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1. Introduction

The Apostol-Genocchi polynomials Gy, (x; \) are defined by the generating function

Ad+1 Z};xA (1.1)

where |t| < 7 when A = 1 and |[t+log A| < m when A # 1. When A = 1, the above equation
gives the generating function of the Genocchi polynomials [3].

When z = 0, (1.1) reduces to the generating function of the Apostol-Genocchi numbers
G (0; \) given by

A%H ZGOA (1.2)

For A not zero, the set of poles of the generating function (1.1) is
={(2k+ 1)mi —log\: k € Z}, (1.3)
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which is also the set of poles of (1.2), where the logarithm is taken to be the principal
branch.

Bayad [2] and Luo [13] derived Fourier series of Apostol-Genocchi polynomials ex-
pressed in terms of these poles. The Fourier series they obtained is given in the next
section. Fourier expansion of higher-order Apostol-Genocchi polynomials was derived in
[4] and was shown to be reducible to those obtained in [2] and [13] when the order is 1.

New identities involving the Apostol-Genocchi polynomials were established in [9].
Some generalizations and properties of these polynomials were presented in [14]. Multipli-
cation and explicit recursive formulas of higher-order Apostol-Genocchi polynomials were
obtained in [12]. A new generalization of Apostol type Hermite-Genocchi polynomials is
studied in [1] while products of the Apostol-Genocchi polynomials were studied in [10].
Moreover, the higher-order convolutions of these polynomials using generating-function
methods and summation-transform techniques were established in [11].

Inspired by the work of Kim and Kim [7], a new class of the Frobenius-Genocchi
polynomials was considered in [6] by means of the polyexponential function and new
relations and properties were obtained. New relations on g-Genocchi polynomials where
the relations were stated by symmetric group of degree n were done in [5].

Navas, Ruiz and Varona [15] obtained asymptotic estimates of the Apostol-Bernoulli
and Apostol-Euler numbers and polynomials and further analyzed the asymptotic behavior
of the Apostol-Bernoulli polynomials in detail. The starting point of their analysis is the
Fourier series of the polynomials on the closed interval [0, 1] followed by ordering the poles
of the generating function.

In this paper, asymptotic approximations of the Apostol-Genocchi numbers and poly-
nomials for A € C\{0} are obtained. The method used in [15] is applied to the Apostol-
Genocchi numbers and polynomials to obtain asymptotic formulas of these numbers and
polynomials. A more detailed proof of the results is provided so as to reach a bigger group
of readers. Asymptotic formulas of Genocchi numbers and Euler numbers are obtained as
special cases. Asymptotic formulas of the Apostol-Euler numbers and Apostol-Euler poly-
nomials are also derived. The results in this paper will complete the results of [15] as the
latter considered only the Apostol-Bernoulli and Apostol-Euler polynomials. Moreover,
the results can be used as check formulas of those in [15].

2. Asymptotic Approximations

Fourier series of the Apostol-Genocchi polynomials in terms of the poles in T) is given
in the following theorem.

Theorem 2.1. ([2], [13]) Let A\ € C\{0}. Forn >1,0<xz <1,
Gn(1‘7)\) 9 Z e(2k+1)miz

| = Nz T n’
n! A = [(2k 4+ 1)mi — log A]

(2.1)

where the logarithm is taken to be the principal branch.
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Taking = = 0 in (2.1) gives the Fourier series of the Apostol-Genocchi numbers given
by
Gr(0; ) 1

| - Z - n’
n! = [(2k + 1)mi — log A]

(2.2)

where the logarithm is taken to be the principal branch.

Proceeding as in [15], ordering of the poles of the generating function (1.1) is done in
the following lemma.

Lemma 2.2. Let up = (2k 4+ 1)wi — log A with k € Z, A € C\{0} and v = (log \) /2w,
where the logarithm is taken to be the principal branch.

a) If Jm A >0 then 0 < Re v < 3 and for k > 1,
luo| < Ju—1] < |ur| < |u—g| < |ug| < -+ <|u—g| < Jug| < --- (2.3)
b) Ifjm)\<0then—%<9‘ie’y<0andfork:Zl,

lu_1] < |uo| < |u—z| < |ui| < |u_g| <---
< \u,kl < |uk,1| < |u,(k+1)| < \uk\ < --- (2.4)

c) If X > 0 (positive real number), then Re v =0, and for k > 1,

[uo| = [u—1| < |ur] = [u_2| < |ug| <---

< il < k] = o] < fagsa] <o (2.5)
d) If A <0 (negative real number), then Re v = %, and for k> 1,
o] < ] = Jur] < [ua] = Jual < -+ < Ju] = Jus] < Jugsr]| <. (26)

Moreover, |ug| > 2n(|k| — 1) if |k| > 1.

Proof. With the logarithm taken to be the principal branch, v (as a function of \)
maps A € C\{0} to the strip —3 < Re v < 1 (see [15]). To see this write

6  In|A|
= — —7
2 o
from which we have N
Re v = — and TJm ——HH
27
With —7m <0 <,
- 0 T — 1
— < Revy=—< —= — <Re~y < =
o T T Sy T g ST Sy
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where e v = 0 when A > 0 and Re v = 5 when A < 0.
If Jm A > 0, then 0 < § < m, hence 0 < Re v < 3. If Jm A\ < 0, then —7 < 6 < 0,
hence —%<9‘ie’y<0.

To verify the chains in (2.3), (2.4), (2.5), (2.6), let x = PRe v and y = Jm 7. Then for
k €7,

1 2 1 2

’u_1=27r\/ 5% +y2=27r\/(2+x + 32
3 2

(2—|—x + y?
5 2 5 2

”U,_3—27T\/ —i—x +y2_27r\/ 2+x> + 92

From which one can see that the order of magnitude of ug, &k € Z given in (2.3)
holds.

b) The second case can be derived similarly.

The last two cases are belonging to the case Jm A = 0. This means that A is a real
number which is either positive or negative but not zero. Hence the cases ¢ and d.

c) If A >0, then Re v =0. For k£ > 0,

1\ 2
lug| = 27 <k:—1—2> + 32
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In particular,
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From which we have the chain

luo| = |u—1| < |u1| = |u_a| < |ug| <---

<ug| = Ju_gegny| < |ugyr| < -+,

which is exactly (2.5).
d) IfA<0, 0 =m, hencex:%. For k > 0,

]uk] = 27T\/ k‘2 +y2 = \u,k],

from which it can be observed easily that

luo| < |u1| = [u—1] < |uz| = [u—2| < |us| = |u_3|
< <& ‘uk‘ = ’ufk| < e

which is exactly the chain in (2.6).

Moreover,

1
b4+ = —
+2’y

1 2
=27 (k:+2—x> + y?
1 2
> 27 (k:+2— :E)

\uk\ =27

670
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1 1 1
=27 k‘+§— x|, With—§§l‘§§
1
=27 k—(x —)’
2
1
>2 k|l — |z — =

An asymptotic expansion of the Apostol-Genocchi numbers G, (0; \) is given in the
next theorem.

Theorem 2.3. Given \ € C\{0}, let H be a finite subset of Ty satisfying
max {|u] : v€ H} <min {|u| : ue T\\H} :=v.
For all integers n > 2,

Gn(0;A)

n!

=2 Z ui” +O0(@w™").

ueH
Proof. Write the series in (2.2) as >, ﬁ By Lemma 2.2 we can relabel the set of
poles in increasing order of magnitude as

kol < lpa| <o < pm <o

Since |p| > 27 (]k| — 1), for k > 2, the series ), ﬁ is absolutely convergent for n > 2.
For any M > 2, the tail of the series is

o0 n

g Dl
n n
ke 1P ™ S 1
n 2
Since for k > M + 1, % < 1, we have “i‘f}jl < ‘“]‘5;1 for n > 2.
Hence,
| 1 > 2
Z < Z Mar41
n — n
W ekl e ™, S L
Let
. Mar41 2
Cua= D
i1 ! HF
Then

o0

Z 1 < CM,)\

WS el T s
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Consider Cr »:

> |MM+1\2
Cua= 3 it

BT | o]
> 1
= |MM+1’2 Z T2
k=M+1 ||
1 2 X 1
- (ony >
2 jonrr M2k + 4 —
3 2 X 1
I S
2 k%+1(|k|_1)2
3 P 1
<2|M+2—
' 27 Z < (M +1)?
3 o0
< 2'M+2— ( z; )

With
> > 1 1
Soas ;o=
— (M +1) 1 (M +2x) M +1
3 /1 1
Cur<2|M+S— e
M = ‘ Ty <M2+M+1>
3 2 3 2
_2|M+3 -+ +2\M+§—7\
M?2 M+1 '
Let )
3 2
61:\M+§—7\ <2,
M2 — 12 ’
and ‘ 5 ‘
M+35—v 11/2—+| 1
=2 <14 1+|=—~l.
2 M+l Ty s T2
Consequently,
C’m/\ €1 ‘ ‘
— < +2 M+ -
lara ™ 7 (] |MM+1|"

261 262 ‘M+3/2 ’}/’

= |pma " ltar41]"
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where

3 3 2
|MM+1’:‘M+2—’V‘=\/(M+—9%’}/> + (Im )2 > M| - 2.

2
€1 €2
Cua <
MA S 9nTon M +3/2 A" | 2 Lan [M 4 3/2 — ]
< €1 n €2
T lan (M =2 2n e (M) - 2)"
5/2 =1 1+11/2 -+l

=T (M2 T e (M- 2

52— 14/2-y
— 2n—lﬂn 2n—1ﬂn :

We can see that Cy;x — 0 as n — oo for [M| > 2. Thus, the tail of the series,

o0

1
Z — 0 as n — oo.
kari ]

Moreover, for fixed M > 2 and n > 0, Cjy )y is bounded and independent of M. Hence,
we can replace Uy x by C). This completes the proof of the theorem.

When A = 1,log A = 0 and ug, = (2k+ 1)7i, k € Z. Take H = {mi, —mi}. Then v = 37
and the ordinary Genocchi numbers G,, = G,,(0; 1) satisfy
Gn Gr(0;1) 1 1

2(n!) - 2(n!) - (mi)n + (—mi)" +O((3m)™"). (2.7)

An approximation of G,,(0;1) is given by

Gn 1 1
2(n!) ~ (wi)r T (—wi)

(2.8)

For odd n,n > 3, it is known that G,, = 0 which is also true when we use (2.8). For even
indices,

o) (2.9)

GQn ~ 71'2”

Taking n = 4,
4(8!)

8

~ 16.99.

(;8;3
This value is very close to the exact value of Gg which is 17.

It is proved in the next theorem that an asymptotic approximation of the Apostol-
Genocchi polynomials can be obtained from its Fourier series (2.1) by choosing an appro-
priate subset of T).
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Theorem 2.4. Given A\ € C\{0}, let H be a finite subset of T\ satisfying

max{|u| :u € H} <min{lu|:u € Th\H} :=v.
For all integers n > 2, we have, uniformly for x in a compact subset K of C,

Gl ) cue ol
= un“)(yn :

u € H

where the constant implicit in the order term depends on A\, H and K. Moreover, for
n > 0, this constant can be made independent of K, equal to the constant for the Apostol-
Genocchi numbers, corresponding to the case x = 0.

Proof. From the generating function (1.1) we have

2zelety)z > P
et +1 HZ:OG"(‘r MCRUE

The LHS can be written

2ze"* > z" 2 (y2)"
oY — N

. n Lm—k (yz)k
=22 Cnile:) (n—k) Kl
n=0 k=0
- (Z (3) Gnoste W) z,
n=0 \k=0
from which
Gn(z +y;\) = <Z) G (3 \)y".
k=0
For z € C, writing z =0+ z (here y = z,x = 0),
Gn(z;\) = Z <Z> (0, 02",
k=0
n! — (n—Fk)! k!
n 1 —(n—k) Zk
=2 Z — +O(v ) o (by Theorem 2.3)
k=0 \ue " ’
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where the implicit constant c in the order term is that corresponding to z = 0 and only
depends on H and A. Note also that

n k

AN/
EjO(V +’f)7k!
k=0

< . —n+k|zk|
<2 o

n k
A Ll
—an Y

k=0
< cv "en(vz]),

k
where e, = > ) _o %y

To prove the theorem, it remains to show that

(7

el (uz) _ e - en(uz)

u" u"
is bounded.
Using MVT for Banach spaces (see also [15])

wn+1 wn+2
W)= oI T
wn+1 w w2
= —— 31+ + ot
(n+1)!{ n+2 (n+3)(n+2) }
from which
n+1 w ’UJ2
* < |11
|€”(w)|_’(n+1)! +n+2+(n+3)(n+2)+ ‘
~ (n+1)! ’
where Ret (w) = max{Re(w),0}.
Since |u| < v, for all u € H, we have
len(uz)| _ el juz|"*!
ur| 7 Jun|(n + 1)!
_ et 12
(n+1)!
< l/el/|z| ‘Z‘n—’—l
(n+ 1)V

so that
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< et EL
n+ 1)
where #H = no. of elements in H.
We give the argument that
#Hl/e”‘z|7|z‘n+l < ey
(n+1)!
! (v]z))"*
v|z|)®
j 2 iV
# (n+1)! <G

which certainly holds for n > 0, uniformly for z in a compact subset K C C.

Corollary 2.5. Let K be an arbitrary compact subset of C. The Genocchi polynomials
satisfy uniformly on K the estimates

G2n(x) (*1)” 4 cosx 637r\x|
= - >
(2n)' 71'2” + O (37_‘_)” 9 n -~ 2,
Gant1(x) (=1)" 4sinmx 37l
= VSR >
(2n+1)! mentl +0 (3m)n | n >3,

where the implicit constant in the order term depends on the set K. Moreover, for n >
0, this constant can be made independent of K, equal to the constant for the Genocchi
numbers, corresponding to the case x = 0.

Proof. The Genocchi polynomials correspond to the case A = 1 so that u = (2k+ 1),
for k € Z. Thus, Th = {(2k + 1)mi : k € Z}. Taking H = {(2k+ 1)mi | k = —1,0} =
{—mi,mi}, then v = |37wi| = 3w. From Theorem 2.4,

Gn(z;1) evr e’ll
n! =2 Z i +0 < vn

uel ‘
=2 (St () 0 <<33”>|> |

Gon(z)  Gonlz;1)
(2n)!  (2n)!

(i ) o ()

B 4cosTx L0 e37lel
- (m')zn (371.)271

For even indices,
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_ (=1)" 4cosTx 3l
= —an +0 G )
For odd indices,

Gony1(x) _ Gant1(z; 1)
Gnt)! - (@2ntl)

e emiT e3mlzl
—1)" 2sin7x o3l
oLz ((3))
_ (=) (4sin7x) L0 <e37f|ff> |

7r2n+1 (37r)'n,

Notice the resemblance of the results in Corollary 2.5 and of (33) in [3].
Since, for k = 2n,

cos (mx — ?ﬂ) =t cosmx = (—1)" cosmz,
(33) in [3] can be written as

Gon(z) = 4(5322)!) [(=1)"cosma + O(37")]

Gau(w) _ (-1)"dcosme (3—n>

(2n)! 2n 2n
_ (—1)7;4220s LN <(371r)n>
_ e (;;;;) | fraek.
For odd k (k =2n + 1),
CoS T — %T = (—1)"sinrmzx.

Then (33) in [3] can be written as

4((2n + 1)! . om
Gont1(z) = ((7r2n+1)) [(—1) sinmtx + O <3 (2 +1)>}
Gong1(z)  (—1)" 4sinmz Lo w
(2n +1)! - m2n+l r2n+1

(=) 4sinmx 1
B 2n+l +0 (3m)2n+1
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_ (=1)" 4sinmx 0 3l
o 2n+1 + (37r)2n+1

_ (=1)" 4sinmx e3rlzl
o 2n+1 +0 (371')" :

Thus, the asymptotic formulas in Corollary 2.5 are equivalent to (33) in [3].

3. )\ is a negative real number

When A is a negative real number, writing A = —|\|, the generating function is given
by

yA|et+1 ZG J;/\ (3.1)

The poles of the generating function (3.1) is
T_w = {Zkﬂ'i - log\)\] 1k € Z}.

The next theorem follows from Theorem 2.4.

Theorem 3.1. Given that A is a negative real number, let F' be a finite subset of T_ |
satisfying
max {|a| : a € F'} <min {|a] : a € T_\\F} = p.

For all integers n > 2, we have, uniformly for x in a compact subset K of C,

G l‘ )\ _ QZ (e:m) 7 (3.2)

aEF

where the constant implicit in the order term depends on \, F and K.

The Apostol-Genocchi numbers G,,(0; —1) corresponding to the case A = —1 has
generating function

_et — Z G (3.3)

The set of poles is T_; = {2kni : k € Z\{O}} An asymptotic formula for G, (0;—1) is
given in the following theorem.

Theorem 3.2. For n > 3, the Apostol-Genocchi numbers Gy, (0; —1) satisfy

Gn(0;—1) 1 1 -n
— —2<( — + .)n>+0((4) ) (3.4)

n! —2mi)™ (27

In particular,
G%Eg:)!_l) - ((;ng +0((4m)>"),  n>2 (3.5)
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Proof. Taking z = 0, F' = {—2mi,27i} in Theorem 3.1, then u = 47. Hence,

—3Gn(0;-1) B 1 1
n! B <(—27ri)” - (27i)

n) + 0 ((4m)™"), (3.6)

from which (3.4) follows.
For (n > 3), (3.6) gives Ga2,+1(0; —1) = 0. Indeed G2,41(0; —1) =0, Vn > 1.

For n > 2, .
G2’E;?;)!_1) —4 <((2_7r 1)>2n> +0 ((4m)2). (3.7)
From (3.7) we have the approximation
a1y CIL 200 o8
Taking n = 4,
Gs(0;-1) = é(i;z; ~ .06638.
The actual value of Gg(0; —1) = —2Bg = ;= ~ .06667.

The Apostol-Genocchi polynomials, Gy, (x; —1) correspond to the case A = —1. These
polynomials have generating function

2te”t = tn
n=0
We will prove the following theorem.

Theorem 3.3. Let K be a compact subset of C. The Apostol-Genocchi polynomials
Gn(x; —1) satisfy uniformly on K the estimates

ng(li;—l) o (—1)n4COS 2rx e47r‘$|
Gont1(z; —1 —1)"4 sin 27x ez
2(221:— 1)! : - ( (;71-)271—1—1 ((477)"> ) (3.11)

where the implicit constant in the order term depends on the set K. Moreover, for n>> 0,
this constant can be made independent of K , equal to the constant for the Apostol-Genocchi
numbers Gy, (0; —1) corresponding to the case x = 0.
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Proof. Taking F' = {—2mi, 2mi}, then p = 47. Hence, it follows from Theorem 3.1 that

1 A o
7Gn($ _1) e2mix e—2miz ezl
2 ) _ _ Ia— 12
n! arr ~ (—zmr O\ @ (3:-12)
For odd indices,
-1 . 2 —2mi 4
=Gy, i—1 TiT TiT ||
7 U2 11(z ) _ 6’. i € ' L0 € (3.13)
(2n 4+ 1)! (2mi)?ntl  (—2mg)2ntl (47)2ntl
Gon+1(z;—1) _ (—1)"4sin2mx el . (3.14)
(2n+1)! (2m)2n+1 (4m)m
For even indices,
ng(l’; _1) e2miz e 2miz e47r\x|
=2 O|— 3.15
(2n)! erize T Camyen ) T\ G (3:15)
(—=1)"4 cos 2wz el
=——+0[[——]. 3.16
e O\ (310
4. Apostol-Euler Numbers and Polynomials
The Apostol-Euler numbers are defined by the generating function
2 = tn
Aet 4+ 1 7;) (0 )n! (4.1)
Multiplying both sides of (4.1) by ¢ gives
0 tn o tn+1
n(05A) = = DER0;A) ——
> G0 => (n+1)E(0 N o1
n=0 n=0
from which we have, for n > 1
Gn(0; A Gn(0; A
Bty = G0 (G0 as
Thus, from Theorem 2.3,
1
Ep_1(0:\) = 2(n — 1)! — 10 (W™m)|, 4.3
1(0:3) = 2(n >[;)un+ (v )] (13)

where F' C Ty = {(2k + 1)mi —log A | k € Z} and F satisfies
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max{|u| : v € F} <min{ju| : uwe TH)\F} =v.
For odd n, say n = 2k + 1, from (4.2), we have

Ga1(0;0)
Eon(0;)\) = ———— 4.4
Qk( ) ) % +1 ( )
while for even n, say n = 2k,
ng(O; )\)
Eop_1(0;\) = ————=. 4.
2k—1(05 A) 2% (4.5)
The case A = 1, corresponds to the Euler numbers E,,. From (4.2),
Gn
B, =" 46
1= (4.6)

Since G,, = 0 for all odd n > 3, Ey. =0 for k > 1.

For odd indices, using (2.9) we have

FEop_1 = (2n—1)! ((2;:)‘! = (2n —1)! (W +0 ((3@”)) , n>2. (4.7)

Taking n = 2,

The Actual value of E3 = 0.25.

The Apostol-Euler Polynomials E,(x; \) are defined by the generating function

th—i]ﬂ (N (4.8)
Aet—i—l_nzo RN '
which can be written
30 G S ) (49
n=0 n! - n=0 o (n + 1)' .
Thus,
B (@) = Sl (4.10)
From Theorem 2.4,
. —1)!
Fo (23 \) = Gp(z;A) (n—1)!
n (n—1)!
Gn(7; )
=(n—-1)! o
uz v|z|
e e
— _ | _
=(m-1{2) +O<1/” >>
uel

Hence, we have the following corollary.
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Corollary 4.1. Given A € C\{0}, let F be a finite subset of Ty satisfying
max{|u| : v € F} <min{ju| : uwe THh\F} =r.

Let K be an arbitrary compact subset of C. The Apostol-Euler polynomials satisfy umni-
formly on K the estimates,

En 1.13)\ V‘-’ﬂ|
o 22+O< )

uel

where the constant implicit in the order term depends on A\, F and K. Moreover, forn > 0,
this constant can be made independent of K, equal to the constant for the Apostol-Euler
numbers, corresponding to the case x = 0.

It follows from Corollary 2.5 that the Euler polynomials which correspond to A = 1,
satisfy, uniformly on a compact subset K of C the estimates

Eon—1() _ Gon(x) . (=1)"4 cosmx 37z

(2n—1)!  (2n)! 2n +0 <(37r)”> ) (4.11)
Eop(z) Gy (x) _ (=1)"4sin 7z e37lz]

(22n)' B (227111 1! g2l +0 ((3%)") , (4.12)

as n — oo, for n > 1.

The Apostol-Euler polynomials FE,,_1(xz; —1) correspond to the special case A\ = —1.
From (4.10),

;—1
Ep_y(z;—-1) = G”(";) (4.13)
It follows from (3.10) and (3.11), respectively that
Eop(z;—1)  (=1)"4sin27x el
= —_— 4.14
(2n)! ozt O\ G ) (4.14)
Eop—1(xz;—1)  (=1)"4cos2mx etrlel

= — 4.1

(2n—1)! aoz O\ G ) (4.15)

on a compact subset K of C.

5. Conclusion

Asymptotic approximations of the Apostol-Genocchi numbers and polynomials were
obtained for values of the parameter A in C\{0}. Unlike in [15] we have considered
explicitly the case when A is negative and obtained corresponding asymptotic formulas.
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Moreover, the asymptotic formulas for A = 1 are explicitly obtained for each of the Apostol-
Genocchi and Apostol-Euler numbers and polynomials. The tangent polynomials [8] have
generating function very similar to that of the Apostol-Genocchi polynomials. The author
recommends finding Fourier expansion and asymptotic approximations of these polynomi-

als.
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