Laplace-SBA Method for Solving Nonlinear Coupled Burger's Equations
DOI:
https://doi.org/10.29020/nybg.ejpam.v14i3.3932Keywords:
Laplace-SBA Method, Coupled Burgers equationAbstract
Burger’s equations, an extension of fluid dynamics equations, are typically solved by several numerical methods. In this article, the laplace-Somé Blaise Abbo method is used to solve nonlinear Burger equations. This method is based on the combination of the laplace transform and the SBA method. After reminders of the laplace transform, the basic principles of the SBA method are described. The process of calculating the Laplace-SBA algorithm for determining the exact solution of a linear or nonlinear partial derivative equation is shown. Thus, three examples
of PDE are solved by this method, which all lead to exact solutions. Our results suggest that this method can be extended to other more complex PDEs.
Downloads
Published
Issue
Section
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.