. Thus, Tk can be formed by getting 3 vertices in any one of the
Rj ’s where j > 1 such that the induced subgraph is a graph P3 and two adjacent vertices
in the other Rl’s where l 6= j and l 6= 0. Consider the following subcases.

Subcase 1: Choose 3 vertices in R2 to form another γ∗tpw
set, say T1,

that is, replaced u5 ∈ R1 in R by u8 ∈ R2. It follows that
T1 = {u3, u4, u8, u9, u10, u14, u15, . . . , un−8, un−7, un−3, un−2}, where |T1| = |R|,
OT1

V (Pn) = V (Pn), OT1
E (Pn) = E(Pn), and the induced subgraph 〈T1〉 has no isolated

vertex, that is, T1 is a γ∗tpw
-set of Pn. Clearly, u5 /∈ T1.

Subcase 2: Choose 3 vertices in R3 to form another γ∗tpw
set, say T2,
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that is, replaced u10 ∈ R2 in T1 by u13 ∈ R3. It follows that
T2 = {u3, u4, u8, u9, u13, u14, u15, u19, u20, . . . , un−8, un−7, un−3, un−2}, where |T2| = |R|,
OT2

V (Pn) = V (Pn), OT2
E (Pn) = E(Pn), and the induced subgraph 〈T2〉 has no isolated

vertex, that is, T2 is a γ∗tpw
-set of Pn. Clearly, u5 /∈ T2.

Continuing in this manner and in any subcase, u5 /∈ Tk for all k = 1, 2, . . . ,m, and
so, the vertex u5 is contained in γ∗tpw

-set R only. By Theorem 3.1(ii), fγ∗tpw
(Pn) = 1.

Case 4: Suppose that n ≡ 3(mod 5). By Theorem 2.2, γ∗tpw
(Pn) = 2n+4

5 .
Suppose that n = 8. Then γ∗tpw

(P8) = 2(8)+4
5 = 4. Clearly, S1 = {u1, u2, u5, u6},

S2 = {u1, u2, u6, u7}, S3 = {u2, u3, u5, u6}, S4 = {u2, u3, u6, u7}, S5 = {u2, u3, u7, u8},
S6 = {u3, u4, u5, u6}, S7 = {u3, u4, u6, u7}, and S8 = {u3, u4, u7, u8} are the γ∗tpw

-sets of
P8. Clearly, for i = 1, 2, . . . , 8, no subset {ui} is contained in exactly one of the Sl’s,
for l = 1, 2, . . . , 8, that is, fγ∗tpw

(Sl) > 1. Clearly, {u1, u5} is forcing subset for S1 since
{u1, u5} * Sl for all l 6= 1. Thus, fγ∗tpw

(S1) = 2 = fγ∗tpw
(P8). Now, suppose that n > 8.

Since fγ∗tpw
(P8) = 2, fγ∗tpw

(Pn) ≥ 2. Let p = n−3
5 and j = 0, 1, 2, . . . , p− 1, p. Group the

vertices of Pn into p+ 1 disjoint subsets Rj

R0 = {u1, u2, u3}
R1 = {u4, u5, u6, u7, u8}
R2 = {u9, u10, u11, u12, u13}
R3 = {u14, u15, u16, u17, u18}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 4, 9, 14, . . . , n − 4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the
vertices u1, u2, ui+1, ui+2 form a total dr-power dominating set since u3, ui and ui+3 are
directly observed vertices while ui+4 are remotely observed vertices for all
i = 4, 9, 14, . . . , n− 9, n− 4. Let the set

R = {u1, u2, ui+1, ui+2 : i = 4, 9, 14, . . . , n− 9, n− 4}
= {u1, u2, u5, u6, u10, u11, u15, u16, . . . , un−8, un−7, un−3, un−2}

where |R| = 2p + 2 = 2
(

n−3
5

)
+ 2 = 2n+4

5 , OR
V (Pn) = V (Pn), OR

E(Pn) = E(Pn), and the
induced subgraph 〈R〉 has no isolated vertex. By Theorem 2.2, R is a γ∗tpw

-set of Pn. Let
m+ 1 be the number of γ∗tpw

-sets of Pn where m is a positive integer. Let k = 1, 2, . . . ,m
and Tk be a γ∗tpw

-set of Pn different from R. Consider the following subcases:

Subcase 1: Tk, say T1 and T2, can be formed by replacing u1, u2 in R by either u2, u3 or
u3, u4. It follows that T1 = {u2, u3, u5, u6, u10, u11, . . . , un−8, un−7, un−3, un−2} and the set
T2 = {u3, u4, u5, u6, u10, u11, . . . , un−8, un−7, un−3, un−2} are γ∗tpw

-sets of Pn. Clearly,
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{u1, u5} * T1 and {u1, u5} * T2.

Subcase 2: Tk, say T3, can be formed by replacing u5 in R by u7. Thus, the set
T3 = {u1, u2, u6, u7, u10, u11, . . . , un−8, un−7, un−3, un−2} is a γ∗tpw

-set of Pn. By the
previous subcase, Tk can be formed by replacing u1, u2 in T3 by either u2, u3 or u3, u4.
It follows that T4 = {u2, u3, u6, u7, u10, u11, . . . , un−8, un−7, un−3, un−2} and the set
T5 = {u3, u4, u6, u7, u10, u11, . . . , un−8, un−7, un−3, un−2} are γ∗tpw

-sets of Pn. Clearly,
{u1, u5} * T3, {u1, u5} * T4 and {u1, u5} * T5.

Subcase 3: Suppose that {u1, u5} is a subset in one of the Tk’s with k > 5, say T6, that
is, u2 must be in T6 and either u4 or u6 is in T6. Suppose that u4 ∈ T6. Then the next
pair to be choosen must be u9 and u10 since the distance between u5 and u9 is 4, that
is, ui and ui+1 must be in T6. Thus, T6 = {u1, u2, u4, u5, u9, u10, u14, u15, . . . , un−4, un−3}.
Since un−3 is the last vertex in T6, by subcase 1 of case 2, T6 is not a γ∗tpw

-set of Pn.
Now, suppose that u6 ∈ T6. Then the first four vertices u1, u2, u5, u6 in T6 are the same
with R. Replace u10 ∈ R by u9 to form T6. Then the next vertex to be chosen must
be u10, that is, the vertex ui, ui+1 must be in T6 for all i = 9, . . . , n − 9, n − 4. Then
T6 = {u1, u2, u5, u6, u9, u10, u14, u15, . . . , un−4, un−3}. Since un−3 is the last vertex in T6,
by subcase 1 of case 2, T6 is not a γ∗tpw

-set of Pn. Since u10 is arbitrarily replaced from R,
we cannot replace the vertex ui+1 in R, where i = 9, 14, . . . , n− 9, n− 4 to form another
γ∗tpw

-set of Pn. Hence, {u1, u5} is not a subset of Tk for all k > 5.

Therefore, in any subcase, {u1, u5} * Tk for all k = 1, 2, . . . ,m, that is, {u1, u5} is a
forcing subset for R. Thus, fγ∗tpw

(R) = 2 = fγ∗tpw
(Pn).

Case 5: Suppose that n ≡ 4(mod 5). By Theorem 2.2, γ∗tpw
(Pn) = 2n+2

5 .
Let n = 9. Then γ∗tpw

(P9) = 2(9)+2
5 = 4. Clearly, S1 = {u1, u2, u6, u7},

S2 = {u2, u3, u6, u7}, S3 = {u2, u3, u7, u8}, S4 = {u3, u4, u7, u8}, and
S5 = {u3, u4, u8, u9} are the only γ∗tpw

-sets of P9. Since u1 ∈ S1 and u1 /∈ Sl for l = 2, 3, 4, 5,
by Theorem 3.1(ii), fγ∗tpw

(P9) = 1. Now, suppose that n > 9. Let p = n−4
5 and

j = 0, 1, 2, . . . , p− 1, p. Group the vertices of Pn into p+ 1 disjoint subsets Rj

R0 = {u1, u2, u3, u4}
R1 = {u5, u6, u7, u8, u9}
R2 = {u10, u11, u12, u13, u14}
R3 = {u15, u16, u17, u18, u13}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 5, 10, 15, . . . , n − 4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the
vertices u1, u2, ui+1, ui+2 form a total dr-power dominating set since u3, ui and ui+3
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are directly observed vertices while u4 and ui+4 are remotely observed vertices for all
i = 5, 10, 15, . . . , n− 9, n− 4. Let the set

R = {u1, u2, ui+1, ui+2 : i = 5, 10, 15, . . . , n− 9, n− 4}
= {u1, u2, u6, u7, u11, u12, u16, u17, . . . , un−8, un−7, un−3, un−2}

where |R| = 2p + 2 = 2
(

n−4
5

)
+ 2 = 2n+2

5 , OR
V (Pn) = V (Pn), OR

E(Pn) = E(Pn), and the
induced subgraph 〈R〉 has no isolated vertex. By Theorem 2.2, R is a γ∗tpw

-set of Pn. Let
m+ 1 be the number of γ∗tpw

-sets of Pn where m is a positive integer. Let k = 1, 2, . . . ,m
and Tk be a γ∗tpw

-set of Pn different from R. Consider the following subcases:

Subcase 1: Tk, say T1 and T2, can be formed by replacing u1, u2 in R by either u2, u3
or u3, u4. It follows that T1 = {u2, u3, u6, u7, u11, u12, . . . , un−8, un−7, un−3, un−2} and the
set T2 = {u3, u4, u6, u7, u11, u12, . . . , un−8, un−7, un−3, un−2} are γ∗tpw

-sets of Pn. Clearly,
u1 /∈ T1 and u1 /∈ T2.

Subcase 2: Let k = 3 and let u1, u2 ∈ T3. Now, replace u6 ∈ R by u5 to form T3. Then
the next vertex to be chosen must be u6, that is, the vertex ui, ui+1 must be in T3 for all
i = 5, 10, 15, . . . , n− 9, n− 4. Then T3 = {u1, u2, u5, u6, u10, u11, . . . , un−4, un−3} such that
|T3| = |R|. Since un−3 is the last vertex in T3, by subcase 1 of case 2, T3 is not a γ∗tpw

-set
of Pn. Since u6 is arbitrarily replaced from R, we cannot replace the vertex ui+1 in R,
where i = 10, 15, . . . , n−9, n−4 to form another γ∗tpw

-set of Pn. Thus, u1 /∈ Tk for all k ≥ 3.

Therefore, in any subcase, u1 /∈ Tk for all k = 1, 2, . . . ,m and so, the vertex u1 is
contained in γ∗tpw

-set R only. By Theorem 3.1(ii), fγ∗tpw
(Pn) = 1.

Case 6: Suppose that n ≡ 0(mod 5). By Theorem 2.2, γ∗tpw
(Pn) = 2n

5 .
Let n = 5. Then γ∗tpw

(P5) = 2(5)
5 = 2. Clearly, S1 = {u2, u3} and S2 = {u3, u4} are

the only γ∗tpw
-sets of P5. Since u2 ∈ S1 and u2 /∈ S2, by Theorem 3.1(ii), fγ∗tpw

(P5) = 1.
Now, suppose that n > 5. Let p = n

5 and j = 1, 2, . . . , p− 1, p. Group the vertices of Pn

into p disjoint subsets Rj
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R1 = {u1, u2, u3, u4, u5}
R2 = {u6, u7, u8, u9, u10}
R3 = {u11, u12, u13, u14, u15}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 1, 6, 11, . . . , n− 4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the
vertices ui+1, ui+2 form a total dr-power dominating set since ui and ui+3 are directly
observed vertices while ui+4 is a remotely observed vertex for all i = 1, 6, 11, . . . , n−9, n−4.
Let the set

R = {ui+1, ui+2 : i = 1, 6, 11, . . . , n− 9, n− 4}
= {u2, u3, u7, u8, u12, u13, . . . , un−8, un−7, un−3, un−2}

,where |R| = 2p = 2n
5 , OR

V (Pn) = V (Pn), OR
E(Pn) = E(Pn), and the induced subgraph 〈R〉

has no isolated vertex. By Theorem 2.2, R is a γ∗tpw
-set of Pn. Let m+ 1 be the number of

γ∗tpw
-sets of Pn where m is a positive integer. Let k = 1, 2, . . . ,m and Tk be a γ∗tpw

-set of
Pn different from R. Consider the following subcases:

Subcase 1: Let k = 1. T1 can be formed by replacing u2 in R by u4. It follows
that T1 = {u3, u4, u7, u8, u12, u13, . . . , un−8, un−7, un−3, un−2} is a γ∗tpw

-set of Pn. Clearly,
u2 /∈ T1.

Subcase 2: Let k = 2 and let u2, u3 ∈ T2. Now, replace u7 ∈ R by u6 to form T2.
Then the next vertex to be chosen must be u7, that is, the vertices ui, ui+1 must be in
T2 for all i = 6, 11, 16, . . . , n− 9, n− 4. Then T2 = {u2, u3, u6, u7, u11, u12, . . . , un−4, un−3}
such that |T2| = |R|. Since un−3 is the last vertex in T2, by subcase 1 of case 2, T3
is not a γ∗tpw

-set of Pn. Since u7 is arbitrarily replaced from R, we cannot replace the
vertex ui+1 in R, where i = 6, 11, 16, . . . , n− 9, n− 4 to form another γ∗tpw

-set of Pn. Thus,
it is not possible to start with vertex u2 to form Tk for all k ≥ 2, that is, u2 /∈ Tk for all k ≥ 2.

Therefore, in any subcase, u2 /∈ Tk for all k = 1, 2, . . . ,m, and so, the vertex u2 is
contained in γ∗tpw

-set R only. By Theorem 3.1(ii), fγ∗tpw
(Pn) = 1.
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Theorem 3.5. Let n be a positive integer with n ≥ 5. Then

fγ∗tpw
(Cn) =

{
4, n ≡ 2(mod 5)
2, otherwise.

Proof. Let the cycle Cn = [u1, u2, . . . , un, u1]. Note that and deg(ui) = 2 for all
i = 1, 2, 3, . . . , n− 1, n. By definition of total dr-power dominating set, a choosen vertex in
a γ∗tpw

-set, say D, of Cn must always have an adjacent vertex in D, say ui and ui+1 and
by Theorem 2.3, the distance of the choosen vertex ui+1 must be of at most 4 to the next
choosen vertex in D since if the next vertex to be choosen is of distance 5, say u1, u2 ∈ D
and choose u7 to be the next vertex, then u3 and u6 are directly observed vertices while u4
and u5 are remotely observed vertices but the edge u4u5 is neither directly nor remotely
observed edge which is a contradiction. Note that ui is contained in γ∗tpw

-sets containing
the pairs of sets {ui−1, ui} and {ui, ui+1} for all i = 1, 2, . . . n, and so, the set {ui} is not a
forcing subset of any γ∗tpw

-set of Cn, that is, fγ∗tpw
(Cn) ≥ 2. Now, consider the following

cases:

Case 1: Suppose that n ≡ 2(mod 5). By Theorem 2.3, γ∗tpw
(Cn) = 2n+6

5 .
Suppose that n = 7. Then γ∗tpw

(C7) = 2(7)+6
5 = 4. Clearly, S1 = {u1, u2, u3, u4},

S2 = {u1, u2, u4, u5}, S3 = {u1, u2, u5, u6}, S4 = {u1, u2, u6, u7}, S5 = {u2, u3, u4, u5},
S6 = {u2, u3, u5, u6}, S7 = {u2, u3, u6, u7}, S8 = {u3, u4, u5, u6}, S9 = {u3, u4, u6, u7},
S10 = {u4, u5, u6, u7}, S11 = {u7, u1, u2, u3}, S12 = {u7, u1, u3, u4}, S13 = {u7, u1, u4, u5}
and S14 = {u7, u1, u5, u6} are the only γ∗tpw

-sets of C7. Note that fγ∗tpw
(C7) ≥ 2 and each

pair of vertices in C7 is contained in more than one γ∗tpw
-sets of C7, that is, fγ∗tpw

(C7) ≥ 3.
Note that each of the vertices u1, u2, u3, and u4 in S1 can be replaced by u5, u7, u5 and u7,
respectively to form another γ∗tpw

-sets of C7 which are S5, S12, S2, and S11, respectively,
that is, fγ∗tpw

(S1) = 4. Clearly, for all l = 1, 2, . . . , 14 and for every γ∗tpw
-set Sl of C7 and

for each ui ∈ Sl, there exists uj ∈ V (C7)\Sl and j 6= i such that [Sl\{ui}] ∪ {uj} is a
γ∗tpw

-set of C7. By Theorem 3.3, fγ∗tpw
(C7) = γ∗tpw

(C7) = 4. Now, suppose that n > 7.
Since fγ∗tpw

(C7) = 4, fγ∗tpw
(Cn) ≥ 4. Let p = n−2

5 and j = 0, 1, 2, . . . , p− 1, p. Group the
vertices of Cn into p+ 1 disjoint subsets Rj

R0 = {u1, u2}
R1 = {u3, u4, u5, u6, u7}
R2 = {u8, u9, u10, u11, u12}
R3 = {u13, u14, u15, u16, u17}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 3, 8, 13, . . . , n − 4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the
vertices u1, u2, ui, ui+1 form a total dr-power dominating set since ui+2 and ui+4 are directly
observed vertices while ui+3 is a remotely observed vertex for all i = 3, 8, 13, . . . , n−9, n−4.
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Let the set

R = {u1, u2, ui, ui+1 : i = 3, 8, 13, . . . , n− 9, n− 4}
= {u1, u2, u3, u4, u8, u9, u13, u14, . . . , un−9, un−8, un−4, un−3}

,where |R| = 2p+ 2 = 2(n−2
5 ) + 2 = 2n+6

5 , OR
V (Cn) = V (Cn), OR

E(Cn) = E(Cn), and the
induced subgraph 〈R〉 has no isolated vertex. By Theorem 2.3, R is a γ∗tpw

-set of Cn. Let
m+1 be the number of γ∗tpw

-sets of Cn where m is a positive integer. Let k = 1, 2, . . . ,m+1
and Tk be a γ∗tpw

-set of Cn and one of the Tk’s is equal to R. Note that in forming R, there
are four vertices taken both from R0 and R1 such that the induced subgraph is a graph
P4 and two adjacent vertices in the other Rj ’s where j > 1. Now, Tk can be formed by
starting all the vertices of Sl for l = 1, 2, . . . , 14 and replacing u7 by un in S11, S12, S13,
and S14, that is, Tk = Sl ∪H for some set H. If Tk starts with S11 = {un, u1, u2, u3} , say
T1, note that S11 is the only set in the Sl’s that ends with u3 and its induced subgraph is a
graph P4, then the next pairs of vertices must be choosen are u7, u8, u12, u13, . . . , un−5, un−4,
that is, T1 = {un, u1, u2, u3, u7, u8, u12, u13, . . . , un−5, un−4} such that |T1| = |R|,
OT1

V (Cn) = V (Cn), OT1
E (Cn) = E(Cn), and the induced subgraph 〈T1〉 has no isolated vertex,

that is, T1 is a γ∗tpw
-set of Cn. Note also that if Tk starts with S14 = {un, u1, u5, u6}, say T2,

then the next pairs of vertices must be choosen are u7, u8, u12, u13, . . . , un−5, un−4 such that
induced subgraph of {u5, u6, u7, u8} ⊆ T2 is a graph P4, that is,
T2 = {un, u1, u5, u6, u7, u8, u12, u13, . . . , un−5, un−4} such that |T2| = |R|,
OT2

V (Cn) = V (Cn), OT2
E (Cn) = E(Cn), and the induced subgraph 〈T2〉 has no isolated

vertex, that is, T2 is a γ∗tpw
-set of Cn. Clearly, T1\S11 = T2\S14. Now, since none of the

other Sl’s ended with a unique vertex, the set of vertices in Tk\Sl must be contained in Tr

for some r 6= k. Hence, Tk\Sl is not a forcing subset for Tk. Therefore, either the sets Sl or
Tk must be the forcing subset for Tk for some l = 1, 2, . . . , 14 and for some k = 1, 2, . . . ,m+1.
Now, if Tk starts with S1, then let k = 3 and {u1, u2, u3, u4} ⊆ T3 such that
T3 is a γ∗tpw

-set of Cn different from R. Replace u8 ∈ R by u7 to form T3.
Then the next vertex to be chosen must be u8, that is, the vertex
ui+4, ui must be in T3 for all i = 3, 8, 13, . . . , n − 9, n − 4. Then
T3 = {u1, u2, u3, u4, u7, u8, u12, u13, . . . , un−5, un−4} such that |T3| = |R|. Since u1 ∈ T3 and
un−4 is the last vertex in T3, the vertices un and un−3 are directly observed vertices while
un−1 and un−2 are remotely observed vertices. Hence, by definition, the edge un−1un−2 is
neither a directly or a remotely observed edge. Thus, OT3

E (Cn) 6= E(Cn), a contradiction,
that is, T3 is not a γ∗tpw

-set of Cn. Since u8 is arbitrarily replaced from R, we cannot
replace the vertex ui in R, where i = 8, 13, . . . , n− 9, n− 4 to form another γ∗tpw

-set of Cn.
Therefore, only the γ∗tpw

-set R starts with S1 and so, {u1, u2, u3, u4} * Tk for all Tk 6= R.
Hence, {u1, u2, u3, u4} is a forcing subset for R. Therefore, fγ∗tpw

(R) = 4 = fγ∗tpw
(Cn).

Case 2: Suppose that n ≡ 0(mod 5). By Theorem 2.3, γ∗tpw
(Cn) = 2n

5 .
Suppose that n = 5. Then γ∗tpw

(C5) = 2(5)
5 = 2. Clearly, S1 = {u1, u2},

S2 = {u2, u3}, S3 = {u3, u4}, S4 = {u4, u5}, S5 = {u5, u1}, are the
only γ∗tpw

-sets of C5. Note that fγ∗tpw
(C5) ≥ 2. It follows that
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2 ≤ fγ∗tpw
(C5) ≤ γ∗tpw

(C5) = 2, that is, fγ∗tpw
(C5) = 2. Now, suppose that n > 5.

Let p = n
5 and j = 1, 2, . . . , p− 1, p. Group the vertices of Cn into p disjoint subsets Rj

R1 = {u1, u2, u3, u4, u5}
R2 = {u6, u7, u8, u9, u10}
R3 = {u11, u12, u13, u14, u15}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 1, 6, 11, . . . , n − 4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the
vertices ui, ui+1 form a total dr-power dominating set since ui+2 and ui+4 are directly
observed vertices while ui+3 is a remotely observed vertex for all i = 1, 6, 11, . . . , n−9, n−4.
Let the set

R = {ui, ui+1 : i = 1, 6, 11, . . . , n− 9, n− 4}
= {u1, u2, u6, u7, u11, u12, . . . , un−9, un−8, un−4, un−3}

,where |R| = 2p = 2(n
5 ) = 2n

5 , OR
V (Cn) = V (Cn), OR

E(Cn) = E(Cn), and the induced
subgraph 〈R〉 has no isolated vertex. By Theorem 2.3, R is a γ∗tpw

-set of Cn. Let m+ 1 be
the number of γ∗tpw

-sets of Cn where m is a positive integer. Let k = 1, 2, . . . ,m and Tk be
a γ∗tpw

-set of Cn different from R. Note that Tk can be formed by starting all the vertices
of Sl for l = 1, 2, . . . , 5 and replacing u5 by un in S5.

Now, if Tk starts with S1, then let k = 1 and {u1, u2} ⊆ T1. Replace u6 ∈ R by u5
to form T1. Then the next vertex to be choosen must be u6, that is, the vertex ui+4, ui

must be in T1 for all i = 1, 6, 11, . . . , n − 9, n − 4. It follows that
T1 = {u1, u2, u5, u6, u10, u11, u15, u16, . . . , un−5, un−4} such that |T1| = |R|. Since u1 ∈ T1
and un−4 is the last vertex in T1, by the same argument in Case 1, T1 is not a γ∗tpw

-set of
Cn. Since u6 is arbitrarily replaced from R, we cannot replace the vertex ui in R, where
i = 6, 11, . . . , n− 9, n− 4 to form another γ∗tpw

-set of Cn. Therefore, only the γ∗tpw
-set R

starts with S1 and so, {u1, u2} * Tk for all k = 1, 2, . . . ,m. Hence, {u1, u2} is a forcing
subset for R. Therefore, fγ∗tpw

(R) = 2 = fγ∗tpw
(Cn).

Case 3: Suppose that n ≡ 1(mod 5). By Theorem 2.3, γ∗tpw
(Cn) = 2n+3

5 .
Suppose that n = 6. Then γ∗tpw

(C6) = 2(6)+3
5 = 3. Clearly, S1 = {u1, u2, u3},

S2 = {u2, u3, u4}, S3 = {u3, u4, u5}, S4 = {u4, u5, u6}, S5 = {u5, u6, u1}, S6 = {u6, u1, u2},
are the only γ∗tpw

-sets of C6. Clearly, for l = 1, 2, . . . , 6, {u1, u3} ⊆ S1 and {u1, u3} * Sl

for all l 6= 1. Thus, {u1, u3} is a forcing subset for S1, that is, fγ∗tpw
(S1) = 2 = fγ∗tpw

(C6).
Now, suppose that n > 6. Let p = n−1

5 and j = 0, 1, 2, . . . , p− 1, p. Group the vertices of
Cn into p+ 1 disjoint subsets Rj
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R0 = {u1}
R1 = {u2, u3, u4, u5, u6}
R2 = {u7, u8, u9, u10, u11}
R3 = {u12, u13, u14, u15, u16}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 2, 7, 12, . . . , n − 4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the
vertices u1, ui, ui+1 form a total dr-power dominating set since ui+2 and ui+4 are directly
observed vertices while ui+3 is a remotely observed vertex for all i = 2, 7, 12, . . . , n−9, n−4.
Let the set

R = {u1, ui, ui+1 : i = 2, 7, 12, . . . , n− 9, n− 4}
= {u1, u2, u3, u7, u8, u12, u13, . . . , un−9, un−8, un−4, un−3}

,where |R| = 2p+ 1 = 2(n−1
5 ) + 1 = 2n+3

5 , OR
V (Cn) = V (Cn), OR

E(Cn) = E(Cn), and the
induced subgraph 〈R〉 has no isolated vertex,that is, R is a γ∗tpw

-set of Cn. Let m+ 1 be
the number of γ∗tpw

-sets of Cn where m is a positive integer. Let k = 1, 2, . . . ,m and Tk be
a γ∗tpw

-set of Cn different from R. Note that Tk can be formed by starting all the vertices
of Sl for l = 1, 2, . . . , 5 and replacing u6 by un in S5 and S6 and also, Tk can be formed
by having three vertices in any one or two of the Rj ’s where j ≥ 0 such that the induced
subgraph is a graph P3 and two vertices in the other Rl’s where l 6= j. Replacing u3 ∈ R by
u6 to form Tk, say T1, that is, T1 = {u1, u2, u6, u7, u8, u12, u13, . . . , un−9, un−8, un−4, un−3}
is a γ∗tpw

-set of Cn. Clearly, {u1, u3} * T1. Replacing u8 ∈ T1 by u11 to form Tk, say
T2, that is, T2 = {u1, u2, u6, u7, u11, u12, u13, . . . , un−9, un−8, un−4, un−3} is a γ∗tpw

-set of Cn.
Clearly, {u1, u3} * T2. Continuing in this manner, {u1, u3} * Tk for some k.

Now, if Tk starts with S1, then let k = 3 and {u1, u3} ⊆ T3. Then u2 must be
in T3. Replace u7 ∈ R by u6 to form T3. Then the next vertex to be choosen must
be u7, that is, the vertex ui+4, ui must be in T3 for all i = 2, 7, 12, . . . , n − 9, n − 4.
Then T3 = {u1, u2, u3, u6, u7, u11, u12, u16, u17, . . . , un−5, un−4} such that |T3| = |R|.
Since u1 ∈ T3 and un−4 is the last vertex in T3, by the same argument in Case 1, T3 is not
a γ∗tpw

-set of Cn. Since u7 is arbitrarily replaced from R, we cannot replace the vertex ui

in R, where i = 7, 12, . . . , n− 9, n− 4 to form another γ∗tpw
-set of Cn. Therefore, only the

γ∗tpw
-set R starts with S1 and so, {u1, u3} * Tk for all k = 1, 2, . . . ,m. Hence, {u1, u3} is a

forcing subset for R. Therefore, fγ∗tpw
(R) = 2 = fγ∗tpw

(Cn).

Case 4: Suppose that n ≡ 3(mod 5). By Theorem 2.3, γ∗tpw
(Cn) = 2n+4

5 .
Suppose that n = 8. Then γ∗tpw

(C8) = 2(8)+4
5 = 4. Clearly, S1 = {u1, u2, u4, u5},

S2 = {u1, u2, u5, u6}, S3 = {u1, u2, u6, u7}, S4 = {u2, u3, u5, u6}, S5 = {u2, u3, u6, u7},
S6 = {u2, u3, u7, u8}, S7 = {u3, u4, u6, u7}, S8 = {u3, u4, u7, u8}, S9 = {u8, u1, u3, u4},
S10 = {u4, u5, u7, u8}, S11 = {u8, u1, u4, u5}, and S12 = {u8, u1, u5, u6}, are the only
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γ∗tpw
-sets of C8. Clearly, for l = 1, 2 . . . , 12, {u2, u4} ⊆ S1 and {u2, u4} * Sl for all l 6= 1.

Thus, {u2, u4} is a forcing subset for S1, that is, fγ∗tpw
(S1) = 2 = fγ∗tpw

(C8). Now, suppose
that n > 8. Let p = n−3

5 and j = 0, 1, 2, . . . , p− 1, p. Group the vertices of Cn into p+ 1
disjoint subsets Rj

R0 = {u1, u2, u3}
R1 = {u4, u5, u6, u7, u8}
R2 = {u9, u10, u11, u12, u13}
R3 = {u14, u15, u16, u17, u18}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 4, 9, 14 . . . , n−4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the vertices
u1, u2, ui, ui+1 form a total dr-power dominating set since u3, ui+2 and ui+4 are directly
observed vertices while ui+3 is a remotely observed vertex for all i = 4, 9, 14, . . . , n−9, n−4.
Let the set

R = {u1, u2, ui, ui+1 : i = 4, 9, 14, . . . , n− 9, n− 4}
= {u1, u2, u4, u5, u9, u10, u14, u15, . . . , un−9, un−8, un−4, un−3}

,where |R| = 2p + 2 = 2(n−3
5 ) + 2 = 2n+4

5 , OR
V (Cn) = V (Cn), OR

E(Cn) = E(Cn), and
the induced subgraph 〈R〉 has no isolated vertex. By Theorem 2.3, R is a γ∗tpw

-set of
Cn. Let m + 1 be the number of γ∗tpw

-sets of Cn where m is a positive integer. Let
k = 1, 2, . . . ,m and Tk be a γ∗tpw

-set of Cn different from R. Note that Tk can be formed
by starting all the vertices of Sl for l = 1, 2, . . . , 12 and replacing u8 by un in S9, S11
and S12. Now, if Tk starts with S1, then let k = 1 and {u2, u4} ⊆ {u1, u2, u4, u5} ⊆ T1.
Replace u9 ∈ R by u8 to form T1. Then the next vertex to be choosen must be u9,
that is, the vertex ui+4, ui must be in T1 for all i = 4, 9, 14, . . . , n − 9, n − 4. Then
T1 = {u1, u2, u4, u5, u8, u9, u13, u14, u18, u19, . . . , un−5, un−4} such that |T1| = |R|. Since
u1 ∈ T1 and un−4 is the last vertex in T1, by the same argument in Case 1, T1 is not a
γ∗tpw

-set of Cn. Since u9 is arbitrarily replaced from R, we cannot replace the vertex ui

in R, where i = 9, 14, . . . , n− 9, n− 4 to form another γ∗tpw
-set of Cn. Therefore, only the

γ∗tpw
-set R starts with S1 and so, {u2, u4} * Tk for all k = 1, 2, . . . ,m. Hence, {u2, u4} is a

forcing subset for R. Therefore, fγ∗tpw
(R) = 2 = fγ∗tpw

(Cn).

Case 5: Suppose that n ≡ 4(mod 5). By Theorem 2.3, γ∗tpw
(Cn) = 2n+2

5 .
Suppose that n = 9. Then γ∗tpw

(C9) = 2(9)+2
5 = 4. Clearly, S1 = {u1, u2, u5, u6},

S2 = {u1, u2, u6, u7}, S3 = {u2, u3, u6, u7}, S4 = {u2, u3, u7, u8}, S5 = {u3, u4, u7, u8},
S6 = {u3, u4, u8, u9}, S7 = {u4, u5, u8, u9}, S8 = {u4, u5, u9, u1}, and S9 = {u5, u6, u9, u1}
are the only γ∗tpw

-sets of C9. Clearly, for l = 1, 2, . . . , 9, {u2, u5} ⊆ S1 and {u2, u5} * Sl

for all l 6= 1. Thus, {u2, u5} is a forcing subset for S1, that is, fγ∗tpw
(S1) = 2 = fγ∗tpw

(C9).
Now, suppose that n > 9. Let p = n−4

5 and j = 0, 1, 2, . . . , p− 1, p. Group the vertices of
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Cn into p+ 1 disjoint subsets Rj

R0 = {u1, u2, u3, u4}
R1 = {u5, u6, u7, u8, u9}
R2 = {u10, u11, u12, u13, u14}
R3 = {u15, u16, u17, u18, u19}
...
Rp−1 = {un−9, un−8, un−7, un−6, un−5}
Rp = {un−4, un−3, un−2, un−1, un}

Let i = 5, 10, 15, . . . , n − 4. For every induced subgraph 〈ui, ui+1, ui+2, ui+3, ui+4〉, the
vertices u1, u2, ui, ui+1 form a total dr-power dominating set since u3,u4,ui+2 and ui+4 are
directly observed vertices while ui+3 is a remotely observed vertex ∀ i = 5, 10, 15, . . . , n− 4.
Let the set

R = {u1, u2, ui, ui+1 : i = 5, 10, 15, . . . , n− 9, n− 4}
= {u1, u2, u5, u6, u10, u11, u15, u16, . . . , un−9, un−8, un−4, un−3}

,where |R| = 2p+ 2 = 2(n−4
5 ) + 2 = 2n+2

5 , OR
V (Cn) = V (Cn), OR

E(Cn) = E(Cn), and the
induced subgraph 〈R〉 has no isolated vertex. By Theorem 2.3, R is a γ∗tpw

-set of Cn. Let
m+ 1 be the number of γ∗tpw

-sets of Cn where m is a positive integer. Let k = 1, 2, . . . ,m
and Tk be a γ∗tpw

-set of Cn different from R. Note that Tk can be formed by starting all the
vertices of Sl for l = 1, 2, . . . , 9 and replacing u9 by un in S8 and S9. Now, if Tk starts with
S1, then let k = 1 and {u2, u5} ⊆ {u1, u2, u5, u6} ⊆ T1. Replace u10 ∈ R by u9 to form T1.
Then the next vertex to be choosen must be u10, that is, the vertex ui+4, ui must be in T1 for
all i = 5, 10, 15, . . . , n−9, n−4. Then T1 = {u1, u2, u5, u6, u9, u10, u14, u15, . . . , un−5, un−4}
such that |T1| = |R|. Since u1 ∈ T1 and un−4 is the last vertex in T1, by the same argument
in Case 1, T1 is not a γ∗tpw

-set of Cn. Since u10 is arbitrarily replaced from R, we cannot
replace the vertex ui in R, where i = 10, 15, . . . , n− 9, n− 4 to form another γ∗tpw

-set of Cn.
Therefore, only the γ∗tpw

-set R starts with S1 and so, {u2, u5} * Tk for all k = 1, 2, . . . ,m.
Hence, {u2, u5} is a forcing subset for R. Therefore, fγ∗tpw

(R) = 2 = fγ∗tpw
(Cn).

Theorem 3.6. Let n be a positive integer with n ≥ 2. Then the total dr-power domination
number of the complete graph Kn is given by γ∗tpw

(Kn) = 2 and its forcing total dr-power
domination number is given by

fγ∗tpw
(Kn) =

{
0, n = 2
2, n > 2.

Proof. Let V (Kn) = {u1, u2, u3, . . . , un}. Clearly, each pair of vertices ui, uj such that
i 6= j in Kn forms a γ∗tpw

-set of Kn, and so, γ∗tpw
(Kn) = 2. If n = 2, then K2 has exactly

one γ∗tpw
-set which is V (K2). By Theorem 3.1 (i), fγ∗tpw

(K2) = 0. Suppose that n > 2.
Note that for all i = 1, 2, . . . n, ui is contained in γ∗tpw

-sets {ui, uj} and {ui, uk} such that
i 6= j 6= k 6= i and so, the set {ui} is not a forcing subset for any γ∗tpw

-set of Kn, that is,
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fγ∗tpw
(Kn) ≥ 2. Consequently, by Corollary 3.2, 2 ≤ fγ∗tpw

(Kn) ≤ γ∗tpw
(Kn) = 2. Therefore,

fγ∗tpw
(Kn) = 2 for all n > 2.

Theorem 3.7. Let n be a positive integer with n ≥ 2. Then the total dr-power domination
number of the fan graph Fn = K1 + Pn of order n + 1 is given by γ∗tpw

(Fn) = 2 and its
forcing total dr-power domination number is given by

fγ∗tpw
(Fn) =

{
2, n = 2, 3,
1, n ≥ 4.

Proof. By Corollary 2.6, γ∗tpw
(Fn) = γ∗tpw

(K1 + Pn) = 2. Let
V (Fn) = {v, u1, u2, u3, . . . , un} such that deg(v) = n. Note that the γ∗tpw

-sets of Fn

are of the form {v, ui} for all ui ∈ V (Fn) and of the form {ui, uj} such that i 6= j and
{ui, uj} is a γt-set of Pn by Theorem 2.5 and Corollary 2.6. Consider the following cases:

Case 1: Suppose that either n = 2 or n = 3.
By Proposition 2.4, γt(Pn) = 2 for n = 2, 3. If n = 2, then R1 = {v, u1}, R2 = {v, u2}
and R3 = {u1, u2} are the γ∗tpw

-sets of F2. If n = 3, then R1 = {v, u1}, R2 = {v, u2},
R3 = {v, u3}, R4 = {u1, u2} and R5 = {u2, u3} are the γ∗tpw

-sets of F3. Clearly, for all
ui ∈ V (Fn) and n = 2, 3, the singleton {ui}, together with {v}, is not contained in exactly
one γ∗tpw

-set of Fn, that is, the sets {ui} and {v} are not forcing subsets for any γ∗tpw
-set of

Fn. Thus, fγ∗tpw
(Fn) ≥ 2. Then 2 ≤ fγ∗tpw

(Fn) ≤ γ∗tpw
(Fn) = 2. Therefore, fγ∗tpw

(Fn) = 2
for n = 2, 3.

Case 2: Suppose that n ≥ 4.
By Proposition 2.4, γt(P4) = 2. If n = 4, then R1 = {v, u1}, R2 = {v, u2}, R3 = {v, u3},
R4 = {v, u4}, and R5 = {u2, u3} are the γ∗tpw

-sets of F4. Clearly, {u1} ⊆ R1 and {u1} * Rl

for l = 2, 3, 4, 5, that is, {u1} is a forcing subset for R1 and so, fγ∗tpw
(R1) = 1 = fγ∗tpw

(F4).
If n > 4, then γt(Pn) > 2 by Proposition 2.4 and so, the γ∗tpw

-sets of Fn are of the form
{v, ui} for all ui ∈ V (Fn). Clearly, R = {v, u1} is the only γ∗tpw

-set of Fn containing u1.
Thus, {u1} is a forcing subset for R, that is, fγ∗tpw

(R) = 1 = fγ∗tpw
(Fn) for n > 4.

Theorem 3.8. Let n be a positive integer with n ≥ 3. Then the total dr-power domination
number of the wheel graph Wn = K1 + Cn of order n+ 1 is given by γ∗tpw

(Wn) = 2 and its
forcing total dr-power domination number is given by

fγ∗tpw
(Wn) =

{
2, n = 3, 4
1, n ≥ 5.

Proof. By Corollary 2.6, γ∗tpw
(Wn) = γ∗tpw

(K1 + Cn) = 2. Let
V (Wn) = {v, u1, u2, u3, . . . , un} such that deg(v) = n. Note that the γ∗tpw

-sets of Wn

are of the form {v, ui} for all ui ∈ V (Wn) and of the form {ui, uj} such that i 6= j and
{ui, uj} is a γt-set of Cn by Theorem 2.5 and Corollary 2.6. Consider the following cases:
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Case 1: Suppose that either n = 3 or n = 4.
By Proposition 2.4, γt(Cn) = 2 for n = 3, 4. If n = 3, then R1 = {v, u1}, R2 = {v, u2},
R3 = {v, u3}, R4 = {u1, u2}, R5 = {u2, u3} and R6 = {u1, u3} are the γ∗tpw

-sets of W3.
If n = 4, then R1 = {v, u1}, R2 = {v, u2}, R3 = {v, u3}, R4 = {v, u4}, R5 = {u1, u2},
R6 = {u2, u3}, R7 = {u3, u4} and R8 = {u4, u1} are the γ∗tpw

-sets of W4. Clearly, for all
ui ∈ V (Wn) and for n = 3, 4, the singleton {ui}, together with {v}, is not contained in
exactly one γ∗tpw

-set of Wn, that is, the sets {ui} and {v} are not forcing subsets for any
γ∗tpw

-set of Wn. Thus, fγ∗tpw
(Wn) ≥ 2. Then 2 ≤ fγ∗tpw

(Wn) ≤ γ∗tpw
(Wn) = 2. Therefore,

fγ∗tpw
(Wn) = 2 for n = 3, 4.

Case 2: Suppose that n ≥ 5.
Then γt(Cn) > 2 by Proposition 2.4 and so, the γ∗tpw

-sets of Wn are of the form {v, ui} for
all ui ∈ V (Wn). Clearly, R = {v, u1} is the only γ∗tpw

-set of Wn containing u1. Thus, {u1}
is a forcing subset for R, that is, for all n ≥ 5, fγ∗tpw

(R) = 1 = fγ∗tpw
(Wn).

Theorem 3.9. Let n be a positive integer with n ≥ 1. Then the total dr-power domination
number of the star graph Sn = K1 +Kn of order n+ 1 is given by γ∗tpw

(Sn) = 2 and its
forcing total dr-power domination number is given by

fγ∗tpw
(Sn) =

{
0, n = 1
1, n > 1.

Proof. By Corollary 2.6, γ∗tpw
(Sn) = γ∗tpw

(K1 + Kn) = 2. Let
V (Sn) = {v, u1, u2, u3, . . . , un} such that deg(v) = n. If n = 1, then R = {v, u1} is
the only γ∗tpw

-set of S1. By Theorem 3.1(i), fγ∗tpw
(S1) = 0. If n > 1, then the γ∗tpw

-sets
of Sn are of the form {v, ui} for all ui ∈ V (Sn) by Theorem 2.5. Clearly, R = {v, u1}
is the only γ∗tpw

-set of Sn containing u1. Thus, {u1} is a forcing subset for R, that is,
fγ∗tpw

(R) = 1 = fγ∗tpw
(Sn) for all n > 1.
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