Bi-interior Ideal Elements in ∧e-semigroups

Niovi Kehayopulu


All the results on semigroups obtained using only sets, can be written in an abstract form in a more general setting. Let us consider a recent paper to justify what we say. The bi-interior ideals of semigroups introduced and studied by M. Murali Krishna Rao in Discuss. Math. Gen. Algebra Appl. in 2018, follow for more general statements about ordered semigroups. The same holds for every result of this sort on semigroups based on right (left) ideals, bi-ideals, quasi-ideals, interior ideals etc. for which we use sets. As a result, we have an abstract formulation of the results on semigroups obtained by sets that is in the same spirit with the abstract formulation of general topology (the so-called topology without points) initiated by Koutsk ́y, Nöbeling and, even earlier, by Chittenden, Terasaka, Nakamura, Monteiro and Ribeiro. As a consequence, results on ordered Γ-hypersemigroups and on similar simpler structures can be obtained.


$\wedge e$-semigroup, right (left), bi-ideal, quasi-ideal element, bi-interior ideal element, left simple, simple, bi-interior simple, regular

Full Text: