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Abstract. In this paper, we introduce an operator on a hyper BCI-algebra via application of a
left hyper-order. The family consisting of the images of subsets under the operator turns out to
be a base for some topology on the hyper BCI-algebra. We investigate some important properties
of the induced topology on certain hyper BCI-algebras. In particular, we show that the generated
topology on a non-trivial hyper subalgebra of an ordered hyper BCI-algebra coincides with the
relative topology on this hyper subalgebra.
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1. Introduction

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the
same year, K. Iséki [3] introduced the notion of a BCI-algebra which is a generalization of
BCK-algebra. R. A. Alo and E. Y. Deeba [1] attempted to study the topological aspects of
the BCK-structures. They studied and investigated various topologies on BCK-algebras
analogous to that which had already been studied on lattices. In [4], Y. B. Jun et al.
initiated the study of topological BCI-algebras (briefly, TBCI-algebras). In their study
a BCI-algebra (H, ∗, 0) is furnished with a topology in such a way that the associated
operation ∗ : H ×H → H of the BCI-algebra is continuous, where the Cartesian product
H ×H is furnished with the product topology.

During the 8th Congress of Scandinavian Mathematicians, F. Marty [6] introduced
the theory of hyperstructure (sometimes called multialgebras). Following its introduction,
various algebraic hyperstructures have been defined and many important results have
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appeared. Some recent studies on hyperstructures are on soft hypervector spaces and
hyper-deductive systems done by Muhiuddin et al. in [8], [9], and [10]. As one may find,
these hyperstructures have many applications in both pure and applied sciences.

In [5], Y.B. Jun et al. introduced and studied the concept of a hyper BCK-algebra.
In [7], Muhiuddin et al. studied fuzzy soft hyper BCK-ideals in hyper BCK-algebras. In
[13], Xin applied hyperstructures to BCI-algebras giving rise to the the concept of a hyper
BCI-algebra. A study on a graph induced by a hyper BCI-algebra is done in [11].

Previous studies on the topological aspects of certain algebraic hyperstructures mo-
tivated us to study the topological structure of a hyper BCI-algebra when it carries a
topology other the one considered in earlier studies. In this study, we purposely use the
hyper-order associated with the hyperstructure to topologize it. Specifically, we topologize
a given hyper BCI-algebra by considering a family of subsets which will form a base for
some topology on the hyper BCI-algebra. These subsets are generated via left applica-
tion of the hyper-order associated with the hyper BCI-algebra. Topological properties of
the resulting space are investigated in various aspects. In particular, we show that the
topology generated on a non-trivial hyper subalgebra of an ordered hyper BCI-algebra
coincides with the relative (subspace) topology.

2. Preliminaries

A hyperoperation on a nonempty set H is a map from H×H into the nonempty subsets
of H, P ∗(H) = P (H) \ {∅}. Let ~ be a hyperoperation on H and (x, y) ∈ H ×H. Then
its image under ~, denoted by x~y, is called the hyperproduct of x and y. If A and B are

nonempty subsets of H, then A ∗B is given by A~B =
⋃

a∈A,b∈B
a~ b. We shall use x~ y

instead of x~{y}, {x}~y, or {x}~{y}. When A ⊆ H and x ∈ H, we agree to write A~x

instead of A~ {x}. Similarly, we write x~A for {x}~A. In effect, A~x =
⋃
a∈A

a~x and

x~A =
⋃
a∈A

x~ a.

A hyper BCI-algebra (H,~, 0) (see [5]) is a nonempty set H endowed with a hyperop-
eration “ ~ ” and a constant 0 such that: for all x, y, z ∈ H,

(B1) ((x~ z) ~ (y ~ z))� x~ y,

(B2) (x~ y) ~ z = (x~ z) ~ y,

(B3) x� x,

(B4) x� y and y � x imply x = y,

(B5) 0 ~ (0 ~ x)� x, x 6= 0,

where for every A,B ⊆ H, A � B if and only if for each a ∈ A, there exists b ∈ B such
that 0 ∈ a ~ b. In particular, for every x, y ∈ H, x � y if and only if 0 ∈ x ~ y. In such
case, we call “ � ” the hyper-order in H. A hyper BCI-algebra (H,~, 0) is said to be
ordered if for x, y, z ∈ H, x� y and y � z implies x� z.

All throughout, we denote a hyper BCI-algebra (H,~, 0) by H, unless otherwise spec-
ified.
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Let H be a hyper BCI-algebra and A ⊆ H. In [11], the set LH(A) is given by
LH(A) = {x ∈ H | x � a,∀ a ∈ A} = {x ∈ H | 0 ∈ x ~ a,∀ a ∈ A}. If A = {a},
we write LH({a}) = LH(a). An element a of H is called a hyperatom if for each x ∈ H,
x � a implies x = 0 or x = a. Denote by A(H) the set of all hyperatoms of H, and by
A∗(H) the set of all nonzero hyperatoms of H; that is, A∗(H) = A(H) \ {0}. H is said to
be hyperatomic if each element of H is a hyperatom, that is, A(H) = H. It is shown in
[11] that H is hyperatomic if and only if LH(x) = {x} or LH(x) = {0, x} for each x ∈ H.

3. Results

The following result gives some properties of the operator LH .

Proposition 1. [11] Let A and B be subsets of H. Then the following hold:

(i) LH(∅) = H

(ii) LH({0}) = {0}

(iii) If A ⊆ B, then LH(B) ⊆ LH(A).

(iv) LH(A) =
⋂
a∈A

LH({a})

(v) If x ∈ H, then x ∈ LH({x}). Furthermore, LH({x}) = {0} if and only if x = 0.

Theorem 1. [2] Let (X, τ) be a topological space and (Y, τY ) be a subspace. If {Uα |α ∈
A } is a basis (subbasis) for τ , {Y ∩ Uα |α ∈ A } is a basis (subbasis) for τY .

Lemma 1. Let {Aα : α ∈ I} be a collection of subsets of a hyper BCI-algebra H. Then

⋂
α∈I

LH(Aα) = LH

(⋃
α∈I

Aα

)
.

Proof. If
⋂
α∈I

LH(Aα) = ∅, then by Proposition 1(iii), LH

(⋃
α∈I

Aα

)
⊆
⋂
α∈I

LH(Aα) =

∅. Thus, LH

(⋃
α∈I

Aα

)
= ∅. If

⋂
α∈I

LH(Aα) 6= ∅, then

x ∈
⋂
α∈I

LH(Aα) ⇔ x ∈ LH(Aα) for all α ∈ I

⇔ x� a for all a ∈ Aα and for all α ∈ I
⇔ x� a for all a ∈

⋃
α∈I

Aα

⇔ x ∈ LH

(⋃
α∈I

Aα

)
.

This proves the assertion.



M. Panganduyon, S. Canoy, Jr., B. Davvaz / Eur. J. Pure Appl. Math, 14 (2) (2021), 590-600 593

Theorem 2. Let H be a hyper BCI-algebra. Then the family BL(H) = {LH(A) : ∅ 6=
A ⊆ H} is a basis for some topology on H.

Proof. Clearly, H =
⋃
a∈H

LH(a). Let A and B be nonempty subsets of H. Then by

Lemma 1, LH(A) ∩ LH(B) = LH(A ∪B) ∈ BL(H). Therefore, BL(H) is a basis for some
topology on H.

Denote by τL(H) the topology generated by BL(H).

Example 1. Consider H := [0,∞) with the hyperoperation “ ~ ”, defined in [13]:

x~ y :=


[0, x], if x ≤ y,
(0, y], if x > y 6= 0,

{x}, if y = 0

for all x, y ∈ H. Then (H,~, 0) is a hyper BCI-algebra. Now, let k ∈ H. Then LH(k) =

[0, k]. Let ∅ 6= A ⊆ H and let p = inf A. Since LH(A) =
⋂
a∈A

LH(a) = LH(p), it follows

that LH(A) = [0, p] = LH(p). Let ∅ 6= G ∈ τL(H). Then G =
⋃
p∈K

LH(p), where K ⊆ H.

Suppose first that |G| < ∞ and let q = supG. Then G = LH(q). Suppose q > 0. Then
G = LH(q) = [0, q], a contradiction. Thus, q = 0, that is, G = LH(0) = {0}. Next,

suppose that G is an infinite set. If K is infinite, then G =
⋃
p∈K

[0, p] = H. Suppose

K is finite. Since G is infinite, 0 < m = maxK. Hence, G = [0,m]. Consequently,
τL(H) = {∅, H} ∪ {[0, p] : p ∈ H}.
Example 2. Consider H = {0, a, b} with the hyperoperation “ ~ ” defined as follows:

~ 0 a b

0 {0, a} {0, a} {b}
a {a} {0, a} {b}
b {b} {b} {0, a}

Then H is a hyper BCI-algebra. By Theorem 2, BL(H) = {LH(A) : ∅ 6= A ⊆ H} =
{{0}, {0, a}, {b},∅}. Thus, τL(H) = {{0}, {0, a}, {b}, {0, b},∅, H}.

Observe that in Example 1, (H, τL(H)) is connected, however, in Example 2, H =
{0, a} ∪ {b}. Hence, (H, τL(H)) is disconnected.

Lemma 2. Let H be an ordered hyper BCI-algebra and let x ∈ H. If z ∈ LH(x), then
LH(z) ⊆ LH(x).

Proof. Suppose that z ∈ LH(x) and let w ∈ LH(z). Then w � z. Since z � x and H
is ordered, w � x; that is, w ∈ LH(x). Therefore, LH(z) ⊆ LH(x).

An ordered hyper BCI-algebra H is said to be LH -0 hereditary if
0 ∈ LH(z) for all z ∈ LH(x) whenever x ∈ H with 0 ∈ LH(x).
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Example 3. The hyper BCI-algebra H in Example 2 is LH -0 hereditary.

Theorem 3. Let H be an LH-0 hereditary hyper BCI-algebra. Then
(H, τL(H)) is connected if and only if 0 ∈ LH(x) for all x ∈ H.

Proof. Suppose that (H, τL(H)) is connected and suppose that there exists x ∈ H \{0}
such that 0 /∈ LH(x). Set D1 = {z ∈ H : 0 /∈ LH(z)} and D2 = H \ D1. Since
0 /∈ LH(x) and 0 ∈ LH(0), D1 6= ∅ and D2 6= ∅. Let z ∈ D1 and let w ∈ LH(z). Then
LH(w) ⊆ LH(z) by Lemma 2. Since 0 /∈ LH(z), 0 /∈ LH(w); that is, w ∈ D1. Thus,
z ∈ LH(z) ⊆ D1 and so, D1 is τL(H)-open. Next, let y ∈ D2 and let v ∈ LH(y). Since
0 ∈ LH(y) and H is LH -0 hereditary, it follows that 0 ∈ LH(x); that is, v ∈ D2. Hence,
y ∈ LH(y) ⊆ D2 and so, D2 is τL(H)-open. Since D1 ∩ D2 = ∅ and D1 ∪ D2 = H, the
space is disconnected, contrary to our assumption.

For the converse, let G be a non-empty open subset of H. Then there exists A ⊆ H
such that LH(A) ⊆ G. Since 0 ∈ LH(x) for all x ∈ H, 0 ∈ LH(A). Thus, 0 ∈ G. It follows
that (H, τL(H)) is connected.

The next result follows from Theorem 2 and the definition of discrete topology.

Proposition 2. Let H be a hyper BCI-algebra. Then τL(H) is the discrete topology D on
H if and only if for each x ∈ H, there exists Ax ⊆ H such that LH(Ax) = {x}.

Corollary 1. Let H be a hyper BCI-algebra. If LH(x) = {x} for each x ∈ H, then τL(H)
is the discrete topology D on H. In particular, BL(H) = {{a} : a ∈ H}.

Proof. Suppose that for each x ∈ H, LH(x) = {x}. Then by Proposition 2, τL(H) is
the discrete topology D on H. Furthermore, for any A ⊆ H with |A| ≥ 2, LH(A) = ∅.
Therefore, BL(H) = {{a} : a ∈ H}.

Example 4. Consider H = {0, a, b} with the hyperoperation “ ~ ” defined as follows:

~ 0 a b

0 {0} {b} {a}
a {a} {0} {b}
b {b} {a} {0}

Then H is a hyper BCI-algebra. By Theorem 2,

BL(H) = {LH(A) : ∅ 6= A ⊆ H} = {{0}, {a}, {b},∅}.

Thus, τL(H) = {{0}, {a}, {b}, {0, a}, {0, b}, {a, b},∅, H} = D .

Theorem 4. If H is a finite hyper BCI-algebra, then the family SL(H) = {LH(a) : a ∈ H}
is a subbase of τL(H).

Proof. That SL(H) ⊆ τL(H) is evident. Since LH(A) =
⋂
a∈A

LH({a}) for each

nonempty A ⊆ H, it follows that every element of BL(H) is a finite intersection of members
of SL(H). Hence, SL(H) is a subbase of τL(H).
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Proposition 3. Let H be a hyper BCI-algebra with |H| ≥ 2. Then

BL(H) ={{a} : a ∈ A∗(H), 0 /∈ LH(a)} ∪ {{0, a} : a ∈ A∗(H), 0 ∈ LH(a)}
∪ {LH(A) : A ∩A∗(H) = ∅}.

Proof. For each a ∈ A∗(H), either LH(a) = {a} or LH(a) = {0, a}. Let A be a
nonempty subset of H such that A∩A∗(H) 6= ∅, say q ∈ A∩A∗(H). Since LH(A) ⊆ LH(q)
(by Proposition 1(iii)) and LH(q) ∈ {{q}, {0, q}}, it follows that LH(A) ∈ {{0}, {q}, {0, q}}.

Corollary 2. Let H be a hyper BCI-algebra such that 0 ∈ LH(x) for each x ∈ H \ {0}
with |H| ≥ 2. Then BL(H) = {{0, a} : a ∈ A∗(H)} ∪ {LH(A) : A ∩A∗(H) = ∅}.

Corollary 3. Let H be a hyper BCI-algebra such that 0 ∈ LH(x) for each x ∈ H \ {0}
with |H| ≥ 2. If A∗(H) = {a}, then BL(H) = {{0, a}} ∪ {LH(A) : a /∈ A}.

Theorem 5. Let H be a hyper BCI-algebra with |H| ≥ 2. Then BL(H) = {{0}} ∪ {{a} :
a ∈ H \{0}, 0 /∈ LH(a)}∪{{0, a} : a ∈ H \{0}, 0 ∈ LH(a)} if and only if H is hyperatomic.

Proof. Suppose H is hyperatomic. Then for any nonempty subset A of H such that
A 6= {0}, A ∩ A∗(H) 6= ∅. Thus, {LH(A) : A 6= ∅ and A ∩ A∗(H) = ∅} = {{0}}. The
result then follows from Proposition 3.

For the converse, suppose that BL(H) is the given family of subsets of H. Let a ∈
H \ {0}. Then either LH(a) = {a} or LH(a) = {0, a}. Hence, if x ∈ H and x � a, then
either x = a or x = 0. Thus, a ∈ A(H). Therefore, H is hyperatomic.

Example 5. Refer to Example 2. It is easy to verify that H is hyperatomic.

Corollary 4. Let H be a hyper BCI-algebra such that 0 ∈ LH(x) for each x ∈ H with
|H| ≥ 2. Then BL(H) = {{0}} ∪ {{0, a} : a ∈ H \ {0}} if and only if H is hyperatomic.

Theorem 6. Let H be a hyperatomic hyper BCI-algebra. Then A ∈ τL(H) if and only if
A = ∅ or 0 ∈ A or 0 /∈ LH(a) for all a ∈ A.

Proof. Let A ∈ τL(H) \ {∅} and let a ∈ A. Since BL(H) is a basis for τL(H), there
exists Ba ⊆ H such that a ∈ LH(Ba) ⊆ A. Since H is hyperatomic, LH(b) = {b} or {0, b}
for each b ∈ Ba. If a = 0, then 0 ∈ A. Suppose that a 6= 0 and let b ∈ Ba. Then b 6= 0 and
a ∈ LH(b). Hence, a = b; that is, Ba = {a}. Thus, LH(Ba) = LH(a) = {a}. Therefore,
either 0 ∈ A or 0 /∈ A and LH(a) = {a} for each a ∈ A.

For the converse, suppose first that 0 /∈ LH(a) for each a ∈ A. Then A =
⋃
a∈A

LH(a) ∈

τL(H). Next, suppose that 0 ∈ A. Since LH(x) = {x} or {0, x} for all x ∈ H, it follows
that LH(a) ⊆ A for all a ∈ A. Thus,

A =

 ⋃
a∈A

0∈LH(a)

LH(a)

⋃
 ⋃

a∈A
0/∈LH(a)

LH(a)

 ∈ τL(H).
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This proves the assertion.

Recall that for a nonempty set X and a fixed p ∈ X, the topology τp given by τp =
{∅} ∪ {A ⊆ X : p ∈ A} is called the particular point p topology on X (see [12]). The next
result gives a characterization of τL(H) involving a particular point topology.

Theorem 7. Let H be a hyper BCI-algebra such that LH({x, y}) = {0} for every pair of
distinct points x and y of H. Then τL(H) is the particular point 0 topology τ0 on H if
and only if H is hyperatomic.

Proof. Suppose that H is hyperatomic. Then by Corollary 4, BL(H) = {{0}}∪{{0, a} :
a ∈ H \ {0}}. Since BL(H) is a basis for τL(H),

A ∈ τL(H) ⇔ A = ∅ or A = {0} or A =
⋃
a∈A
{0, a}

⇔ A = ∅ or 0 ∈ A
⇔ A ∈ τ0.

Thus, τL(H) = τ0.
For the converse, suppose that τL(H) = τ0 and let x ∈ H \ {0}. Then {0, x} ∈ τL(H).

Since BL(H) is a basis for τL(H), there exists a subset A of H such that x ∈ LH(A) ⊆
{0, x}. Hence, LH(A) = {x} or LH(A) = {0, x}. Now, since 0 ∈ LH(a) for each a ∈ A,
LH(A) = {0, x}. If A = ∅, then by Proposition 1(i), LH(A) = H = {0, x}. Hence, H is
hyperatomic. If A 6= ∅, then |A| = 1 (otherwise, LH(A) = {0} which is a contradiction).
Therefore, since y ∈ LH(y) for each y ∈ H, A = {x}, that is, LH(A) = LH(x) = {0, x}.
This shows that H is hyperatomic.

Remark 1. The condition LH({x, y}) = {0} for each pair (x, y) ∈ H ×H, where x 6= y,
cannot be omitted. The hyper BCI-algebra in Example 2 is hyperatomic but does not satisfy
this condition. Hence, τL(H) 6= τ0.

Theorem 8. Let H be a hyperatomic hyper BCI-algebra and let A,F ⊆ H. Then with
respect to τL(H),

(i)

int(A) =


A if A = ∅ or 0 ∈ A

or 0 /∈ LH(a) ∀ a ∈ A,
A \ {a ∈ A : 0 ∈ LH(a)} otherwise; and

(ii)

F =


F if 0 ∈ F and 0 /∈ LH(x) ∀x ∈ H \ F

or 0 /∈ F,
F ∪ {x ∈ H \ F : 0 ∈ LH(x)} otherwise.
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Proof.

(i) If A = ∅ or 0 ∈ A or 0 /∈ LH(a) for all a ∈ A, then A ∈ τL(H) by Theorem 6. Thus,
intA = A. Now, suppose A /∈ τL(H). Then A 6= ∅, 0 /∈ A, and there exists a ∈ A
such that 0 ∈ LH(a) by Theorem 6. Let BA = A \ {x ∈ A : 0 ∈ LH(x)}. Clearly,
BA ( A. Let z ∈ BA. Then 0 /∈ LH(z). By Theorem 6, BA ∈ τL(H).

Next, let G ∈ τL(H) such that G ⊆ A and let v ∈ G. Since 0 /∈ A, 0 /∈ G. Hence, by
Theorem 6, 0 /∈ LH(v), that is, v ∈ BA. Therefore, intA = BA.

(ii) Suppose first that 0 /∈ F . Then 0 ∈ H \ F = F c; hence F c ∈ τL(H) by Theorem 6.
If 0 ∈ F and 0 /∈ LH(x) for all x ∈ F c, then by Theorem 6, F c ∈ τL(H). Thus, in
both cases, F is a τL(H)-closed set. Therefore, F = F .

Next, suppose that 0 ∈ F and there exists x ∈ H \ F such that 0 ∈ LH(x). Let
Q = F ∪ {z ∈ H \ F : 0 ∈ LH(z)} and let q ∈ Qc. Then 0 /∈ Qc and 0 /∈ LH(q). By
Theorem 6, Qc ∈ τL(H), that is, Q is τL(H)-closed. Now, let w ∈ H \ F such that
0 /∈ LH(w). Then LH(w) = {w} is a neighborhood of w with LH(w)∩F = ∅. Thus,
w /∈ F . Therefore, the smallest closed set containing F is Q, that is, F = Q.

Theorem 9. Let H be a hyper BCI-algebra and let D ( H.

(i) If 0 ∈ LH(x) for all x ∈ H, then D is dense in H if and only if 0 ∈ D.

(ii) If H is hyperatomic, then D is dense if and only if 0 ∈ D and 0 ∈ LH(x) for all
x ∈ H \D.

Proof.

(i) If D is dense in H, then LH(0) ∩D 6= ∅. Hence, 0 ∈ D. Next, suppose that 0 ∈ D
and A ⊆ H with LH(A) 6= ∅. Since 0 ∈ LH(a) for all a ∈ A, 0 ∈ LH(A). Thus,
LH(A) ∩D 6= ∅. Therefore, D is dense in H.

(ii) Suppose D is dense in H. Then 0 ∈ D. Since D 6= H, D is not τL(H)-closed
(otherwise, D = D 6= H, a contradiction.) Thus, by Theorem 8 and the assumption
that D is dense, D = D ∪ {x ∈ H \ D : 0 ∈ LH(x)} = H. Therefore, 0 ∈ LH(x)
for all x ∈ H \ D. For the converse, suppose that the given conditions hold. By
Theorem 8, D = H. Thus, D is dense in H.

Lemma 3. Let K be a hyper subalgebra of a hyper BCI-algebra H. Then

(i) A∗(H) ∩K ⊆ A∗(K); and

(ii) LK(D) = LH(D) ∩K for every D ⊆ K.

(iii) LH(A) ∩K ⊆ LH(A ∩K) for any A ⊆ H.
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Proof.

(i) Let a ∈ A∗(H) ∩K. Then a ∈ K and for all x ∈ H, x � a implies that x = a or
x = 0. In particular, for all y ∈ K, y � a implies y = 0 or y = a. Thus, a ∈ A∗(K).

(ii) Let D ⊆ K. Then z ∈ LK(D) if and only if z ∈ K and z � d for all d ∈ D. Thus,
z ∈ LK(D) if and only if z ∈ K ∩ LH(d) for each d ∈ D ⊆ K ⊆ H. Consequently,
LK(D) = K ∩ LH(D).

(iii) Let A ⊆ H. Since A ∩K ⊆ A, by Proposition 1(iii), LH(A) ⊆ LH(A ∩K). Thus,
LH(A) ∩ K ⊆ LH(A ∩ K) ∩ K = LK(A ∩ K), by (ii). Hence, LH(A) ∩ K ⊆
LK(A ∩K).

Lemma 4. Let K be a hyper subalgebra of an ordered hyper BCI-algebra H. Then for

any ∅ 6= A ⊆ H, LH(A) ∩K =
⋃

x∈LH(A)∩K

LK(x).

Proof. Let ∅ 6= A ⊆ H and x ∈ LH(A) ∩ K. Then x � a for all a ∈ A and
x ∈ K. Let y ∈ LH(x) ∩K. Then y � x and y ∈ K. Since H is ordered, y � a for all
a ∈ A. Hence, y ∈ LH(A) ∩ K showing that LH(x) ∩ K ⊆ LH(A) ∩ K. Consequently,⋃
x∈LH(A)∩K

(LH(x) ∩K) ⊆ LH(A) ∩K.

Next, let z ∈ LH(A)∩K. By Proposition 1(v), z ∈ LH(z). It follows that z ∈ LH(z)∩K
showing that LH(A) ∩ K ⊆ LH(z) ∩ K. Thus, LH(A) ∩ K ⊆

⋃
x∈LH(A)∩K

(LH(x) ∩ K).

Therefore, by Lemma 3(ii),

LH(A) ∩K =
⋃

x∈LH(A)∩K

(LH(x) ∩K) =
⋃

x∈LH(A)∩K

LK(x).

This proves the assertion.

Theorem 10. Let K be a hyper subalgebra of an ordered hyper BCI-algebra H with |K| ≥
2. Then τL(K) coincides with the relative topology τK on K.

Proof. By Theorem 1 and Theorem 2, bases for τK and τL(K) are given by the families
BK = {LH(A) ∩K : ∅ 6= A ⊆ H} and BL(K) = {LK(A) : ∅ 6= A ⊆ K}, respectively.

Let U = LH(A) ∩ K ∈ BK and let x ∈ U . Since x ∈ LH(x) and x ∈ K, x ∈
LH(x)∩K = LK(x) by Lemma 3. By Lemma 4, LK(x) ⊆

⋃
y∈LH(A)∩K

LK(y) = LH(A)∩K.

Take U ′ = LH(x). It follows that τK ⊆ τL(K).
To show the other inclusion, let U ∈ BL(K). Then there exists B ⊆ K such that

U = LK(B). By Lemma 3, U = LK(B) = LH(B) ∩K ∈ BK . Hence, BL(K) ⊆ BK , that
is, τL(K) ⊆ τK . Therefore, τL(K) = τK .
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Conclusion: An operator on the power set of a hyper BCI-algebra into the family of its
nonempty subsets had been defined via left application of the hyper-order associated with
the hyper BCI-algebra. The collection of images of subsets under this operator turned
out to be a basis for some topology on the given hyperstructure. The topological space
generated in this way enabled us to look into the topological structure of hyper BCI-algebra
in many ways. In particular, under some conditions on the hyper BCI-algebra, elementary
concepts associated with the space such as open, closed, density, closure, interior, and
relative space had been described or characterized.

The topological space generated in this study may be studied further for other topo-
logical aspects such as connectedness and compactness. Also, if it were possibe to define
hyper-orders on the sum (or join) and product of two hyper BCI-algebras so as to obtain
two hyper BCI-algebras, it would be interesting to know what the respective bases would
be for the sum and product. Further, it may be worthwhile to investigate whether or not
the right application of the hyper-order or the combination of the left and right applica-
tions will also give rise to a topological space. If any of these does, then one needs to know
if the resulting space is the same (or homeomorphic) to the one generated in this study.
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